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Introduction:
Hello.  Thank you for attending today.  
The amount of three dimensional data is growing rapidly in numerous application areas.  For molecular biology, tens of thousands of 3D structures have been created for proteins and small molecules.  Investigating protein interactions in the lab is often a tedious and labor intensive process, and perhaps computer analysis can help guide the process.  In the computer aided design community, 3D designs exist for numerous parts that can be combined to create new mechanical objects.  For surveillance and recognition purposes, scans of towns and the countryside can be created by flying over the environment with a camera system.  Finally, within the graphics community, 3D models of everyday objects have been created for computer games and movies.  Reusing these thousands of expertly created objects can speed up the creation of new models.  Computer graphics cards have become cheaper and more powerful, so besides researchers and scientists, home users can interact with 3D models such as architectural walkthroughs and video games.  
With the existence of large databases, a key question is, “How do we find useful content?”  Text search is widespread for many applications.  This search page shows the results for searching for the word “plane.”  Each image actually represents a 3D object and not just a 2D picture.  You can see that there are some airplanes in the results as well as mathematical planes.  Designers rarely label 3D models thoroughly, so text search has limited success.  What we really want is to find airplanes that are similar to the first result.  By clicking on the “Find similar shape” link under the first image, we can perform a search where the 3D shape of the first airplane is used as the query.  This set of results shows similar airplanes that were found, all with similar shape as the first model.  The main problem this dissertation addresses, is “How can we search for similar shapes in a large database of 3D objects?”  A common approach to shape search is to represent each shape by a feature vector called a shape descriptor.  The similarity between objects is related to the similarity of shape descriptors.  
PSB

There are numerous shape descriptors in the literature.  As a quick summary, consider this table with 14 shape descriptors.  They are divided into rough groups based on how they represent shapes.  The first group represents the surface normals of shapes, that is the perpendicular vectors for each region of a shape.  Perhaps the most important property of a shape is the surface itself.  This group of descriptors samples the surface and records the distribution in various ways.  To measure the similarity of two shapes, these descriptors measure how much the surface has to be deformed to align the models.  The last group calculate images or distance maps from numerous camera positions.
Here are a few basic properties to consider.  The sizes vary from a few hundred bytes to tens of kilobytes, which affects memory or disk requirements.  The time to create a descriptor takes from a third of a second to over three, and the time to compare two descriptors on a 2 GHz computer varies from a few microseconds to over a millisecond.
With so many shape descriptors in the research community, how do we select the best, and how do we even begin to evaluate that question?  During the early stages of research in this field, each group created their own dataset for experiments and used different retrieval metrics.  
We propose a methodology, data set, and evaluation tools called the Princeton Shape Benchmark.  
We hand classified thousands of models and created a training and test set, each with 907 models partitioned into categories, mostly everyday items.  
For comparison, the PSB is larger than other data sets we found in the literature, has more classes and more classified models.  Some of these other data sets have a few large classes such as planes that dominate results.  Other data sets have categories such as aerodynamic models that mix fish and vehicles or furniture categories that include chairs and couches in one category.  The ViewPoint data set is expensive to purchase.  The PSB divides shapes largely by function into well-defined categories.  
The methodology we propose is to perform a leave-one-out experiment.  We use each model as a query into the database, measure the similarity to every other model, and create a retrieval list.  We then place that model back in the database and use the next model as the query.  This maximizes the number of models to analyze, and we typically present results averaged over all queries.
We provide tools for generating precision recall plots of retrieval results.  The horizontal axis is the percentage of models recalled from the correct class, and the vertical axis is the precision of the models retrieved.  Here you see performance of fourteen shape descriptors.  Higher lines indicate better retrieval performance, and in the ideal situation the line would be across the top of the plot.
It is also useful to convert the retrieval lists into a quantitative measure of success.  Two different shape descriptors are shown, the Light Field Descriptor and Extended Gaussian Image.  The first model is the query in both cases, and the retrieval list is shown.  Considering on the first result, the nearest neighbor, both techniques have 100% success.  The entire retrieval list is evaluated with the discounted cumulative gain metric that I often call DCG.  Each hourglass model is worth one point divided by a function of its position in the retrieval list.  Results near the front of the list are worth more than those towards the end.  The LFD technique has a higher DCG than the other, because it had the first four correct.
There are several contributions of the PSB.  First, we present a methodology for evaluating shape retrieval techniques.  We provide a classified data set and tools for evaluating retrieval.  Using this methodology, we were able to discover new properties of shape descriptors.  In the end, there is no best shape descriptor, but certain descriptors are best for certain types of models.  
Local Matching Transition

These previous techniques have tried to match the whole shape.  This may fail when models are in different poses such as the legs of the horse or when a model has optional or moveable parts.  The chimney of a house may appear on the side or back for example.  
An alternative technique is to represent each shape by numerous shape descriptors, each representing a small region of a shape.  The problem is to find the corresponding regions, and the distance between the two models is a function of the match between the corresponding shape descriptors as well as the spatial consistency of their positions.
There are several problems with using local shape descriptors.  First, there are many descriptors created for each shape, so matching is slow.  Second, many of the descriptors do not represent distinguishing features of each shape and do not aid retrieval.  Perhaps only a small subset of the local descriptors represent important characteristics of each model.  Finding these distinctive shape descriptors is the focus of our work.
Related Work

There have been several previous projects investigating how to select a small subset of the descriptors for shape matching.  The simplest technique is to randomly select descriptors.  Random selection is fast but has the disadvantage that important features may not be sampled, especially if the important features have only a small portion of the surface area of the model.  
Analyzing the regions that people focus with eye tracking equipment is another technique though it is labor intensive.  
Another technique for selecting important regions is to select shape descriptors from salient regions of the shape, where salient generally means a region that has changing curvature or that sticks out from the surface.   The models in many shape databases are not manifold so calculating curvature can be difficult, and perhaps more importantly, there is no guarantee that regions that stick out from the shape represent important features of the class.  
Other selection techniques have focused on selecting rare descriptors under the assumption that the most common descriptors are not discriminating.  While this intuition that the likelihood of descriptors is important, using likelihood alone is insufficient since the rarest descriptors may not represent important features of models but may instead be a byproduct of noise or natural variation within a class.  
Finally, research has focused on stable regions of a shape by measuring the number of local descriptors that are similar to each other.  While this identifies regions that are common, they may not be useful for matching.
Key Idea
We would like a method for determining the important regions of shapes, but the previous work has all focused on analyzing models in isolation.
How can we know which features are important until we know something about the database and classification?  Instead, we define distinction to be retrieval performance.  It does not matter if a part sticks out, or is common, or rare, what matters is how well it distinguishes a class.  Our goal is to measure how well surfaces of a shape match well within its class.
System Overview

This diagram describes the major steps for calculating distinction.  First a mesh is sampled across its surface, and regions are constructed.  Then, shape descriptors are calculated for each region.  We measure the distinction for each descriptor.  While distinction scores for each region are sufficient for shape matching, we also calculate distinction for each vertex for visualization purposes.  
There are several ways to construct regions.  Segmentation has been explored, but consistently segmenting models is an unsolved problem.
Instead, we take a simple approach of randomly sampling the surface indicated by the light blue spots.  

We then construct spherical regions around each sample at multiple scales.  We use four scales, where the smallest scale typically includes a major feature, and the largest scale encloses the entire model, even when the sample is on the end.

We describe each region of the model with a shape descriptor.  We will be working with hundreds of descriptors per model, so it is important that the descriptor is quick to compute, compact to store, and these other properties.  Importantly, the shape descriptor should generally be good at retrieval.

Our technique is a general purpose analysis method and should work with many shape descriptors.  Our experiments are with these three descriptors because they meet these properties.  Unless otherwise noted, most of our experiments use the Harmonic Shape Descriptor, because it has good retrieval performance and a compact representation.
Next, we calculate distinction values for each shape descriptor.  We would like a score between 0 and 1 for the distinction value of each descriptor..  We analyze each region by using it as a query into the shape database.  
We are interested in the distinction of all combinations of regions, but this is infeasible to calculate, so we make an independence assumption and calculate distinction for each region.  

Consider this example. On the left we show two local descriptors used as queries into a database with their respective retrieval results shown on the right.  We have colored the regions of the query shape based on how well they work for retrieval.  The back of the chair and tail of the plane are useful for retrieving shapes of the correct class and are colored in red. 
But now consider a slightly different classification, where desk chairs are different from dining chairs, and commercial planes are different from biplanes.  Now the back of the chair and tail produce less desirable retrieval results.  For the chair, the junction where the seat meets the back distinguishes that there is no armrest, and for the airplane, the wing area distinguishes from biplanes.  What this demonstrates is that distinction is entirely dependent on the classification.  

Finally, for various graphics applications, it is useful to have distinction scores for each vertex.  We typically work with many fewer samples than vertices.
Most of the descriptors we work with change slowly across the surface of a mesh, and we expect distinction to change slowly as well.  So, we take a simple approach to calculating distinction at each vertex by modeling distinction with a mixture of Gaussians.  While this does not account for the connectivity of the mesh, we find that it works well in practice.

Evaluating Distinction

We next evaluate distinction in two ways.  First we investigate how various parameters affect distinction, and then we use distinction for shape retrieval.  

First a few examples:  Distinction was calculated for these models using the PSB base classification.  In most cases, recognizable features are distinctive including the ears of the rabbit, head of the wrench, and wheels of the car.  The potted plant is perhaps surprising, but there are classes of tress in the PSB, so the pot is the distinguishing feature.  
These helicopter models have been analyzed relative to a database of flying vehicles, and the blades are the most distinctive region.  The bottom helicopters are the same, and the example on the right shows saliency scores.  The changing curvature on the cockpit has high saliency, though that is perhaps not the most important feature for this database.

Distinction for fifteen models of humans is shown here.  The elbow region is consistently the most distinctive feature.  The exceptions occur when the pose of the arms are in a different position.  The reason the elbows are distinctive is because the PSB includes other classes of humans in walking poses, so the outstretched arms are the consistent features.  
Next, we see the same model with distinction scores as the database changes.  The wing tips and tail are most distinctive in a general database.  Within a vehicle database, the tail region is the most distinctive, and within a database of planes, the area centered around the cockpit is most distinctive for biplanes.  The main point of this example is that distinction is entirely dependent on the database and classification, while methods that evaluate models independently are unaffected by the database.

PDS:
Of course our definition of distinction is tied to retrieval, so next we will focus a shape retrieval algorithm on the distinctive regions of shapes.  
We perform a leave-one-out experiment where we use one model as a query, measure distinction for the remaining models in the database and measure retrieval success.  Then, we repeat this process with every model as the query.
For local shape matching, we generate local shape features, and then find correspondences between descriptors that minimize a distance function.  
Our distance function measures the similarity of corresponding features as well as the spatial relationship of the features.  The distance value is minimized when local shape descriptors are close matches and they are in matching positions.  There can be a large number of such correspondences, many of which are poor matches, so we developed an efficient algorithm that focuses on distinctive regions.  
Our priority-driven search algorithm starts with the best matching features and grows the match iteratively until it creates a match for K features.  We begin by calculating all pairs of correspondences between descriptors from the query and every other descriptor in the database.  Since most correspondences have a large distance value, they will fall towards the end of the priority queue, and the algorithm focuses on the best matches first.  We then expand the best correspondence by adding on another pair of correspondences, and this is added to the queue.  This continues until we have created a match with K pairwise correspondences, where K is a parameter of our system.  Most of the processing focuses on the best matches in practice. 
The database may consist of hundreds of thousands of shape descriptors, so during a preprocessing stage we filter the shape descriptors by selecting the most distinctive.  The most distinctive features tend to be grouped together representing similar features, so we impose a distance constraint when selecting distinctive descriptors. We start with the descriptor with highest distinction and then eliminate all nearby descriptors within a minimum distance constraint.  We repeat this algorithm until all descriptors have either been selected or eliminated.  In this example, the minimal distance constraint resulted in four descriptors being selected to represent the biplane.  By adjusting the distance constraint, the number of filtered descriptors is adjusted.  The result is that the database has been filtered to a small fraction of its original size before we begin the retrieval.
We compare selecting distinctive regions against other selection algorithms from the previous work.  For the same helicopter model, we can see which local descriptors are selected either randomly or based on likelihood or saliency.  The same number of regions was selected in all examples, though some appear on the backside of the model.  The spheres are colored based on distinction scores, so you can see that the other techniques may select distinctive regions, but also select less distinctive regions.
We used all four selection techniques in a retrieval experiment.  This precision recall plot shows that focusing on distinctive regions has better retrieval accuracy.  It is interesting that regions selected randomly are no worse than selecting the least likely regions or most salient regions.
Next we consider more specific retrieval results.  The first column shows the selection technique: distinction or random.  The second column is the size of the match: either three matching correspondences or just one.  The next two columns show the nearest neighbor and discounted cumulative gain metric.  First, we notice that using multiple descriptors has better retrieval performance than using one descriptor, whether the regions are selected with distinction or randomly.
Next we notice that a single descriptor on the surface is better for matching than a descriptor at the centroid of the model, which is a technique that is widely used.  
The final row refers to an Oracle technique that can select the best descriptor from the query model.  While this is not generally possible, it provides an interesting upper bound on the performance using local descriptors.  It suggests that local matching has the possibility for high quality matching.  Analyzing the best theoretical result in this way has not been performed before as far as I know.

Now, we compare priority driven search to the shape descriptors mentioned earlier in the talk.  Several of the best global descriptors are shown here, and priority driven search has better retrieval accuracy.  To be fair about the comparison though, the global techniques only involve a single descriptor while we use numerous local descriptors, and retrieval generally takes less than a second for global descriptors, while PDS takes longer than a second for retrieval.  Our focus is on high quality retrieval results, so we feel the tradeoff is worthwhile.
Updating Distinction:
There are several other bottlenecks in our system that I will address.  First, computing distinction takes over two minutes.  While this is a preprocessing task, this may become unacceptable for large databases.  Also, when new models are added to a database, distinction scores must be updated.  Finally, computing local descriptors can be a time intensive process, and many of these descriptors can likely be eliminated.  
We have initial experiments addressing these issues, though I should emphasize that these results need further investigation.  First, we address the issue of improving the efficiency of calculating distinction.

For most of our experiments, we have used the discounted cumulative gain metric to calculate distinction.  This metric is more accurate than nearest neighbor or other metrics we have considered.  A drawback, though, is that it requires the entire retrieval list.  So when we want to calculate distinction for a model, we have to compute the entire list.  

We can approximate distinction by considering only k neighbors instead of the full retrieval list.  In my dissertation, I also considered augmenting the log function in the denominator to place more emphasis towards the front of the list.   
Next, we need a technique to find nearest neighbors efficiently.  There are numerous spatial indexes in the literature.  We found that the cover tree index works well with high dimensional shape descriptors.  This image gives an example in 2D.   On the left, the points represent shape descriptors.  And the circles represent the cover tree index that spatially separates the descriptors.  On the right is another view of the same index structure.  To find the nearest neighbors to the query descriptor shown in orange, we can walk through the spatial structure and zoom in on the closest neighbors.  So now, we can calculate distinction for a database of shape descriptors using the cover tree index and a modified version of DCG.  
Next we investigate how quickly we can find neighbors using the cover tree index.  The horizontal axis is the number of neighbors we are trying to find and the vertical axis is time.  The green line shows the results for the test set of the PSB with 907 models, and the red line shows the results with the entire 1,814 models of the PSB.  We can find a small set of neighbors in a fraction of time of the entire list and use those to approximate distinction.  My dissertation describes retrieval experiments using approximate distinction, and retrieval accuracy quickly levels off around k = 64.  
Most of my discussion of distinction applies to a static, unchanging database.  In practice, real databases undergo changes as more models are added.  We could recalculate distinction from scratch in a batch manner, but I will briefly describe a technique for updating distinction dynamically.  The white points again represent shape descriptors, and suppose that we want to have an R approximation to distinction, where R is the number of neighbors used when calculating DCG.  The distance to the Rth neighbor varies depending on the density of descriptors.  For a new descriptor inserted into the database, its distinction can be calculated as I described before using a cover tree index.  But, potentially, distinction values throughout the database need to be updated since distinction is strongly related to the database.  More specifically, if the new descriptor falls within the R neighbor list for any other descriptor, then an update must take place.  Store each descriptor in a red-black tree or other efficient index structure, and then those descriptors with their R distance greater than the K distance must be updated.  

In this experiment, we measure how much of the database must be updated for the average insertion with R changing across the horizontal axis, and two values for K shown.  If an R value of 32 gives a sufficient approximation to distinction, then about 10% of the database will be updated.  I should emphasize that we have not built an end-to-end system for updating distinction, but these experiments investigate the major issues necessary for such a system.  

Predicting Distinction:

All of our work with distinction has been based on analyzing a classified database. That allows us to filter the database, but it does not tell us anything about the query model itself.  We have to spend the time to calculate local descriptors for the query, many of which may not be useful.
What we would like to do is be able to predict distinction scores for a query model, but this is not simple since we do not know the classification of the query.  Our approach is to map shape descriptors from a training phase to a one dimensional space where distinction scores are clustered, and then use this learned information to predict descriptors from a query shape.  Our hope is that this parameterization clusters descriptors with similar distinction scores.   Following on previous work that used descriptor rareness, our one dimensional mapping function is likelihood.  But we learn during a training phase how likelihood corresponds to retrieval performance.

Our system can be divided into two phases, a training phase and a query phase.  During the training phase, we analyze a classified database by evaluating the likelihood of each descriptors as well as the retrieval performance and tabulating the results.  During the query phase, we generate local descriptors for a query model, map the descriptors to their likelihood, predict their distinction scores, and selected a small number of descriptors to be used for shape matching.  The remainder of this talk explains the details our system and experimental results.

The first step is to evaluate the likelihood of every shape descriptors.  We treat shape descriptors like high dimensional feature vectors and assume a normal distribution.  During the training phase, we calculate the likelihood of every descriptor and store sufficient statistics to evaluate the likelihood of query descriptors.  We actually work with a function that is proportional to the log of the density function.  There are several advantages to using likelihood.  Our technique is independent of the underlying shape descriptor, and it naturally separates descriptors that are rare from those that are common in the database.  

An important step of the training phase is to build the distinction prediction function.  Consider a horse model in the database.  
With this descriptor, we have a likelihood score, which is the horizontal position on this plot, and we have a retrieval score, which is the vertical height of the line.  
For a second descriptor, we have another vertical line in the plot.  Higher lines indicate better retrieval performance.  
We repeat this for all descriptors for the horse, and you can see that a certain group of descriptors has better retrieval performance than others.  
We now repeat this for all shapes in the database, and average the results per vertical line, and you can see that the most likely descriptors have the worst retrieval performance.  
The pink line shows the number of descriptors per likelihood bin with the axis shown on the right.  We can focus our algorithm on the group of descriptors with the highest retrieval performance and eliminate most of the descriptors.  This table represents the distinction prediction function, and it can be tabulated for quick lookup.  With a t-test, we found that there is 99% confidence that the bin with highest retrieval performance significantly varies from the bin with lowest performance.
So during the query phase, we generate descriptors on the model.  Then for each descriptor we evaluate the likelihood of the descriptor and look up the corresponding retrieval performance.  We can either stop when a descriptor with a sufficiently high score is found or sort all of the descriptors based on their prediction scores.  

Instead of generating and using numerous descriptors, we select a small set to represent the query model.

Our cost function is a simple summation over the k selected descriptors compared against their best match on each model.  While this is a simple cost metric and does not account for geometric deformation, the focus of this project is on analyzing and predicting distinction.

For our experiments, we used 100 models in 10 classes from the Princeton Shape Benchmark for all of our experiments.  We perform a leave-one-out experiment, where we train over 99 of the models, and use the remaining model as a query into the database, and then repeat with a new query model.  I will be showing results for the shells descriptor, but the results are consistent for other descriptors as described in my dissertation. We believe that our technique is a general purpose algorithm and can be used with any shape descriptor that can be treated as a feature vector.  

Next, we evaluate whether our distinction technique is better than other alternatives.  We compare against random selection and the least likely descriptors.  We have normalized the precision recall plots with random performance along the horizontal axis, so higher lines indicate improvement over random selection.  This result shows that likelihood alone is not the best heuristic for selecting descriptors and learning the retrieval performance from a database can further improve retrieval.

Applications:
Besides shape matching, it is useful to have importance scores across the surface of a mesh for numerous other graphics applications.  For example, simplifying a model, distinguishing features should be preserved, and when creating thumbnail images for a model, the camera should be positioned so that it can be identified quickly.  We demonstrate how to incorporate distinction into mesh simplification and icon generation, and we believe it could be added to other geometric processing algorithms.

Consider a parts catalog that my show numerous 3D models onscreen at the same time.  It is unnecessary to render millions of polygons, since each model takes up a small part of the screen.  A common technique is to simplify meshes while preserving the visual appearance.  We modified Garland’s standard simplification technique by weighting regions either with saliency or with distinction.  You can see that more detail is preserved in the head of the hammer because it is the distinctive, functional end.  
In a second example, more polygon detail is preserved in the head area of the horse with our method.  Salient regions are spread across the horse in areas of changing curvature so large features are not preserved.  Under extreme simplification, preserving distinctive regions could lead to caricatures of models.
The second application we considered is icon generation.  When presenting 3D images to users for search results, it is important to select a camera position that emphasizes recognizable features.  We would like an automated technique for positioning the camera.  Several projects have considered camera positions based on entropy in the scene or symmetry properties.  We position the camera so that it focuses on the most distinctive features.  

The results for the car and wrench show quickly recognizable features.  The result for the biplane is perhaps less desirable.  This highlights a counterexample for our technique.  While distinctive regions often correspond to important parts, they do not necessarily correspond to what a human would select.  Our definition of shape distinction is based on 3D object retrieval, and perhaps a modified version that focuses on 2D image recognition would be more appropriate for some applications.
Conclusion:
I would like to summarize the key contributions of this dissertation.  We created the Princeton Shape Benchmark: a set of classified models, evaluation tools, and methodology for comparing shape retrieval techniques.  We defined shape distinction as the regions of 3D shapes that match well within a class and distinguish from other classes, which is a more data driven approach to the problem than previous work.  We analyzed the properties of distinction and showed how it is dependent on the database, classification, and scale, retrieval metric, and other properties.  We created an efficient shape retrieval algorithm that can focus on distinctive regions and demonstrated the advantages of this approach.  We presented an initial system for improving the efficiency of calculating distinction and updating distinction in a dynamic database.  We also created a prediction algorithm to learn a mapping to distinction scores from a database.  Finally, we have shown how shape distinction can be incorporated into other graphics algorithms.  

Future Work:

There are several interesting areas for future work.  Shape retrieval with local descriptors could be made even faster by exploring descriptors that can be calculated more quickly than the ones we considered.  Our current version of distinction requires a classified database, and removing that requirement is an open problem.  We have presented initial results for updating distinction, but the scalability must be improved for larger systems.  Our prediction algorithm uses a simple likelihood model, or likelihood could be replaced with another technique for grouping shape descriptors with similar distinction scores.  Finally, the idea of analyzing a classified data set and focusing on certain regions could be expanded to image retrieval and various applications.
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