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Abstract  
Image-based rendering (IBR) systems enable virtual walkthroughs 
of photorealistic environments by warping and combining 
reference images to novel viewpoints under interactive user 
control.  A significant challenge in such systems is to 
automatically compute image correspondences that enable 
accurate image warping.  
In this paper, we describe a new algorithm for computing a 
globally consistent set of image feature correspondences across a 
wide range of viewpoints suitable for IBR walkthroughs.  We first 
detect point features in a dense set of omnidirectional images 
captured on an eye-height plane.  Then, we track these features 
from image to image, identifying potential correspondences when 
two features track to the same position in the same image.  Among 
the potential correspondences, we select the maximal consistent 
set using a greedy graph labeling algorithm.   
A key feature of our approach is that it exploits the multiple paths 
that can be followed between images in order to increase the 
number of feature correspondences between distant images.  We 
demonstrate the benefits of this approach in a real-time IBR 
walkthrough system where novel images are reconstructed as the 
user moves interactively. 
Keywords: Image-based rendering, reconstruction, interactive, 
correspondence, image features.  

1. INTRODUCTION 
One of the most challenging problems in computer graphics today 
is rendering visually compelling 3D environments. For real-world 
environments, a key problem is to recreate the complex 
interaction between geometric and photometric properties. Image-
based rendering (IBR) addresses this problem by densely 
capturing images of the environment and then creates novel views 
by re-sampling the images that already contain the geometric and 
photometric properties [Max95, McMillan95].  
The main tasks for an IBR system are: (1) to acquire a dense 
sampling of calibrated reference images, (2) to map image 
samples from reference images to the view plane of the virtual 
observer, and (3) to combine the mapped image samples from 
multiple reference images to form a novel image. The first and 
third of these tasks have been well studied in recent years.  For 
instance, several papers have described how to acquire a dense set 
of reference images for real-world scenes, and related papers have 
described how to blend samples from the reference images during 
reconstruction of novel images. However, the second task 
(mapping image samples from one viewpoint to another) has still 
not been addressed adequately – it requires computing either pixel 
correspondences or accurate 3D scene geometry.  As a result, 
most IBR systems have produced novel images with noticeable 
blurring and ghosting artifacts, or they have been demonstrated 
only with distant or synthetic scenes. 

The goal of our work is to develop a method for mapping image 
samples so as to enable high-quality image reconstruction in 
interactive IBR walkthrough systems.  We would like the method 
to be: (1) able to produce novel images without noticeable 
ghosting or blurring artifacts, (2) robust to inaccuracies in camera 
pose estimates, (3) robust to inaccuracies in 3D proxy models, (4) 
fully automatic, and (5) able to warp any combination of images 
to form a novel image.  This last goal is motivated by the real-time 
needs of an IBR system where a pre-fetching process may not be 
able to load all images into memory quickly enough to keep up 
with the virtual observer motion.  In these cases, the reference 
images captured from locations closest to the observer viewpoint 
may not be available in memory, and the system must warp and 
combine more distant images from its memory-resident cache.   
Our approach creates novel views by warping and combining a set 
of omnidirectional images densely captured throughout a plane. 
Features detected in each reference image are tracked to other 
images within a local region.  Then, tracked features are matched 
in every image -- anytime two features track to the same location 
in the same image they are flagged as a potential correspondence.  

b) 

a) 

c) 

Figure 1. Feature Globalization. We show cylindrical projections 
reconstructed for a novel view of a captured environment using one 
of three methods. (a) Simply blending together neighboring 
references images. (b) Using a proxy to warp and blend reference 
images. (c) Using our approach that combines feature tracking with 
the construction and labeling of a correspondence graph, enabling 
correspondences over a wide range of viewpoints and producing high 
quality reconstructions without requiring dense depth information or 
a full 3D reconstruction. 
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A greedy algorithm is then used to select the best subset of 
potential correspondences while ensuring a consistent global 
feature labeling. This approach allows us to find feature 
correspondences across a wide range of viewpoints in difficult 
scenes (e.g., with occlusions) where many features would be lost 
by a typical feature tracker. Moreover, it allows us to produce 
high-quality novel images in a walkthrough system, even when 
reference images are separated by large distances and/or have 
poor camera pose estimates (Figure 1). 
The main contributions of this paper are: 

•  Algorithm for feature globalization: we describe a new 
approach for finding correspondences between features in 
images spread over a wide range of viewpoints.  Using a 
graph formulation over a dense “sea of images,” our 
algorithm is able to find more feature correspondences than 
traditional algorithms based on tracking of features along a 
single sequence of images. 

•  Evaluation of image warping methods: we compare the 
results of rendering novel images by simply blending 
reference images, warping them according to a coarse 3D 
proxy, and warping them based on globalized feature 
correspondences.  We find that warps based on globalized 
feature correspondences produce fewer ghosting and blurring 
artifacts than the other methods. 

•  Interactive IBR walkthrough system: we describe how to 
include globalized feature correspondences in an interactive 
IBR walkthrough system.  We find our system can produce 
novel images at 15 to 20 frames per second as a user 
interactively controls the simulated observer viewpoint. 

The rest of the paper is organized as follows. In the next section 
we present a summary of background and related work. Section 3 
describes our feature globalization algorithm, while Section 4 
presents our image reconstruction method. Section 5 contains 
some of the implementation details.  Experimental results and 
examples appear in Section 6. Finally, we conclude and present 
ideas for future work in Section 7. 

2. BACKGROUND & RELATED WORK 
There are several possible approaches to warping image samples 
in an IBR system.  The simplest approach is just to interpolate 
images without any warping [Levoy96] -- this method is sufficient 
only if the plenoptic function is sampled extremely densely. A 
second approach is to re-project image samples according to 
depths derived from an approximate 3D model (or proxy) 
[Debevec96, Hanrahan96, Buehler01] -- this method works well 
only for very detailed proxy models, which are difficult to obtain.  
A third approach is to estimate the depth value [Nyland01, 
Levoy00] or pixel correspondence [Chen93, McMillan95, 
Kang96] for every pixel in every image -- these methods produce 
the most accurate warps, but current methods for automatic 
camera calibration and depth acquisition have difficulties in 
environments with specular and occluding surfaces.  
Another approach is to find and use correspondences between a 
relatively small set of distinctive image features (e.g., corners) and 
to define a warp based on their correspondences (with linear 
interpolation between features) -- this approach works well only if 
a large number of features correspondences can be found, which 
has previously been possible only for closely located reference 
viewpoints. Finding feature correspondences over a wide region 
of viewpoints is difficult for several reasons: 

•  Feature tracking limitations: feature drift and visibility 
changes in the environment make robust tracking of long 
sequences difficult.  This difficulty thwarts simple algorithms 
that try to detect features in one image and track them to 
other images over a wide region. 

•  Feature detection limitations: because of occlusions, 
lighting differences, and jitter due to the sampled-nature of 
images, a feature detector may select significantly different 
features in different images of the same scene, even when the 
viewpoints are very close.   This difficulty hinders simple 
algorithms that try to match features detected in neighboring 
images. 

Several people have addressed feature correspondence in 3D 
reconstruction. For example, structure-from-motion approaches 
[Morita94] use a linear sequence of images to estimate global 
camera pose and the global position of a set of sparse features. 
Perhaps the work most similar to ours is by Pollefeys et al 
[Pollefeys98].  Their algorithm detects features in images of a 
video sequence and tracks them to later images while relabeling 
the ones that correspond.  Our approach differs from theirs in two 
ways.  First, we start from calibrated omnidirectional images 
arranged on a 2D plane, which allows us to track features between 
images in multiple directions, not just from earlier images to later 
ones in a linear sequence.  Second, we cast feature globalization 
as a graph-relabeling problem, which allows us to use algorithms 
to consider potential feature correspondences in best-first order, 
rather than in the order in which they are detected in the video.  
As a result, we expect to find more/better feature 
correspondences. 
Our work is motivated by the “Sea of Images” IBR system 
described by Aliaga et al. [Aliaga02]. They capture 
omnidirectional images on an eye-height plane and store them in a 
hierarchical structure suitable for real-time memory management. 
As a virtual observer walks through the environment, they pre-
fetch and warp reference images using a 3D proxy to form novel 
images. Unfortunately, since they rely upon a coarse 3D proxy 
model for warping image samples, and their camera pose 
estimates have errors, the system often reconstructs images with 
ghosting artifacts. One of the goals of our work is to develop 
better warping algorithms for IBR systems of this type. 

3. FEATURE GLOBALIZATION 
The focus of this paper is an algorithm for finding a set of feature 
correspondences in a large collection of images suitable for 
warping reference images in an interactive IBR system.  The input 
to our algorithm is a set of omnidirectional images captured 
densely on an eye-height plane throughout a large environment 
and calibrated with position and orientation information 
[Aliaga02].  The output is a set of feature positions for each image 
along with a globally consistent labeling, where two features have 
the same label if they correspond to the same scene element.   The 
features common to a group of images define a warp for the 
reconstruction of novel views in an interactive IBR walkthrough 
system. 
The simplest approach would be to detect features in one “source” 
image (e.g., in the middle of the environment) and track them to 
all other “destination” images.  Obviously, this approach would 
only work for a small range of images around the source, as 
features quickly become lost due to occlusions, lighting changes, 
and feature drift. 
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Our approach is to detect features in many source images and 
track features from each source image only to destination images 
within a local area (i.e., where tracking is relatively robust). Then, 
we identify potential correspondences whenever two features 
track to the same location in the same destination image. We use 
an iterative feature-relabeling algorithm to extract a globally 
consistent set of correspondences over the entire environment. 
This approach overcomes the limitations of feature tracking 
because it relies upon tracking only over short distances.  Yet, it 
identifies feature correspondences over a large range of 
viewpoints because feature relabeling propagates correspondences 
across regions.   
A key feature of our approach is that two features are said to 
correspond if they track to the same location in any destination 
image via any of the multiple viewpoint paths. For example, 
consider trying to find the correspondences for two scene features, 
X and Y, between two images, A and B, among a sea of images 
(black dots) captured throughout the environment shown in 
Figure 2. Due to occlusion of the obstacle in the middle of the 
room, it is difficult to track both features along any single path of 
viewpoints between images A and B. Feature X may track along a 
sequence of images captured on one side of the obstacle, and 
feature Y may track along a different sequence of viewpoints on 
the other side of the obstacle.  However, no single path can track 
both features all the way from one image to the other.  Moreover, 
features are lost along any path due to changes in lighting or 
sampling.  Our algorithm is able to find the correspondence for 
both X and Y because it matches features if they track to the same 
location in any image (e.g., C or D).  This redundancy allows our 
algorithm to find potential feature correspondences more robustly 
and across a wider range of viewpoints than traditional feature 
tracking methods.  
In the following three sections, we explain the main components 
of our algorithm. First, we describe the feature propagation 
method that starts with features detected in a set of source images 
and tracks them radially outwards to destination images. Second, 
we elaborate on our feature-relabeling algorithm. Third, we 
describe several practical optimizations that enhance the 
algorithm performance. The entire algorithm is summarized in 
Figure 3.  

3.1 Feature Propagation 
There are multiple image paths along which detected features can 
track and propagate outwards from each source image. Our 
algorithm attempts to minimize feature-tracking error by using a 
shortest-path traversal of the 2D Delaunay triangulation of the 
image viewpoints. Starting with a source image, feature tracking 
extends outwards from each image along a set of disjoint tracking 
paths (Figure 4a) until either no more features can be reliably 
tracked or a maximum number of images have been traversed. 
Our algorithm initializes feature propagation by detecting features 
in every source image using the algorithm of Shi and Tomasi 
[Shi94].  We assign each feature a unique label, mark it as 
untracked in its image, and insert it into the feature list associated 
with its image. Figure 4b shows an example image A with a few 
labeled features. (The actual reference images are omnidirectional 
images – we show planar re-projections for clarity). 
To propagate the features, our algorithm iteratively tracks features 
to the next neighboring image along every tracking path. In figure 
4c, we show the next neighboring image B along one tracking 
path from image A. To obtain candidate correspondences for this 
neighboring image B, we determine the subset of untracked 
features in A with labels different than those already appearing in 
B.  For each feature in that subset (e.g., f1, f2, f3), we track it to 
image B. If the track quality is above a user specified threshold, 
we consider merging the tracked features into the set of features 
associated with image B.  If a feature fi tracks to a position within 
a user specified distance threshold ε of another feature gj in image 
B, then we consider the pair (fi, gj) as a potential correspondence.  
Otherwise, we simply add the tracked features to the feature list of 
image B and mark them untracked in image B. 

// Initialize
Build Delaunay triangulation
Initialize priority queue

// Detect features
for each image A
Detect features F
if (quality(F) > threshold)
Insert F into A

REPEAT
// Propagating features
for each image A
for each [neighbor] image B
for each untracked feature F in A {
Track F to B
if (track quality > threshold) {
for each feature G in B
if (match (F,G) > threshold)

Insert (F,G) into priority queue
if (F matched no features of B)
Insert F into B

}
}

// Relabeling features
While priority queue is not empty {
Pop “best” potential correspondence (F,G)
If (consistent(F,G)) Relabel G->F
}

UNTIL no untracked features or max iterations

Figure 3. Feature Globalization Summary. Pseudocode that 
summarizes both feature propagation and feature relabeling. 

Figure 2. Multiple Tracking Paths. This figure represents the floor
plan of an example environment. Each dot corresponds to a reference
image. There are multiple viewpoint paths to track the features X and
Y from image A to image B (or vice versa). It is difficult to track both
features in the same path (e.g., because of obstacles, changing
visibility, and feature tracking limitations). Our algorithm finds more
features common to two images by taking advantage of the
redundancy of the multiple viewpoint paths. 

A B

X

Y
C

D

A B

X

Y
C

D
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3.2 Feature Relabeling 
After every image has tracked features to its neighbors, we are left 
with a list of potential feature correspondences (i.e., pairs of 
features that track to the same location in some image). Since 
there is no guarantee that a feature detected in a source image will 
be tracked to the same position through different paths to a 
destination image, inconsistencies may appear in which two 
distinct features in one image are thought to correspond to the 
same feature in another image.   
We resolve these inconsistencies by casting the problem of 
finding the best globally consistent set of feature correspondences 
as a graph-labeling problem. Using a greedy graph-labeling 
algorithm, we “accept” potential correspondences in best-first 
order.  The best correspondence is that of the feature pair closest 
to each other and with the highest track quality. Initially, we 
create a graph in which each vertex represents a unique feature 
detected in a reference image and each edge represents a potential 
correspondence between two features.  Using a priority queue, we 
iteratively pop the best potential feature correspondence off the 
queue and check to see whether “accepting” it produces a 
consistent labeling (i.e., no two features in the same image have 
the same label).  If so, the potential correspondence is accepted 
and the features are “merged” into one. We use the lower-value 
label as the new label. 
Figure 5 shows an example of our graph algorithm on a simple 
example with three images (dotted ovals), seven detected features 
(black dots), and many potential correspondences (dashed lines).  
The highest priority potential correspondence associates the two 
top-most features, and accepting this correspondence does not 
produce an inconsistent labeling.  So, we relabel these two 
features (1) and remove other potential correspondences that 
would obviously produce inconsistencies (Figure 5b).  The 
process continues accepting potential correspondences in priority 
order (Figure 5c-d) until no more can be found.  Sometimes, the 
highest priority potential correspondence remaining would 
produce an inconsistent labeling (Figure 5e), in which case it is 
rejected.  Finally, at the end of the algorithm, every feature has 
been given a unique global label and feature correspondences are 
indicated by the remaining (dark solid) edges in the graph.  Of 
course, this example is simple for exposition purposes only. The 

graphs computed for our datasets typically have hundreds of 
clusters and thousands of vertices per cluster. 

3.3 Practical Optimizations 
In theory, this basic algorithm can find the largest, globally 
consistent set of labeled features (if we detect features in every 
image and track them to every other image before any features are 
relabeled).  However, feature tracking is very compute intensive, 
and a naive implementation of this algorithm would take months 
of compute time for our data sets (~10,000 images with ~1,000 
features per image).  So, instead, we employ several optimizations 
that result in a more practical algorithm. 
First, in order to reduce the effects of feature jitter and to reduce 
the number of features to track, we detect features only in a subset 
of the images.  Specifically, we partition the images into regions 
and detect features only at the central image within each region 
(Figure 6).  Of course, the size of the regions has great impact on 
the performance and success of the algorithm.  On one extreme, if 
every image is in its own region, then we detect features at every 
image, and the system must track a large number of features. On 
the other extreme, if all images are in a single region, then 
features are detected and tracked from only one image.  In our 
system, we choose region sizes by estimating the distance along 
which features can be tracked reliably. This approach initializes 
all images within each region with a large set of corresponded 
features and allows the algorithm to begin by considering 
potential correspondences at the boundaries between regions. 
Second, in order to avoid unnecessary feature tracking, we 
alternate between feature tracking and feature relabeling (Figure 
3).  Rather than tracking features as far as possible before 
resolving potential correspondences, we interleave tracking 
features to immediate neighbor images and resolving potential 
correspondences with the greedy relabeling algorithm.  This 
approach avoids further tracking of features that can be merged 
with other features at the same location in the same image.  
These two practical optimizations not only reduce the compute 
time required by our algorithm, but they also help its stability.  
Detecting features in only one image of each region avoids much 
of the noise typically found in feature detectors, and 
merging/relabeling nearby features reduces the chances of 
erroneously finding correspondences between tracked features.  

Figure 4. Feature Propagation. (a) Using the edges of a 2D Delaunay triangulation of the image viewpoints, we track outwards from each source 
image along disjoint paths. (b) For a source image A, we detect features, such as f1,f2, and f3 and add them to the untracked list of features for that 
image. (c) Then, we iteratively track all untracked features to the next neighboring image B along each disjoint path. If a successfully tracked feature 
(such as f1 or f2) is within ε of an existing feature in an image B, the pair (f1,g1) is potentially corresponded.  

source image

(each dot is an image)

f1 f2

f3

g2f1 f2 g1

g1

ε

a) b) c)
image A image B
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The net result is a practical and automatic algorithm for finding a 
globally consistent set of image features. 

4. IMAGE RECONSTRUCTION 
Once we have a globalized set of features, a novel view is 
generated by warping and combining surrounding reference 
images. Building on the approach of Aliaga et al [Aliaga02], we 
triangulate the viewpoints of the reference images and find the 
triangle that contains the novel viewpoint. Then, we warp the 
three reference images to the novel viewpoint. Since we have a 
globalized set of features, we are not limited to combining only 
adjacent images. If only a sparse subset of the captured images is 
available, the images will still have common features. 

The algorithm finds the common features by iterating through all 
the features of one reference image and determining the subset 
present in the other reference images. In addition, we store with 
each feature, the original feature “quality” [Shi94], the feature 
tracking correlation (i.e., tracking quality), and the iteration at 
which the feature was globalized. If so desired, only features that 
exceed set quality and maximum iteration thresholds are used for 
reconstruction. 
Since features are only present at or near image details, some large 
parts of an image might have few or no features. This creates large 
triangles that would not warp and render the image as desired. We 
dynamically subdivide these large triangles and insert feature 
points. To calculate the correspondences for these feature points, 
we fall back to using a geometric proxy.  

5. IMPLEMENTATION DETAILS 
Our algorithm is implemented in C/C++ using, OpenGL, GLUT, 
and GLUI on both a Pentium IV 1.7 MHz computer with an 
NVidia GeForce3 Ti 500 graphics card and on a SGI Onyx2 
R10000 250Mhz computer with InfiniteReality2 graphics. 
Images and features are sorted and stored in a database. We store 
with each image the list of features it contains and with each 
feature the list of images that contain it. Both of these access 
mechanisms are used during feature globalization. 
We used our approach with two feature tracking algorithms. 
Initially, we used the publicly available KLT tracking library 
[Tomasi91]. This library was too costly for tracking thousands of 
features in 1024x1024 resolution images, such as ours. We then 
developed a custom feature tracking method. Our method 
estimates the position of the features to track in the destination 
image. This can be accomplished either by using the camera pose 
to predict the displacement of the feature along its epipolar curve 
or by using a geometric proxy to predict the feature displacement. 
Then, the method searches in the neighborhood of the predicted 
position for the tracked feature that best correlates with the 
original feature.  
The reconstruction method is implemented by blending triangular 
meshes using either multi-texturing on the NVidia board or the 
accumulation buffer on the SGI. After extracting the common set 
of globalized features for a given group of reference images, the 
reconstruction method triangulates the features in one image and 
generates a mesh. Using each reference image’s feature positions 
and the distance from the novel viewpoint to each reference 

Figure 6. Image Regions. The algorithm divides the plane of images 
into regions. For each region, feature tracking is initialized. Later, 
features from adjacent regions are iteratively corresponded and 
globalized. 

Figure 5. Graph Construction. A graph labels features and encodes
correspondences. This figure shows a sequence of steps to construct the
correspondence graph for 3 images. (a) The initial graph contains all
proposed correspondences edges between adjacent images. (b) The
algorithm selects the best correspondence and labels the vertices “1”.
The other proposed correspondence edges for the same vertices are 
removed. (c) The algorithm selects the next best correspondence edge
and labels the vertices “2”. (d) The algorithm selects a third edge but
connects the vertex to the previous connected component of label “1”.
(e) The algorithm attempts to accept a correspondence edge that yields
an inconsistent assignment of vertices: features “1” and “2” are distinct
features in the upper right image but are being considered equivalent
features in the upper left image. (f) After several more steps, the final 
correspondence graph is obtained. Notice that a feature is not
necessarily present in all images (e.g., feature “3”). 
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image’s viewpoint, the reconstruction method creates interpolated 
feature positions. Each reference image is then downloaded to the 
graphics engine and rendered as a textured mesh. A reference 
image is warped by rendering the mesh using the interpolated 
feature positions as vertices but using the original feature 
positions as the texture coordinates. 

6. RESULTS 
In this section, we present several results and observations about 
feature globalization. For our experiments, we use images 
captured in three real-world environments: a single-person office, 
the lobby of a library, and a museum covering almost 1000 square 
feet. The three datasets contain a total of 15,000 omnidirectional 
images captured in a plane (each image of 1024x1024 pixels) and 
the average distance between images is 1.5 inches [Aliaga02]. An 
omnidirectional camera mounted on a motorized cart captures the 
images. The camera pose for each image is derived using fiducials 
placed in the environment. Table 1 summarizes the image 
datasets. 

6.1 Example Reconstructions 
Figure 7 shows images reconstructed using simple blending, a 
proxy, and globalized features. All images are from viewpoints 
located approximately equidistant from the surrounding reference 
images. Simple blending produces the most amount of ghosting 

(Figures 7a, 7e). To prevent ghosting with this approach, images 
must be captured more densely, which for large environments can 
be exceedingly difficult. A proxy improves the correspondence 
between reference images, but the accuracy of the proxy and of 
the camera pose dictates the final quality (Figures 7b, 7f). Feature 
globalization is able to match details a proxy leaves out and is 
able to compensate for inaccuracies in camera pose estimation 
(Figures 7c, 7g). Figures 7d and 7h highlight the features. 
In addition to improving the reconstruction quality when using the 
full set of captured images, feature globalization also allows us to 
establish correspondences between more distant images.  As a 
practical matter, this allows us to produce novel images without 
noticeable artifacts using a sparser set of reference images. Figure 
8 shows several images generated from sparser sets of reference 
images. Each reconstructed image uses a subset of the reference 
images approximately evenly distributed throughout the 

Dataset No. Images Size Avg. Image Spacing 

Museum 9832 900 sq. ft 2.2 inches 

Office 3475 30 sq. ft 0.7 inches 

Library 1947 120 sq. ft 1.6 inches 

Table 1. Dataset Summary. This table summarizes the datasets used: 
number of images, environment size, and average image spacing. 

f) 

e) 

g) 

b) 

a) 

c) 

d) h) 

Figure 7. Reconstruction Comparison. Reconstructed cylindrical projections for novel viewpoints use one of three reconstruction methods. 
Novel viewpoints are approximately equidistant from the surrounding three reference images. Images a-d are from the Museum environment; 
images e-h are from the Office environment. (a, e) Neighboring references images are blended, yielding the most amount of ghosting. (b,f) A 
proxy is used to warp and blend reference images. Quality depends on proxy accuracy and camera pose estimation. (c, g) Feature globalization 
helps to warp and combine images. This approach is better able to correspond image details and less dependent on camera pose accuracy. (d,h) 
The globalized features are highlighted with yellow dots. 
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environment. The reconstructed image is from a viewpoint near 
the middle of the space between the reference images. In this 
example, feature globalization allows us to increase the spacing 
between reference images by a factor of approximately 13:1 
without significantly affecting quality.  

6.2 Tracking 
As with other tracking methods, feature drift and visibility 
changes in the environment make tracking long sequences 
difficult. The tracking requirements for feature globalization are 
stricter than those for typical feature tracking. We would like to 
detect features in a source image, track them to a destination 
image, and have all the tracked source features match the detected 
features of the destination image. Once we know through how 
many images we can satisfactorily track, we can gauge maximum 
region sizes and maximum tracking sequence lengths. 
Figure 9 shows a graph with two curves that measure the 
performance of tracking for globalization. Each data point is the 
averaged result of traversing outwards from images throughout 
the environment and comparing the tracked features to detected 
features, for all three environments. The horizontal axis represents 
distance (in images) from a source image. The vertical axis 
represents number of features. Starting with the detected features 
of a source image, the top curve indicates the number of 
successfully tracked features. The bottom curve shows how many 
of the tracked features match newly detected features for that 
image. The two curves are not equal for two reasons: (1) feature 
detection jitter causes an apparent “randomness” in feature 
detection, and (2) feature tracking errors (e.g., feature drift, 
visibility changes, etc).  
As observed, successful matching between tracked features and 
detected features decreases rapidly. For our datasets, this graph 
indicates that tracking through more than 4 or 5 images should be 
avoided. 

6.2 Globalization 
Our feature globalization algorithm allows us to perform tradeoffs 
for finding feature correspondences. To vary the amount of 
globalization, we either change the region size or change the 
maximum number of iterations of the globalization algorithm. 
Recall that one iteration consists of a pass of feature propagation 
and feature relabeling (Figure 3). Using larger regions effectively 
“pre-globalizes” the features by tracking longer initial sequences. 
For each region, the features detected at the center image must be 
tracked outwards through a longer sequence of images before 

reaching the region border for subsequent globalization. This also 
reduces the amount of globalization work but depends on the 
reliability of long tracking sequences. The other option, increasing 
the maximum number of iterations, places the burden on 
globalization and not on long tracking sequences. To estimate the 
current amount of globalization for a set of parameters, we 
measure the number of globalized features for a set of novel 
viewpoints throughout the environment. 
Figure 10 shows three graphs representing the amount of 
globalization for several region sizes, maximum iterations, and 
reductions of the number of reference images using the Library 
environment. Small regions consist of 5 or fewer images. Medium 
regions have about 15 images and large regions contain about 45 
images. The iteration limit is one of 1, 3, or 5. For each sample 
point, we calculate the average number of globalized features at 
128 viewpoints evenly distributed throughout the environment. 
The vertical axis represents the average number of globalized 
features. The horizontal axis indicates the total number of 
reference images available for reconstruction. Each subset of 
reference images is evenly distributed throughout the 
environment.  

Figure 8. Reconstructions Using Sparse Reference Images. These images of the Library environment are reconstructed using features globalized
with small initial regions and at most 5 globalization iterations. Each example reconstruction uses a regularly-spaced subset of the original reference 
images: (a) the full set of 1947 reference images, (b) a subset of 153 images (13:1 reduction in images), (c) a subset of 89 images (22:1 reduction in
images). For this environment, we can typically reduce the number of reference images to a few hundred with little impact on quality. There is some
visible ghosting and blurriness in (b), in particular around the computer monitor and counter area in the distance. Further reference image reduction 
(c) often produces noticeable artifacts. 
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Figure 9. Tracking Performance. This graphs plots the number of 
features tracked and matched when traversing outwards from an 
image. Each data point is the averaged result of a sampling of image 
paths through all three environments. The “tracked” curve indicates 
how many features were successfully tracked to the next image. The 
“match” curve indicates how many of the tracked features match 
newly detected features for that image. This graph allows us to 
estimate the number of features tracked and the number of matches. 
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These graphs show that feature globalization using more iterations 
generally outperforms using long tracking sequences in three 
ways. First, more iterations tends to have a larger benefit than 
using larger initial region sizes. For instance, using small regions 
and five iterations yields about twice as many features as using 
small regions and one iteration. Second, using small regions and 
more iterations reduces the average tracking sequence length. For 
large regions and one iteration, features are often tracked through 
8 or more images (7 images from the region center to the border 
plus one image in order to match features with the adjacent 
regions). For small regions and a maximum of five iterations, 
features are tracked through only 4.5 images on average (the 
region typically has a radius of one image and the average 
iteration count is 3.5 images). As evidenced by Figure 9, tracking 
shorter sequences yields more matches and thus explains the 

overall increase in number of features. Finally, using more 
iterations makes feature globalization less sensitive to the size of 
the initial regions (compare the right side of both Figure 10a and 
Figure 10c). This is because as the number of iterations increases, 
feature matching and labeling approaches a full and complete 
globalization. 

6.3 Performance 
Feature globalization is divided into a runtime phase and a 
preprocessing phase. Our runtime reconstruction operates at about 
15 to 20 frames per second on both the PC and the SGI. This 
includes extracting a common set of features for the current 
reference images, loading the images to texture memory, creating 
a mesh, and rendering warped textured meshes. 
During preprocessing, we perform three main tasks: feature 
tracking, which takes up most of the time (68% on average), 
followed by rotating the images so as to align the images being 
tracked (22% of the time), and constructing the globalization 
graph (10% of the time).  
For square regions and relatively small values for A, the number 
of tracking operations is approximately O(N + 4NA/S), where N is 
the number of images, A is the maximum number of iterations, 
and S is length of a side of a region (in images). During 
initialization, we track N images. Then, each iteration tracks all 
the images on the perimeter of the regions. The perimeter of a 
region has 4S images and there are N/(S*S) regions. Thus, in a 
single iteration, we track 4S*N/(S*S) = 4N/S images.  
For our datasets, we typically track up to 1500 features per image.  
On the SGI, our method is able to track features from image to 
image in 3 seconds on average. On the PC platform, we obtain a 
faster tracking performance of 2 seconds on average. 
The globalized feature sets take between 4 to 30 hours of 
computation, depending on the environment and the globalization 
parameters. In our current implementation, each feature occupies 
24 bytes and the total number of features stored per environment 
ranges from a few million to approximately 20 million features 
(Museum environment). 

7. CONCLUSIONS AND FUTURE WORK 
In this paper, we describe an algorithm for detecting feature 
correspondences across a wide range of viewpoints, and we have 
used it to produce high-quality warping of reference images to 
novel viewpoints in an IBR walkthrough system.  From our 
experience with this system, we conclude that warping with 
globalized features performs better than pure blending or 
geometric proxies not only when novel viewpoints are relatively 
close to scene elements, but also when available reference images 
are relatively far apart and camera poses of reference images are 
not perfectly calibrated. Our IBR walkthrough system is able to 
render images of complex scenes at 15 to 20 frames per second 
with little or no ghosting or blurring artifacts.   
In the future we are considering iteratively adjusting the 
globalization parameters, including region size and maximum 
iterations, so as to arrive at a maximum amount and extent of 
globalized features. Furthermore, we will adjust globalization 
parameters to different parts of the environment. In addition, we 
are seeking to reduce feature-tracking time. With real-time 
tracking, our total pre-computation times would be reduced to a 
few hours. 
The globalized feature set can also be used to compress the image 
dataset. We are currently investigating into compression methods 
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Figure 10. Feature Globalization. These graphs show how varying 
the initial region size and varying the maximum number of iterations 
(and thus globalization) affects the number of features available for 
warping reference images. Each data point is computed as the 
average number of features used for reconstructing a novel view at 
128 evenly distributed points through the library environment. See 
text for further interpretations of these graphs. 
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that, in addition to intra-image redundancy, use feature 
globalization to extract inter-image redundancy. 

Acknowledgments 
We are grateful to Sid Ahuja, Multimedia Communications 
Research VP at Bell Labs, for supporting this research. In 
addition, we thank Bob Holt and Steve Fortune for their 
mathematical help. 

References 
[Aliaga02] Aliaga D., Funkhouser T., Yanovsky D., Carlbom I. “Sea of 

Images”, IEEE Visualization, October 2002. 
[Buehler01] Buehler C., Boose M., McMillan L., Gortler S., Cohen M., 

“Unstructured Lumigraph Rendering”, Proc. of ACM SIGGRAPH 
2001, pp. 425-432, 2001. 

[Chen93] Chen E., Williams L., “View Interpolation for Image 
Synthesis”, Proc. of ACM SIGGRAPH 1993, pp. 279-288, 1993. 

[Gortler96] Gortler S., Grzeszczuk R., Szeliski R., and Cohen M., “The 
Lumigraph”, Computer Graphics (SIGGRAPH 96), 43-54, 1996. 

[Lee98] Lee S., Wolberg G., Shin S. Y., “Polymorph: Morphing Among 
Multiple Images”, IEEE Computer Graphics and Applications, 
18(1):58-71, January/February, 1998. 

[Levoy96] Levoy M. and Hanrahan P., “Light Field Rendering”, 
Computer Graphics (SIGGRAPH 96), 31-42, 1996. 

[Levoy00] Levoy M. et al, “The Digital Michelangelo Project: 3D 
Scanning of Large Statues”, Proc. of ACM SIGGRAPH 2000, pp. 131-
144, 2000. 

[Kang96] Kang S.B., Szeliski R., “3D Scene Data Recovery using 
Omnidirectional Multibaseline Stereo”, IEEE Conf. Computer Vision 
and Pattern Recognition (CVPR), pp. 364-370, 1996. 

[Max95] Max N. and Ohsaki K., “Rendering Trees from Precomputed Z-
Buffer Views”, Rendering Techniques '95: Proceedings of the 6th 
Eurographics Workshop on Rendering, 45-54, 1995. 

[McMillan95] McMillan L. and Bishop G., “Plenoptic Modeling: An 
Image-Based Rendering System”, Computer Graphics (SIGGRAPH 
95), 39-46, 1995. 

[Morita94] Morita T., Kanade T., “A Sequential Factorization Method for 
Recovering Shape and Motion from Image Streams”, Proc. ARPA 
Image Understanding Workshop, Vol. 2, pp. 1177–1188, 1994. 

[Nyland01]  Nyland L., Lastra A., McAllister D., Popescu V., McCue C., 
“Capturing, Processing, and Rendering Real-World Scenes”, 
Videometrics and Optical Methods for 3D Shape Measurement 
Techniques, Electronic Imaging Photonics West, Volume 2309, 2001. 

[Pollefeys98] Pollefeys M., Koch R., and van Gool L., “Self-Calibration 
and Metric Reconstruction in Spite of Varying and Unknown Internal 
Camera Parameters”, Proceedings Int. Conf. on Computer Vision 
(ICCV), pp. 90-95, 1998. 

[Shi94] Shi J., Tomasi C., “Good Features to Track”, IEEE Computer 
Vision and Pattern Recognition (CVPR 94), pp. 593-600, 1994. 

[Tomasi91] Tomasi C. and Kanade T., “Detection and Tracking of Point 
Features”, Carnegie Mellon University Technical Report CMU-CS-91-
132, 1991. 

 


