
 1

Interactive Image-Based Rendering
Using Feature Globalization

Daniel G. Aliaga Dimah Yanovsky Thomas Funkhouser Ingrid Carlbom

 Lucent Bell Labs Harvard University Princeton University Lucent Bell Labs

Abstract
Image-based rendering (IBR) systems enable virtual walkthroughs
of photorealistic environments by warping and combining
reference images to novel viewpoints under interactive user
control. A significant challenge in such systems is to
automatically compute image correspondences that enable
accurate image warping.
In this paper, we describe a new algorithm for computing a
globally consistent set of image feature correspondences across a
wide range of viewpoints suitable for IBR walkthroughs. We first
detect point features in a dense set of omnidirectional images
captured on an eye-height plane. Then, we track these features
from image to image, identifying potential correspondences when
two features track to the same position in the same image. Among
the potential correspondences, we select the maximal consistent
set using a greedy graph labeling algorithm.
A key feature of our approach is that it exploits the multiple paths
that can be followed between images in order to increase the
number of feature correspondences between distant images. We
demonstrate the benefits of this approach in a real-time IBR
walkthrough system where novel images are reconstructed as the
user moves interactively.
Keywords: Image-based rendering, reconstruction, interactive,
correspondence, image features.

1. INTRODUCTION
One of the most challenging problems in computer graphics today
is rendering visually compelling 3D environments. For real-world
environments, a key problem is to recreate the complex
interaction between geometric and photometric properties. Image-
based rendering (IBR) addresses this problem by densely
capturing images of the environment and then creates novel views
by re-sampling the images that already contain the geometric and
photometric properties [Max95, McMillan95].
The main tasks for an IBR system are: (1) to acquire a dense
sampling of calibrated reference images, (2) to map image
samples from reference images to the view plane of the virtual
observer, and (3) to combine the mapped image samples from
multiple reference images to form a novel image. The first and
third of these tasks have been well studied in recent years. For
instance, several papers have described how to acquire a dense set
of reference images for real-world scenes, and related papers have
described how to blend samples from the reference images during
reconstruction of novel images. However, the second task
(mapping image samples from one viewpoint to another) has still
not been addressed adequately – it requires computing either pixel
correspondences or accurate 3D scene geometry. As a result,
most IBR systems have produced novel images with noticeable
blurring and ghosting artifacts, or they have been demonstrated
only with distant or synthetic scenes.

The goal of our work is to develop a method for mapping image
samples so as to enable high-quality image reconstruction in
interactive IBR walkthrough systems. We would like the method
to be: (1) able to produce novel images without noticeable
ghosting or blurring artifacts, (2) robust to inaccuracies in camera
pose estimates, (3) robust to inaccuracies in 3D proxy models, (4)
fully automatic, and (5) able to warp any combination of images
to form a novel image. This last goal is motivated by the real-time
needs of an IBR system where a pre-fetching process may not be
able to load all images into memory quickly enough to keep up
with the virtual observer motion. In these cases, the reference
images captured from locations closest to the observer viewpoint
may not be available in memory, and the system must warp and
combine more distant images from its memory-resident cache.
Our approach creates novel views by warping and combining a set
of omnidirectional images densely captured throughout a plane.
Features detected in each reference image are tracked to other
images within a local region. Then, tracked features are matched
in every image -- anytime two features track to the same location
in the same image they are flagged as a potential correspondence.

b)

a)

c)

Figure 1. Feature Globalization. We show cylindrical projections
reconstructed for a novel view of a captured environment using one
of three methods. (a) Simply blending together neighboring
references images. (b) Using a proxy to warp and blend reference
images. (c) Using our approach that combines feature tracking with
the construction and labeling of a correspondence graph, enabling
correspondences over a wide range of viewpoints and producing high
quality reconstructions without requiring dense depth information or
a full 3D reconstruction.

 2

A greedy algorithm is then used to select the best subset of
potential correspondences while ensuring a consistent global
feature labeling. This approach allows us to find feature
correspondences across a wide range of viewpoints in difficult
scenes (e.g., with occlusions) where many features would be lost
by a typical feature tracker. Moreover, it allows us to produce
high-quality novel images in a walkthrough system, even when
reference images are separated by large distances and/or have
poor camera pose estimates (Figure 1).
The main contributions of this paper are:

• Algorithm for feature globalization: we describe a new
approach for finding correspondences between features in
images spread over a wide range of viewpoints. Using a
graph formulation over a dense “sea of images,” our
algorithm is able to find more feature correspondences than
traditional algorithms based on tracking of features along a
single sequence of images.

• Evaluation of image warping methods: we compare the
results of rendering novel images by simply blending
reference images, warping them according to a coarse 3D
proxy, and warping them based on globalized feature
correspondences. We find that warps based on globalized
feature correspondences produce fewer ghosting and blurring
artifacts than the other methods.

• Interactive IBR walkthrough system: we describe how to
include globalized feature correspondences in an interactive
IBR walkthrough system. We find our system can produce
novel images at 15 to 20 frames per second as a user
interactively controls the simulated observer viewpoint.

The rest of the paper is organized as follows. In the next section
we present a summary of background and related work. Section 3
describes our feature globalization algorithm, while Section 4
presents our image reconstruction method. Section 5 contains
some of the implementation details. Experimental results and
examples appear in Section 6. Finally, we conclude and present
ideas for future work in Section 7.

2. BACKGROUND & RELATED WORK
There are several possible approaches to warping image samples
in an IBR system. The simplest approach is just to interpolate
images without any warping [Levoy96] -- this method is sufficient
only if the plenoptic function is sampled extremely densely. A
second approach is to re-project image samples according to
depths derived from an approximate 3D model (or proxy)
[Debevec96, Hanrahan96, Buehler01] -- this method works well
only for very detailed proxy models, which are difficult to obtain.
A third approach is to estimate the depth value [Nyland01,
Levoy00] or pixel correspondence [Chen93, McMillan95,
Kang96] for every pixel in every image -- these methods produce
the most accurate warps, but current methods for automatic
camera calibration and depth acquisition have difficulties in
environments with specular and occluding surfaces.
Another approach is to find and use correspondences between a
relatively small set of distinctive image features (e.g., corners) and
to define a warp based on their correspondences (with linear
interpolation between features) -- this approach works well only if
a large number of features correspondences can be found, which
has previously been possible only for closely located reference
viewpoints. Finding feature correspondences over a wide region
of viewpoints is difficult for several reasons:

• Feature tracking limitations: feature drift and visibility
changes in the environment make robust tracking of long
sequences difficult. This difficulty thwarts simple algorithms
that try to detect features in one image and track them to
other images over a wide region.

• Feature detection limitations: because of occlusions,
lighting differences, and jitter due to the sampled-nature of
images, a feature detector may select significantly different
features in different images of the same scene, even when the
viewpoints are very close. This difficulty hinders simple
algorithms that try to match features detected in neighboring
images.

Several people have addressed feature correspondence in 3D
reconstruction. For example, structure-from-motion approaches
[Morita94] use a linear sequence of images to estimate global
camera pose and the global position of a set of sparse features.
Perhaps the work most similar to ours is by Pollefeys et al
[Pollefeys98]. Their algorithm detects features in images of a
video sequence and tracks them to later images while relabeling
the ones that correspond. Our approach differs from theirs in two
ways. First, we start from calibrated omnidirectional images
arranged on a 2D plane, which allows us to track features between
images in multiple directions, not just from earlier images to later
ones in a linear sequence. Second, we cast feature globalization
as a graph-relabeling problem, which allows us to use algorithms
to consider potential feature correspondences in best-first order,
rather than in the order in which they are detected in the video.
As a result, we expect to find more/better feature
correspondences.
Our work is motivated by the “Sea of Images” IBR system
described by Aliaga et al. [Aliaga02]. They capture
omnidirectional images on an eye-height plane and store them in a
hierarchical structure suitable for real-time memory management.
As a virtual observer walks through the environment, they pre-
fetch and warp reference images using a 3D proxy to form novel
images. Unfortunately, since they rely upon a coarse 3D proxy
model for warping image samples, and their camera pose
estimates have errors, the system often reconstructs images with
ghosting artifacts. One of the goals of our work is to develop
better warping algorithms for IBR systems of this type.

3. FEATURE GLOBALIZATION
The focus of this paper is an algorithm for finding a set of feature
correspondences in a large collection of images suitable for
warping reference images in an interactive IBR system. The input
to our algorithm is a set of omnidirectional images captured
densely on an eye-height plane throughout a large environment
and calibrated with position and orientation information
[Aliaga02]. The output is a set of feature positions for each image
along with a globally consistent labeling, where two features have
the same label if they correspond to the same scene element. The
features common to a group of images define a warp for the
reconstruction of novel views in an interactive IBR walkthrough
system.
The simplest approach would be to detect features in one “source”
image (e.g., in the middle of the environment) and track them to
all other “destination” images. Obviously, this approach would
only work for a small range of images around the source, as
features quickly become lost due to occlusions, lighting changes,
and feature drift.

 3

Our approach is to detect features in many source images and
track features from each source image only to destination images
within a local area (i.e., where tracking is relatively robust). Then,
we identify potential correspondences whenever two features
track to the same location in the same destination image. We use
an iterative feature-relabeling algorithm to extract a globally
consistent set of correspondences over the entire environment.
This approach overcomes the limitations of feature tracking
because it relies upon tracking only over short distances. Yet, it
identifies feature correspondences over a large range of
viewpoints because feature relabeling propagates correspondences
across regions.
A key feature of our approach is that two features are said to
correspond if they track to the same location in any destination
image via any of the multiple viewpoint paths. For example,
consider trying to find the correspondences for two scene features,
X and Y, between two images, A and B, among a sea of images
(black dots) captured throughout the environment shown in
Figure 2. Due to occlusion of the obstacle in the middle of the
room, it is difficult to track both features along any single path of
viewpoints between images A and B. Feature X may track along a
sequence of images captured on one side of the obstacle, and
feature Y may track along a different sequence of viewpoints on
the other side of the obstacle. However, no single path can track
both features all the way from one image to the other. Moreover,
features are lost along any path due to changes in lighting or
sampling. Our algorithm is able to find the correspondence for
both X and Y because it matches features if they track to the same
location in any image (e.g., C or D). This redundancy allows our
algorithm to find potential feature correspondences more robustly
and across a wider range of viewpoints than traditional feature
tracking methods.
In the following three sections, we explain the main components
of our algorithm. First, we describe the feature propagation
method that starts with features detected in a set of source images
and tracks them radially outwards to destination images. Second,
we elaborate on our feature-relabeling algorithm. Third, we
describe several practical optimizations that enhance the
algorithm performance. The entire algorithm is summarized in
Figure 3.

3.1 Feature Propagation
There are multiple image paths along which detected features can
track and propagate outwards from each source image. Our
algorithm attempts to minimize feature-tracking error by using a
shortest-path traversal of the 2D Delaunay triangulation of the
image viewpoints. Starting with a source image, feature tracking
extends outwards from each image along a set of disjoint tracking
paths (Figure 4a) until either no more features can be reliably
tracked or a maximum number of images have been traversed.
Our algorithm initializes feature propagation by detecting features
in every source image using the algorithm of Shi and Tomasi
[Shi94]. We assign each feature a unique label, mark it as
untracked in its image, and insert it into the feature list associated
with its image. Figure 4b shows an example image A with a few
labeled features. (The actual reference images are omnidirectional
images – we show planar re-projections for clarity).
To propagate the features, our algorithm iteratively tracks features
to the next neighboring image along every tracking path. In figure
4c, we show the next neighboring image B along one tracking
path from image A. To obtain candidate correspondences for this
neighboring image B, we determine the subset of untracked
features in A with labels different than those already appearing in
B. For each feature in that subset (e.g., f1, f2, f3), we track it to
image B. If the track quality is above a user specified threshold,
we consider merging the tracked features into the set of features
associated with image B. If a feature fi tracks to a position within
a user specified distance threshold ε of another feature gj in image
B, then we consider the pair (fi, gj) as a potential correspondence.
Otherwise, we simply add the tracked features to the feature list of
image B and mark them untracked in image B.

// Initialize
Build Delaunay triangulation
Initialize priority queue

// Detect features
for each image A
Detect features F
if (quality(F) > threshold)
Insert F into A

REPEAT
// Propagating features
for each image A
for each [neighbor] image B
for each untracked feature F in A {
Track F to B
if (track quality > threshold) {
for each feature G in B
if (match (F,G) > threshold)

Insert (F,G) into priority queue
if (F matched no features of B)
Insert F into B

}
}

// Relabeling features
While priority queue is not empty {
Pop “best” potential correspondence (F,G)
If (consistent(F,G)) Relabel G->F
}

UNTIL no untracked features or max iterations

Figure 3. Feature Globalization Summary. Pseudocode that
summarizes both feature propagation and feature relabeling.

Figure 2. Multiple Tracking Paths. This figure represents the floor
plan of an example environment. Each dot corresponds to a reference
image. There are multiple viewpoint paths to track the features X and
Y from image A to image B (or vice versa). It is difficult to track both
features in the same path (e.g., because of obstacles, changing
visibility, and feature tracking limitations). Our algorithm finds more
features common to two images by taking advantage of the
redundancy of the multiple viewpoint paths.

A B

X

Y
C

D

A B

X

Y
C

D

 4

3.2 Feature Relabeling
After every image has tracked features to its neighbors, we are left
with a list of potential feature correspondences (i.e., pairs of
features that track to the same location in some image). Since
there is no guarantee that a feature detected in a source image will
be tracked to the same position through different paths to a
destination image, inconsistencies may appear in which two
distinct features in one image are thought to correspond to the
same feature in another image.
We resolve these inconsistencies by casting the problem of
finding the best globally consistent set of feature correspondences
as a graph-labeling problem. Using a greedy graph-labeling
algorithm, we “accept” potential correspondences in best-first
order. The best correspondence is that of the feature pair closest
to each other and with the highest track quality. Initially, we
create a graph in which each vertex represents a unique feature
detected in a reference image and each edge represents a potential
correspondence between two features. Using a priority queue, we
iteratively pop the best potential feature correspondence off the
queue and check to see whether “accepting” it produces a
consistent labeling (i.e., no two features in the same image have
the same label). If so, the potential correspondence is accepted
and the features are “merged” into one. We use the lower-value
label as the new label.
Figure 5 shows an example of our graph algorithm on a simple
example with three images (dotted ovals), seven detected features
(black dots), and many potential correspondences (dashed lines).
The highest priority potential correspondence associates the two
top-most features, and accepting this correspondence does not
produce an inconsistent labeling. So, we relabel these two
features (1) and remove other potential correspondences that
would obviously produce inconsistencies (Figure 5b). The
process continues accepting potential correspondences in priority
order (Figure 5c-d) until no more can be found. Sometimes, the
highest priority potential correspondence remaining would
produce an inconsistent labeling (Figure 5e), in which case it is
rejected. Finally, at the end of the algorithm, every feature has
been given a unique global label and feature correspondences are
indicated by the remaining (dark solid) edges in the graph. Of
course, this example is simple for exposition purposes only. The

graphs computed for our datasets typically have hundreds of
clusters and thousands of vertices per cluster.

3.3 Practical Optimizations
In theory, this basic algorithm can find the largest, globally
consistent set of labeled features (if we detect features in every
image and track them to every other image before any features are
relabeled). However, feature tracking is very compute intensive,
and a naive implementation of this algorithm would take months
of compute time for our data sets (~10,000 images with ~1,000
features per image). So, instead, we employ several optimizations
that result in a more practical algorithm.
First, in order to reduce the effects of feature jitter and to reduce
the number of features to track, we detect features only in a subset
of the images. Specifically, we partition the images into regions
and detect features only at the central image within each region
(Figure 6). Of course, the size of the regions has great impact on
the performance and success of the algorithm. On one extreme, if
every image is in its own region, then we detect features at every
image, and the system must track a large number of features. On
the other extreme, if all images are in a single region, then
features are detected and tracked from only one image. In our
system, we choose region sizes by estimating the distance along
which features can be tracked reliably. This approach initializes
all images within each region with a large set of corresponded
features and allows the algorithm to begin by considering
potential correspondences at the boundaries between regions.
Second, in order to avoid unnecessary feature tracking, we
alternate between feature tracking and feature relabeling (Figure
3). Rather than tracking features as far as possible before
resolving potential correspondences, we interleave tracking
features to immediate neighbor images and resolving potential
correspondences with the greedy relabeling algorithm. This
approach avoids further tracking of features that can be merged
with other features at the same location in the same image.
These two practical optimizations not only reduce the compute
time required by our algorithm, but they also help its stability.
Detecting features in only one image of each region avoids much
of the noise typically found in feature detectors, and
merging/relabeling nearby features reduces the chances of
erroneously finding correspondences between tracked features.

Figure 4. Feature Propagation. (a) Using the edges of a 2D Delaunay triangulation of the image viewpoints, we track outwards from each source
image along disjoint paths. (b) For a source image A, we detect features, such as f1,f2, and f3 and add them to the untracked list of features for that
image. (c) Then, we iteratively track all untracked features to the next neighboring image B along each disjoint path. If a successfully tracked feature
(such as f1 or f2) is within ε of an existing feature in an image B, the pair (f1,g1) is potentially corresponded.

source image

(each dot is an image)

f1 f2

f3

g2f1 f2 g1

g1

ε

a) b) c)
image A image B

 5

The net result is a practical and automatic algorithm for finding a
globally consistent set of image features.

4. IMAGE RECONSTRUCTION
Once we have a globalized set of features, a novel view is
generated by warping and combining surrounding reference
images. Building on the approach of Aliaga et al [Aliaga02], we
triangulate the viewpoints of the reference images and find the
triangle that contains the novel viewpoint. Then, we warp the
three reference images to the novel viewpoint. Since we have a
globalized set of features, we are not limited to combining only
adjacent images. If only a sparse subset of the captured images is
available, the images will still have common features.

The algorithm finds the common features by iterating through all
the features of one reference image and determining the subset
present in the other reference images. In addition, we store with
each feature, the original feature “quality” [Shi94], the feature
tracking correlation (i.e., tracking quality), and the iteration at
which the feature was globalized. If so desired, only features that
exceed set quality and maximum iteration thresholds are used for
reconstruction.
Since features are only present at or near image details, some large
parts of an image might have few or no features. This creates large
triangles that would not warp and render the image as desired. We
dynamically subdivide these large triangles and insert feature
points. To calculate the correspondences for these feature points,
we fall back to using a geometric proxy.

5. IMPLEMENTATION DETAILS
Our algorithm is implemented in C/C++ using, OpenGL, GLUT,
and GLUI on both a Pentium IV 1.7 MHz computer with an
NVidia GeForce3 Ti 500 graphics card and on a SGI Onyx2
R10000 250Mhz computer with InfiniteReality2 graphics.
Images and features are sorted and stored in a database. We store
with each image the list of features it contains and with each
feature the list of images that contain it. Both of these access
mechanisms are used during feature globalization.
We used our approach with two feature tracking algorithms.
Initially, we used the publicly available KLT tracking library
[Tomasi91]. This library was too costly for tracking thousands of
features in 1024x1024 resolution images, such as ours. We then
developed a custom feature tracking method. Our method
estimates the position of the features to track in the destination
image. This can be accomplished either by using the camera pose
to predict the displacement of the feature along its epipolar curve
or by using a geometric proxy to predict the feature displacement.
Then, the method searches in the neighborhood of the predicted
position for the tracked feature that best correlates with the
original feature.
The reconstruction method is implemented by blending triangular
meshes using either multi-texturing on the NVidia board or the
accumulation buffer on the SGI. After extracting the common set
of globalized features for a given group of reference images, the
reconstruction method triangulates the features in one image and
generates a mesh. Using each reference image’s feature positions
and the distance from the novel viewpoint to each reference

Figure 6. Image Regions. The algorithm divides the plane of images
into regions. For each region, feature tracking is initialized. Later,
features from adjacent regions are iteratively corresponded and
globalized.

Figure 5. Graph Construction. A graph labels features and encodes
correspondences. This figure shows a sequence of steps to construct the
correspondence graph for 3 images. (a) The initial graph contains all
proposed correspondences edges between adjacent images. (b) The
algorithm selects the best correspondence and labels the vertices “1”.
The other proposed correspondence edges for the same vertices are
removed. (c) The algorithm selects the next best correspondence edge
and labels the vertices “2”. (d) The algorithm selects a third edge but
connects the vertex to the previous connected component of label “1”.
(e) The algorithm attempts to accept a correspondence edge that yields
an inconsistent assignment of vertices: features “1” and “2” are distinct
features in the upper right image but are being considered equivalent
features in the upper left image. (f) After several more steps, the final
correspondence graph is obtained. Notice that a feature is not
necessarily present in all images (e.g., feature “3”).

1 1

1 1

2

2 2

2

1 1

1

1 1

1

2

2

2

2
2

1 1

1

a) b)

c) d)

e) f)

3

 6

image’s viewpoint, the reconstruction method creates interpolated
feature positions. Each reference image is then downloaded to the
graphics engine and rendered as a textured mesh. A reference
image is warped by rendering the mesh using the interpolated
feature positions as vertices but using the original feature
positions as the texture coordinates.

6. RESULTS
In this section, we present several results and observations about
feature globalization. For our experiments, we use images
captured in three real-world environments: a single-person office,
the lobby of a library, and a museum covering almost 1000 square
feet. The three datasets contain a total of 15,000 omnidirectional
images captured in a plane (each image of 1024x1024 pixels) and
the average distance between images is 1.5 inches [Aliaga02]. An
omnidirectional camera mounted on a motorized cart captures the
images. The camera pose for each image is derived using fiducials
placed in the environment. Table 1 summarizes the image
datasets.

6.1 Example Reconstructions
Figure 7 shows images reconstructed using simple blending, a
proxy, and globalized features. All images are from viewpoints
located approximately equidistant from the surrounding reference
images. Simple blending produces the most amount of ghosting

(Figures 7a, 7e). To prevent ghosting with this approach, images
must be captured more densely, which for large environments can
be exceedingly difficult. A proxy improves the correspondence
between reference images, but the accuracy of the proxy and of
the camera pose dictates the final quality (Figures 7b, 7f). Feature
globalization is able to match details a proxy leaves out and is
able to compensate for inaccuracies in camera pose estimation
(Figures 7c, 7g). Figures 7d and 7h highlight the features.
In addition to improving the reconstruction quality when using the
full set of captured images, feature globalization also allows us to
establish correspondences between more distant images. As a
practical matter, this allows us to produce novel images without
noticeable artifacts using a sparser set of reference images. Figure
8 shows several images generated from sparser sets of reference
images. Each reconstructed image uses a subset of the reference
images approximately evenly distributed throughout the

Dataset No. Images Size Avg. Image Spacing

Museum 9832 900 sq. ft 2.2 inches

Office 3475 30 sq. ft 0.7 inches

Library 1947 120 sq. ft 1.6 inches

Table 1. Dataset Summary. This table summarizes the datasets used:
number of images, environment size, and average image spacing.

f)

e)

g)

b)

a)

c)

d) h)

Figure 7. Reconstruction Comparison. Reconstructed cylindrical projections for novel viewpoints use one of three reconstruction methods.
Novel viewpoints are approximately equidistant from the surrounding three reference images. Images a-d are from the Museum environment;
images e-h are from the Office environment. (a, e) Neighboring references images are blended, yielding the most amount of ghosting. (b,f) A
proxy is used to warp and blend reference images. Quality depends on proxy accuracy and camera pose estimation. (c, g) Feature globalization
helps to warp and combine images. This approach is better able to correspond image details and less dependent on camera pose accuracy. (d,h)
The globalized features are highlighted with yellow dots.

 7

environment. The reconstructed image is from a viewpoint near
the middle of the space between the reference images. In this
example, feature globalization allows us to increase the spacing
between reference images by a factor of approximately 13:1
without significantly affecting quality.

6.2 Tracking
As with other tracking methods, feature drift and visibility
changes in the environment make tracking long sequences
difficult. The tracking requirements for feature globalization are
stricter than those for typical feature tracking. We would like to
detect features in a source image, track them to a destination
image, and have all the tracked source features match the detected
features of the destination image. Once we know through how
many images we can satisfactorily track, we can gauge maximum
region sizes and maximum tracking sequence lengths.
Figure 9 shows a graph with two curves that measure the
performance of tracking for globalization. Each data point is the
averaged result of traversing outwards from images throughout
the environment and comparing the tracked features to detected
features, for all three environments. The horizontal axis represents
distance (in images) from a source image. The vertical axis
represents number of features. Starting with the detected features
of a source image, the top curve indicates the number of
successfully tracked features. The bottom curve shows how many
of the tracked features match newly detected features for that
image. The two curves are not equal for two reasons: (1) feature
detection jitter causes an apparent “randomness” in feature
detection, and (2) feature tracking errors (e.g., feature drift,
visibility changes, etc).
As observed, successful matching between tracked features and
detected features decreases rapidly. For our datasets, this graph
indicates that tracking through more than 4 or 5 images should be
avoided.

6.2 Globalization
Our feature globalization algorithm allows us to perform tradeoffs
for finding feature correspondences. To vary the amount of
globalization, we either change the region size or change the
maximum number of iterations of the globalization algorithm.
Recall that one iteration consists of a pass of feature propagation
and feature relabeling (Figure 3). Using larger regions effectively
“pre-globalizes” the features by tracking longer initial sequences.
For each region, the features detected at the center image must be
tracked outwards through a longer sequence of images before

reaching the region border for subsequent globalization. This also
reduces the amount of globalization work but depends on the
reliability of long tracking sequences. The other option, increasing
the maximum number of iterations, places the burden on
globalization and not on long tracking sequences. To estimate the
current amount of globalization for a set of parameters, we
measure the number of globalized features for a set of novel
viewpoints throughout the environment.
Figure 10 shows three graphs representing the amount of
globalization for several region sizes, maximum iterations, and
reductions of the number of reference images using the Library
environment. Small regions consist of 5 or fewer images. Medium
regions have about 15 images and large regions contain about 45
images. The iteration limit is one of 1, 3, or 5. For each sample
point, we calculate the average number of globalized features at
128 viewpoints evenly distributed throughout the environment.
The vertical axis represents the average number of globalized
features. The horizontal axis indicates the total number of
reference images available for reconstruction. Each subset of
reference images is evenly distributed throughout the
environment.

Figure 8. Reconstructions Using Sparse Reference Images. These images of the Library environment are reconstructed using features globalized
with small initial regions and at most 5 globalization iterations. Each example reconstruction uses a regularly-spaced subset of the original reference
images: (a) the full set of 1947 reference images, (b) a subset of 153 images (13:1 reduction in images), (c) a subset of 89 images (22:1 reduction in
images). For this environment, we can typically reduce the number of reference images to a few hundred with little impact on quality. There is some
visible ghosting and blurriness in (b), in particular around the computer monitor and counter area in the distance. Further reference image reduction
(c) often produces noticeable artifacts.

a) b) c)

0

200

400

600

800

1000

1200

0 2 4 6 8 10

Di st a nc e (i n I ma ge s)

Mat ched

Tracked

Figure 9. Tracking Performance. This graphs plots the number of
features tracked and matched when traversing outwards from an
image. Each data point is the averaged result of a sampling of image
paths through all three environments. The “tracked” curve indicates
how many features were successfully tracked to the next image. The
“match” curve indicates how many of the tracked features match
newly detected features for that image. This graph allows us to
estimate the number of features tracked and the number of matches.

 8

These graphs show that feature globalization using more iterations
generally outperforms using long tracking sequences in three
ways. First, more iterations tends to have a larger benefit than
using larger initial region sizes. For instance, using small regions
and five iterations yields about twice as many features as using
small regions and one iteration. Second, using small regions and
more iterations reduces the average tracking sequence length. For
large regions and one iteration, features are often tracked through
8 or more images (7 images from the region center to the border
plus one image in order to match features with the adjacent
regions). For small regions and a maximum of five iterations,
features are tracked through only 4.5 images on average (the
region typically has a radius of one image and the average
iteration count is 3.5 images). As evidenced by Figure 9, tracking
shorter sequences yields more matches and thus explains the

overall increase in number of features. Finally, using more
iterations makes feature globalization less sensitive to the size of
the initial regions (compare the right side of both Figure 10a and
Figure 10c). This is because as the number of iterations increases,
feature matching and labeling approaches a full and complete
globalization.

6.3 Performance
Feature globalization is divided into a runtime phase and a
preprocessing phase. Our runtime reconstruction operates at about
15 to 20 frames per second on both the PC and the SGI. This
includes extracting a common set of features for the current
reference images, loading the images to texture memory, creating
a mesh, and rendering warped textured meshes.
During preprocessing, we perform three main tasks: feature
tracking, which takes up most of the time (68% on average),
followed by rotating the images so as to align the images being
tracked (22% of the time), and constructing the globalization
graph (10% of the time).
For square regions and relatively small values for A, the number
of tracking operations is approximately O(N + 4NA/S), where N is
the number of images, A is the maximum number of iterations,
and S is length of a side of a region (in images). During
initialization, we track N images. Then, each iteration tracks all
the images on the perimeter of the regions. The perimeter of a
region has 4S images and there are N/(S*S) regions. Thus, in a
single iteration, we track 4S*N/(S*S) = 4N/S images.
For our datasets, we typically track up to 1500 features per image.
On the SGI, our method is able to track features from image to
image in 3 seconds on average. On the PC platform, we obtain a
faster tracking performance of 2 seconds on average.
The globalized feature sets take between 4 to 30 hours of
computation, depending on the environment and the globalization
parameters. In our current implementation, each feature occupies
24 bytes and the total number of features stored per environment
ranges from a few million to approximately 20 million features
(Museum environment).

7. CONCLUSIONS AND FUTURE WORK
In this paper, we describe an algorithm for detecting feature
correspondences across a wide range of viewpoints, and we have
used it to produce high-quality warping of reference images to
novel viewpoints in an IBR walkthrough system. From our
experience with this system, we conclude that warping with
globalized features performs better than pure blending or
geometric proxies not only when novel viewpoints are relatively
close to scene elements, but also when available reference images
are relatively far apart and camera poses of reference images are
not perfectly calibrated. Our IBR walkthrough system is able to
render images of complex scenes at 15 to 20 frames per second
with little or no ghosting or blurring artifacts.
In the future we are considering iteratively adjusting the
globalization parameters, including region size and maximum
iterations, so as to arrive at a maximum amount and extent of
globalized features. Furthermore, we will adjust globalization
parameters to different parts of the environment. In addition, we
are seeking to reduce feature-tracking time. With real-time
tracking, our total pre-computation times would be reduced to a
few hours.
The globalized feature set can also be used to compress the image
dataset. We are currently investigating into compression methods

Fiv e I t e r a t ions

0
200

400
600

800
1000

1200
1400

1600
1800

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T ot al Number of I mages

Lar ge Regions Medium Regions Smal l Regions

Thr e e I t e r a t i ons

0
200

400
600
800

1000
1200
1400

1600
1800

0 200 400 600 800 1000 1200 1400 1600 1800 2000

T ot al Number of I mages

Lar ge Regions Medium Regions Smal l Regions

One I t e r a t i on

0

200

400

600

800

1000

1200

1400

1600

1800

0 500 1000 1500 2000

T ot al Number of I mages

Lar ge Regions Medium Regions Smal l Regions

Figure 10. Feature Globalization. These graphs show how varying
the initial region size and varying the maximum number of iterations
(and thus globalization) affects the number of features available for
warping reference images. Each data point is computed as the
average number of features used for reconstructing a novel view at
128 evenly distributed points through the library environment. See
text for further interpretations of these graphs.

 9

that, in addition to intra-image redundancy, use feature
globalization to extract inter-image redundancy.

Acknowledgments
We are grateful to Sid Ahuja, Multimedia Communications
Research VP at Bell Labs, for supporting this research. In
addition, we thank Bob Holt and Steve Fortune for their
mathematical help.

References
[Aliaga02] Aliaga D., Funkhouser T., Yanovsky D., Carlbom I. “Sea of

Images”, IEEE Visualization, October 2002.
[Buehler01] Buehler C., Boose M., McMillan L., Gortler S., Cohen M.,

“Unstructured Lumigraph Rendering”, Proc. of ACM SIGGRAPH
2001, pp. 425-432, 2001.

[Chen93] Chen E., Williams L., “View Interpolation for Image
Synthesis”, Proc. of ACM SIGGRAPH 1993, pp. 279-288, 1993.

[Gortler96] Gortler S., Grzeszczuk R., Szeliski R., and Cohen M., “The
Lumigraph”, Computer Graphics (SIGGRAPH 96), 43-54, 1996.

[Lee98] Lee S., Wolberg G., Shin S. Y., “Polymorph: Morphing Among
Multiple Images”, IEEE Computer Graphics and Applications,
18(1):58-71, January/February, 1998.

[Levoy96] Levoy M. and Hanrahan P., “Light Field Rendering”,
Computer Graphics (SIGGRAPH 96), 31-42, 1996.

[Levoy00] Levoy M. et al, “The Digital Michelangelo Project: 3D
Scanning of Large Statues”, Proc. of ACM SIGGRAPH 2000, pp. 131-
144, 2000.

[Kang96] Kang S.B., Szeliski R., “3D Scene Data Recovery using
Omnidirectional Multibaseline Stereo”, IEEE Conf. Computer Vision
and Pattern Recognition (CVPR), pp. 364-370, 1996.

[Max95] Max N. and Ohsaki K., “Rendering Trees from Precomputed Z-
Buffer Views”, Rendering Techniques '95: Proceedings of the 6th
Eurographics Workshop on Rendering, 45-54, 1995.

[McMillan95] McMillan L. and Bishop G., “Plenoptic Modeling: An
Image-Based Rendering System”, Computer Graphics (SIGGRAPH
95), 39-46, 1995.

[Morita94] Morita T., Kanade T., “A Sequential Factorization Method for
Recovering Shape and Motion from Image Streams”, Proc. ARPA
Image Understanding Workshop, Vol. 2, pp. 1177–1188, 1994.

[Nyland01] Nyland L., Lastra A., McAllister D., Popescu V., McCue C.,
“Capturing, Processing, and Rendering Real-World Scenes”,
Videometrics and Optical Methods for 3D Shape Measurement
Techniques, Electronic Imaging Photonics West, Volume 2309, 2001.

[Pollefeys98] Pollefeys M., Koch R., and van Gool L., “Self-Calibration
and Metric Reconstruction in Spite of Varying and Unknown Internal
Camera Parameters”, Proceedings Int. Conf. on Computer Vision
(ICCV), pp. 90-95, 1998.

[Shi94] Shi J., Tomasi C., “Good Features to Track”, IEEE Computer
Vision and Pattern Recognition (CVPR 94), pp. 593-600, 1994.

[Tomasi91] Tomasi C. and Kanade T., “Detection and Tracking of Point
Features”, Carnegie Mellon University Technical Report CMU-CS-91-
132, 1991.

