
Hierarchical Shape Classification Using Bayesian Aggregation

Zafer Barutcuoglu Christopher DeCoro
Princeton University

Abstract
In 3D shape classification scenarios with classes ar-

ranged in a hierarchy from most general to most specific,
the use of an independent classifier for each class can pro-
duce predictions that are inconsistent with the parent-child
relationships of the hierarchy. To be consistent, an example
shape must not be assigned to a class unless it is also as-
signed to its parent class. This paper presents a Bayesian
framework for combining multiple classifiers based on a
class hierarchy. Given a set of independent classifiers for
an arbitrary type of shape descriptor, we combine their pos-
sibly inconsistent predictions in our Bayesian framework
to obtain the most probable consistent set of predictions.
Such error correction is expected to improve accuracy on
the overall classification by utilizing the structure of the hi-
erarchy. Our experiments show that over the 170-class hi-
erarchical Princeton Shape Benchmark using the Spherical
Harmonic Descriptor (SHD) our algorithm improves the
classification accuracy of the majority of classes, in com-
parison to independent classifiers. Our method is also more
effective than straightforward heuristics for correcting hi-
erarchical inconsistencies.

1. Introduction
A common problem in shape analysis involves assigning
semantic meaning to geometry. More generally, given an
example shape, it is useful to classify that shape into a pre-
existing set of categories, so as to relate it to similar ob-
jects. Applications vary widely, ranging from protein bind-
ing sites in molecular biology, to object recognition in com-
puter vision. Frequently, the existing classes are specified
by example. The classification algorithm is given a “train-
ing set” of human-labeled examples for each class, and
charged with the task of assigning novel examples to partic-
ular classes in a way consistent with the training examples.
In addition to specifying the classes themselves, an appli-
cation may define relationships among classes, commonly
in the form of a general-to-specific hierarchy. We present
the method of Bayesian Aggregation for the classification
of shapes into a hierarchical set of classes, and the main
contribution of our work is to take advantage of the relation-
ships represented by the hierarchy to improve classification.

Source Eagle Model

k-Nearest-Neighbor Classification
Animal
1.00

Bird
1.00

Flying Creature
0.00

Standing Bird
0.00

Flying Bird
0.00

Duck
0.00

Apatosaurus
0.00

Dog
0.00

Trex
0.00

Biped
0.00

Quadruped
0.00

Fantasy Animal
1.00

Dragon
1.00

Bayesian Aggregation Classification
Animal
0.85

Bird
0.77

Flying Creature
0.77

Standing Bird
0.17

Flying Bird
0.45

Duck
0.14

Apatosaurus
0.004

Dog
0.005

Trex
0.002

Biped
0.01

Quadruped
0.02

Fantasy Animal
0.00

Dragon
0.00

Figure 1: This model of an eagle should be correctly classified
as a flying_bird and, for consistency, all of flying_bird’s an-
cestor classes. The standard k-Nearest-Neighbors algorithm
classifies the model as a bird and an animal, but not as a flying
bird or a flying creature; it also incorrectly identifies the eagle
as a fantasy animal and a dragon. Our Bayesian Aggregation
algorithm, using the results of the kNN classifiers, produces
a more accurate prediction for the flying_bird class, resolves
the inconsistency with the flying_creature class, and rules out
the possibility that the model is a dragon.

We show an example of this in Figure 1. Using a common
classification algorithm (Section 2), the eagle model was
not classified to its correct class of flying_bird, and was
incorrectly classified into the class dragon. Our method
(Section 3) corrects this prediction, giving more accurate
results (Section 4).

Given a hierarchical classification H, any class C ∈ H
represents a type of shape, usually with a human-intuitive
label (such as “airplane", “animal", etc.), and may have
a “parent" class in the hierarchy P = parent(C) that gen-
eralizes the class, as well as an arbitrary number of “de-
scendant" classes Di = children(C) that divide C into more
specific classifications. Therefore, for a specific example
shape S ∈ C, this implies that S ∈ parent(C). Note that for
our application, we do not assume that the opposite is true,
namely that S ∈ C does not imply that there exists some
Di ∈ children(C) such that S ∈ Ci, or rather, that the chil-
dren of C do not necessarily partition C.

Given a hierarchy H, and a set of labeled examples in H,
a common application is to classify a unique example shape
S into the hierarchy. A straightforward method is to train
independent classifiers for each possible class in H, and as-
sign S to the classifier that predicts membership of S with
the highest confidence. This approach, however, might lead
to inconsistencies in the hierarchy, such that the classifica-
tion of S may violate the rule S ∈C → S ∈ parent(C). While
one may choose any number of ad-hoc approaches to rec-
tifying this discrepancy, we propose our method, which we
term Bayesian Aggregation, to resolve conflicts in a prin-
cipled manner, and in doing so, improve the overall accu-
racy of the classification by taking advantage of relation-
ships present between classes in the hierarchy.

2. Background
Shape Descriptors: Our method relies on the ability to
first convert an arbitrary geometric model into a vector in
Rn, such that for any pair of such vectors, which are referred
to as shape descriptors, the L2 metric provides a meaningful
measure of similarity. We then use these shape descriptors
as feature vectors in our classification algorithm.

For our work, we present results using the Spherical
Harmonic descriptor (SHD) [5, 6]. This method has been
shown empirically to perform well for the task of shape
matching; see for example the applications of SHD in
[4, 7, 10]. We stress that our method is independent of the
particular shape descriptor used, so long as it maintains the
L2 metric, though classification accuracy will naturally be
higher for more discriminating descriptors.

Although these shape descriptors have generally been
used for matching tasks, here we use them for classifica-
tion. Matching only involves retrieving from a set of shapes
the ones most similar to a given shape. Classification starts
with a set of shapes that are pre-tagged with class labels,

and aims to predict the most probable class for a newly pre-
sented shape. In this sense, classification extends matching
by assigning semantic meaning to shapes and their simi-
larities. For our training and testing examples, we use the
models, descriptors and class assignments as provided in
the Princeton Shape Benchmark [10]. This has 1814 mod-
els in 198 classes, arraigned in a hierarchy that is up to 4
levels deep.

Classification: Many algorithms have been presented in
the machine learning literature for classifying unique ex-
amples based on a given set of training examples [9]. In
general, some method is used to extract a feature vector that
concisely represents the example to be classified, and it is
the feature vector that is used to represent the example itself.
In our algorithm, the shape descriptors are used as feature
vectors.

One common method is k-Nearest Neighbors (kNN),
which given a feature vector for an example to be classified,
finds the k nearest feature vectors from the labeled training
set, and assigns to the example the most common among the
k labels [9]. The value k acts as a smoothing parameter, and
larger values of k will tolerate more noise in the training set.
In the case of k = 1 (1-NN) this is equivalent to assigning
the label of the nearest training example. The assumption
of kNN is that similarity between examples is represented
accurately by Euclidean distance of their feature vectors,
for which our shape descriptors are designed, making kNN
a reasonable choice as a basic independent classifier. We
then show how Bayesian Aggregation improves the results
of kNN.

There exist other, more sophisticated, methods of clas-
sification where different assumptions are made on the dis-
tribution of the data. Popular methods include support vec-
tor machines [3], which find the optimal linear separating
plane for a kernel-transformed feature space, corresponding
to different distributions of data. Another popular method
is artificial neural networks [2], which are a general form of
a non-linear function that can be manipulated to create ar-
bitrary decision boundaries. Any such method can be used
as the base classifier for our technique, though we use kNN
in our experiments. One of the authors has previously used
techniques similar to those presented in this work for the
task of protein function prediction [1]. We have found that
our results for shape classification are in fact better than
those for function prediction.

3. Algorithm Description
We perform hierarchical classification of shapes by first
using a set of independently trained classifiers (called the
“base” classifiers) to predict binary memberships for each
class in the hierarchy. This is known as the “base” classifi-

C1

C2 C5

C3 C4

(a) Hierarchy of classes

y1 ŷ1

y2 ŷ2
y5 ŷ5

y3 ŷ3
y4 ŷ4

(b) Bayesian network

Figure 2: The class hierarchy (a) is transformed into a Bayesian
network (b). The y nodes are the binary-valued hidden nodes
representing actual membership to the class, and the corre-
sponding ŷ nodes are the observed classifier outputs.

cation. Then we construct a Bayesian hierarchical combina-
tion scheme which performs collaborative error correction
over their possibly-inconsistent predictions. A Bayesian
network involves a number of random variables, some of
which are observed directly, while others are hidden. Of the
hidden variables, some are assumed to be conditionally de-
pendent on other variables. We can visually represent this
as a graph, as in Figure 2. Nodes represent variables, and
edges represent conditional dependence. Given values for
observed nodes, Bayesian inference algorithms use this net-
work to assign probabilities for hidden nodes, given values
for observed nodes or find the most probable set of consis-
tent labels given the initial predictions.

For a given example, let yi denote the actual binary mem-
bership to class i, and ŷi denote the base classifier predic-
tion for that class. Although for this application we use
base classifier predictions that are binary, our method eas-
ily generalizes to base classifiers with real-valued predic-
tions. After obtaining a set of (possibly inconsistent) bi-
nary ŷ predictions from all base classifiers, we wish to find
the most probable set of (consistent) y labels that may be
underlying them. Therefore, for N nodes we need to find
the labels y1 . . .yN that maximize the conditional probabil-
ity P(y1 . . .yN |ŷ1 . . . ŷN), which by Bayes rule equals

P(ŷ1 . . . ŷN |y1 . . .yN)P(y1 . . .yN)

Z , (1)

where Z is a constant normalization factor. We propose a
Bayesian network structure for this problem, as illustrated
by Figure 2. The class hierarchy shown at left is trans-
formed into a Bayesian network by adding extra nodes that
correspond to the observed classifier outputs. The y-nodes
are probabilistically dependent on their child classes, and
the ŷ-nodes are probabilistically dependent on their corre-
sponding labels y.

We enforce hierarchical consistency of labels using the
edges among the y-nodes. The edges encode the conditional
dependencies P(yi|~ychildren(i)), where ~ychildren(i) is used to
denote all child y-nodes of node yi, which we set to ensure

that a label is 1 if and only if any one of its children are 1.
The remaining entries P(yi|~ychildren(i)=0) are inferred from
the training set. The edges from y to ŷ reflect an important
observation: for a given example, a classifier prediction ŷi is
independent of all other classifiers’ predictions ŷ j and labels
y j (i 6= j) given its true label yi. This simplifies Equation 1,
since we can write

P(ŷ1 . . . ŷN |y1 . . .yN) =
N
∏
i=1

P(ŷi|yi). (2)

P(ŷi|yi) consists of P(ŷi|yi = 1) and P(ŷi|yi = 0), which
are binomial distributions for our binary predictions, and
can be estimated during training by validation. We
use cross-validation to hold out part of the training data
and evaluate them using the rest, which produces a 2 ×
2 confusion matrix of true-positive (T P), true-negative
(T N), false-positive (FP) and false-negative (FN) counts,
from which we can directly infer the probabilities; e.g.
P(ŷi = 1|yi = 1) = T P/(T P+FN).

Since each label y-node is conditionally dependent only
on its children, we can also make the following simplifica-
tion

P(y1 . . .yN) =
N
∏
i=1

P(yi|~ychildren(i)). (3)

Now that the Bayesian network is defined, any stan-
dard Bayesian inference algorithm can be used to find
the most likely configuration of (consistent) hidden y la-
bels for the given ŷ predictions, or the marginal distribu-
tion P(yi|ŷ1 . . . ŷN) for each class separately. We use the
marginal probabilities P(yi = 1|ŷ1 . . . ŷN) in our results so
that we retain real-valued membership probabilities and can
threshold them at different levels as desired. Among the
many Bayesian inference algorithms available, in our ex-
periments we used the junction tree algorithm for exact in-
ference, although approximate inference with Monte Carlo
methods such as Gibbs sampling may be more feasible for
more complex hierarchies. Descriptions and detailed refer-
ences for these and other inference algorithms are available
in [8].

4. Results
We evaluated our method by first performing two-fold
cross-validation on each class using kNN (the scarcity of
positive examples in many classes prevented us from us-
ing a larger number of folds.) The value of k for each class
was chosen as the best k ∈ {1,3,5,7,9} using leave-one-out
cross-validation accuracy. 134 of 170 classes chose k = 1,
and none chose k = 9. Then we combined the held-out con-
fusion matrices from both folds to build our Bayesian net-
work for the hierarchy, and computed the marginal mem-
bership probability of each example for each class using
Bayesian inference.

The predictions from the initial kNN classifiers are bi-
nary (for each class, we consider each example in the
training set strictly as either a positive or negative exam-
ple) whereas the marginal probabilities from the Bayesian
network are real-valued. This allows us to threshold the
Bayesian probabilities at different thresholds to obtain dif-
ferent binary predictions according to the risk model of dif-
ferent applications. For example, a particular application
might have a very high cost for false-positives while false-
negatives might be less of a concern, so in that case we
would choose a high probability threshold and get positive
predictions that are rare but confident. Instead of evaluating
with a particular threshold, we consider an evaluation over
all possible thresholds. The ROC curve for a real-valued
classifier is a plot of the true-positive ratio T P/(T P + FN)
against the false-positive ratio FP/(T N +FP) for all pos-
sible thresholds, so it connects (0,0) to (1,1). The area
under the ROC curve, called the AUC score, ranges from
0.5 (random guessing) to 1 (a perfect classifier), and allows
us to evaluate the classifier’s performance over all possible
thresholds.

Since the original kNN classifiers have binary outputs,
they correspond to a single point on the ROC axes instead
of a curve. However, for any two points (classifiers) on an
ROC graph, one can obtain any point on the connecting line
segment by randomly selecting between the two classifiers’
predictions with a Bernoulli distribution, so we compare
the convex hull of the Bayes-net ROC curve to the “convex
hull” of the naked kNN, which is its single point connected
to (0,0) and (1,1).

The mean AUC score over the 170 independent kNN
classifiers was 0.7004. 27 of these had an AUC of 0.5,
meaning they were no better than random guessing. The
mean AUC score of marginal Bayesian probabilities was
0.8369, reflecting a mean AUC improvement of 0.1365. All
classes improved in AUC score, with the exception of one
class (torso) which stayed the same at 0.9994. The scatter-
plot of AUC scores before and after Bayesian aggregation
is shown in Figure 3.

Figure 1 shows an illustrative set of predictions for
the example m42, which is a model of an eagle. In-
dependent kNN classifier predictions include an inconsis-
tency at node flying_creature and false positives for
fantasy_animal and dragon. Bayesian hierarchical ag-
gregation yields p = 0 for the false positives, correctly fixes
the inconsistency at flying_creature, and further yields
p = 0.454809 for the leaf flying_bird of which m42 ac-
tually is a member. Its sibling leaf nodes standing_bird
(p = 0.174441) and duck (p = 0.139243) have significantly
lower probability. After those, the next highest probability
in the entire hierarchy is very low (p = 0.038353). This ex-
ample demonstrates that our method extends beyond only
fixing inconsistencies and is able to improve classifiers any-

0.6 0.7 0.8 0.9 1.00.5

0.6

0.7

0.8

0.9

1.0

AUC for kNN

A
U

C
 f
o
r

k
N

N
+

B
a
y
e
s

AUC Scores Before and After Bayesian Aggregation

Figure 3: Per-class improvement in AUC score. For each class,
we compare the AUC score of simple kNN versus the AUC
score for the class after the application of Bayesian Aggrega-
tion. The dashed line represents no change in AUC, and the
values range from 0.5 (random guessing) to 1.0 perfect accu-
racy. As the figure shows, the use of Bayesian Aggregation
results in a significant improvement in classification accuracy.

where in the hierarchy. For further examples of this, we
show a portion of the hierarchy in Figure 4, and the amount
of improvement in AUC score for each node. All of the
nodes shown improved, many by significant amounts. Note
for example the improvement in the bird branch, which
corresponds to the classifiers used for Figure 1.

To evaluate the increase in classification accuracy that is
due to our method, we compare our results to two straight-
forward methods for conflict resolution. One such method
propagates negative predictions downward, so that if a node
predicts that an example is not a member, its children are
also forced to predict that the example is not a member.
While this resolves inconsistencies, it shows very poor per-
formance: 88 of the classes decreased in performance, and
the average change in AUC score is -0.05. Another method
propagates positive predictions upward, increasing the av-
erage AUC score by only 0.01, which is significantly less
than the improvement due to our method.

Note that our method is more general than the problem at
hand, and does not enforce the single-branch nature of the
Princeton Shape Benchmark dataset; i.e., it allows multiple-
branch predictions. A post-processing step to convert them
into single-branch predictions would be appropriate in a
practical application, and could further improve our results,
but we chose to leave out that constraint in this evaluation
to keep comparisons to kNN fair.

Animal
0.065

underwater
creature

0.111

biped
0.046

human
0.052

dog
0.224

snake
0.076

quadruped
0.099

pig
0.085

flying
creature

0.153

bird
0.274

apatosaurus
0.153

rabbit
0.121

arthropod
0.219

spider
0.081

butterfly
0.063

insect
0.185

bee
0.112

ant
0.050

flying bird
0.293

standing
bird

0.159

duck
0.218

trex
0.402

walking
0.231

arms out
0.011

Figure 4: Hierarchical improvement in AUC score. For the animal branch of the hierarchy, we show the improvement in AUC score
for each node, after applying our method. The darker nodes are those with larger increases in AUC score. As the figure shows,
all the nodes improved, many by significant amounts. This is only one slice of the entire Princeton Shape Benchmark, but other
branches display similar results.

5. Conclusions and Future Work

Independent classifiers for a hierarchy of classes can violate
the hierarchy in their predictions. Our Bayesian hierarchi-
cal aggregation algorithm corrects such inconsistencies, and
substantially improves performance of classifiers over the
whole hierarchy by allowing connected classes to influence
one another. This method is directly applicable to any type
of binary or real-valued base classifier and any hierarchy in
the form of a directed acyclic graph.

For applications with more training data, simpler, more
concise representations such as support vector machines
might prove to be more applicable than kNN classifiers.
However, straightforward linear SVMs might not have the
discriminating ability of kNN, due to the ability of kNN
to form non-linear decision boundaries. It is possible that
SVMs with more complicated, non-linear kernels would
also be applicable, though automated parameter selection
for every class in the hierarchy would be computationally
expensive. Other future areas of investigation include ex-
ploring the effect of various shape descriptors, and using
machine learning techniques to evaluate the discriminative
quality of each descriptor.

We showed that in contrast to Bayesian aggregation,
straightforward methods for resolving inconsistencies do
not significantly improve classification, and may in fact de-
crease performance. Top-down conflict resolution places
excessive responsibility on top-level nodes, reducing the
ability of low-level nodes to affect classification. Bottom-
up conflict resolution allows the more general parent nodes
to rely on the more specific predictions of the child nodes,
slightly improving the performance in those cases where in-
consistencies exist, and in these classes only. Our method
improves classification accuracy not only for these cases,

but even in the absence of inconsistencies, and exceeds the
improvements of straightforward methods by an order of
magnitude.

Acknowledgments
We would like to thank Philip Shilane and Szymon
Rusinkiewicz of Princeton University for their invaluable
comments and feedback on this work.

References
[1] Zafer Barutcuoglu, Robert E Schapire, and Olga G. Troyanskaya.

Hierarchical multi-label prediction of gene function. Bioinformatics,
2006.

[2] Christopher M. Bishop. Neural Networks for Pattern Recognition.
Oxford University Press, 1995.

[3] C.J.C Burges. A tutorial on support vector machines for pattern
recognition. Data Mining and Knowledge Discovery, 2(2):121–167,
1998.

[4] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman,
D. Dobkin, and D. Jacobs. A search engine for 3D models. ACM
Transactions on Graphics (TOG), pages 83–105, January 2003.

[5] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation invari-
ant spherical harmonic representation of 3D shape descriptors. In
Symposium on Geometry Processing, pages 167–175, 2003.

[6] Michael Kazhdan. Shape Representations and Algorithms for 3D
Model Retrieval. PhD thesis, Princeton University, 2004.

[7] Patrick Min. A 3D Model Search Engine. PhD thesis, Princeton
University, 2003.

[8] Kevin P. Murphy. The Bayes Net Toolbox for MATLAB. Computing
Science and Statistics, 33, 2001.

[9] S.J. Russell and P. Norvig. Artificial Intelligence: A Modern Ap-
proach, 2nd ed. Prentice Hall, December 2002.

[10] P. Shilane, M. Kazhdan, P. Min, and T. Funkhouser. The Princeton
shape benchmark. In Proc. Shape Modeling International, Genoa,
Italy, 2004.

