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Figure 1: (a) Albedo and (b) Normal maps are estimated with a photometric stereo algorithm. (c) Digital epigraphy done
manually on Adobe Photoshop and Illustrator in high precision by archaeologists which took 7-8 hours in total. (d) Result from
our user-guided system which took 6-7 minutes.

Abstract

We present a semi-automated system for converting photometric datasets (RGB images with normals) into
geometry-aware non-photorealistic illustrations that obey the common conventions of epigraphy (black-and-white
archaeological drawings of inscriptions). We focus on rock inscriptions formed by carving into or pecking out the
rock surface: these are characteristically rough with shallow relief, making the problem very challenging for pre-
vious line drawing methods. Our system allows the user to easily outline the inscriptions on the rock surface, then
segment out the inscriptions and create line drawings and shaded renderings in a variety of styles. We explore both
constant-width and tilt-indicating lines, as well as locally shape-revealing shading. Our system produces more un-
derstandable illustrations than previous NPR techniques, successfully converting epigraphy from a manual and
painstaking process into a user-guided semi-automatic process.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Scientific illustrations are used in various fields to represent
objects in a more effective and succinct way than is possible
with photography. In archaeology, it is paramount for publi-
cations of record to use illustrations in agreed-upon styles, to
document findings and communicate them to others for fur-
ther study. For example, the conventions for epigraphic doc-
umentation, used for writing, drawings, and other inscrip-
tions in stone, are based on traditional pen-and-ink drawings.
While it offers great clarity, making epigraphic illustrations
by hand can be time-consuming and imprecise. The quality

and accuracy of the drawing usually depends on the archae-
ologist’s talent, the size of the drawing paper and the object,
and the time spent on the drawing. Recently, archaeologists
have begun to adapt this painstaking process into the dig-
ital realm, by using tools such as Adobe Illustrator to trace
over photographs. While still time-consuming (typically tak-
ing many hours per illustration), digital epigraphy removes
the need to be on-site to execute the drawing, although it still
may be necessary to go back to the site to correct perspective
and add details that are hard to see in the photograph. Figure
2 shows an example of digital epigraphy of rock inscriptions
from the Sinai done manually by archaeologists [Tal12].
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In traditional epigraphy, experts only use line drawings,
sometimes with varying thickness and color. However, it is
tedious and difficult to illustrate small surface details with-
out creating distractions with line drawings. Recently, ex-
perts started looking for new ways to illustrate details. Muse-
ums and archaeologists have begun using Reflectance Trans-
formation Imaging (RTI) for both visualization and digital
preservation purposes [MVSL05]. RTI capture consists of
photographing the object under study from a fixed view-
point, but under varying lighting. Using this collection of
photometric data, techniques such as albedo/normal estima-
tion, re-lighting, and material modification may be used to
produce enhanced visualizations. On the other hand, RTI
is not as effective at conveying large-scale structures at a
glance, and hence has not been adopted in publications of
record as a replacement for epigraphy.

In this work, we propose a user-guided system to create
digital epigraphy with both line drawings and detail illustra-
tions from photometric datasets. We focus on ancient rock
inscriptions that are created by either carving into the rock
or roughening (“pecking out”) the surface. We make use of
a dataset of 4000-year-old inscriptions located in a desert,
constantly under strong sunlight, making capture challeng-
ing. Furthermore, the rock surface is usually very rough and
eroded because of weathering, which makes any type of cap-
tured data very noisy. The main challenges are to capture
these inscriptions in high precision, find the relevant infor-
mation, and attenuate the effects of noise caused by surface
roughness and weathering. We propose a semi-automatic
pipeline to solve this problem as follows:

• Capturing photometric datasets in challenging terrain, and
estimating surface albedo and normals;
• Rectification of the surface normals to correct perspective;
• Segmentation of the inscriptions from the rock surface

and classification based on carving technique (either
slightly deeper grooves, or shallow pecked-out regions);
and
• Stylization of the inscriptions in various styles.

For grooves, we produce illustrations in a traditional epi-
graphic line-drawing style, with line thickness optionally
modulated by the grooves’ orientation to give a sense of
relief. For pecked-out regions, we explore shaded and stip-
pled styles, with control over whether the shading depicts
global shape or only local detail. Our pipeline offers the user
the control needed to produce clear illustrations, and deals
with poor signal-to-noise more effectively than existing NPR
methods.

2. Related Work

Segmentation. Image segmentation has been one of the old-
est and most widely studied problems in the field [Sze10].
Popular approaches include clustering techniques which ag-
gregate pixels into regions with similar contents [JMF99],

(a) Photography (b) Epigraphy

Figure 2: Photograph of a rock inscription and digital epig-
raphy done manually.

graph cuts and energy based methods [BK04] [KZ04]. How-
ever, the problem can become trickier in some situations,
including segmenting the rock inscriptions which we focus
on. Less work has been addressed in the context of segment-
ing on nearly flat surfaces. [ZTS09] has designed a method
to extract reliefs and details from relief surfaces based on
depth, but it is hard to apply their method to our dataset
where some pecked-out inscriptions do not even have no-
ticeable depth change. For robust segmentation on these
datasets, we adopt the idea of combining color and normals
for segmentation [TFFR07].

2D Line Drawings. Line extraction and drawing on 2D
images has been extensively studied. For instance, [KLC07]
proposed using anisotropic Difference of Gaussians (DoG)
guided by edge tangent flow to detect coherent lines while
suppressing noise. [SKLL07] extracted lines by imitating
human line drawing process using estimation of a likelihood
function with consideration of feature scales and line blurri-
ness. Shape and shading on the image were represented by
using tone and strokes by [LXJ12]. [Win11] reviewed the
variations of the DoG operator, which was shown to give the
most aesthetic results. [XK08] depicted images using only
black and white colors by formulating the problem of thresh-
olding as an optimization over a graph of segmentation con-
nectivity. All of those methods solely depend on the color
variation in the image, which can be a drawback on rock
inscriptions, where the color difference between the inscrip-
tion and the background is usually small, and the surface
roughness results in noise with traditional edge detection al-
gorithms. On the other hand, we propose using both color
and surface normal statistics at the same time to detect in-
scriptions.

3D Line Drawings. Several works have been published
on how to represent 3D models with curves. [DFRS03] pro-
posed a new type of view-dependent curves — suggestive
contours — which are the loci of points at which occluding
contours appear with minimal change in viewpoint. Later,
they proposed a new family of lines — suggestive high-
lights — which are complementary to the suggestive con-
tours [DR07]. [JDA07] introduced apparent ridges, which
were defined as the loci of points that maximize a view-
dependent curvature. [KST08] proposed another type of
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view independent curve: demarcating curves, which are the
zeros of the normal curvature in the curvature gradient di-
rection. [KST09] defined relief edges as the zero crossings
of the normal curvature in the direction perpendicular to the
relief edge. [KST13] extended multi-scale edge detection on
images to 3D surfaces by determining the optimal scale for
each point on the surface. These methods only use the ge-
ometry to find the extrema points, which can fail if the in-
scriptions are shallow and the surface is rough.

Shape Illustration. There are various non-photorealistic
techniques in the literature to depict a shape from 2/2.5/3D
images. For instance, [KMI∗09] generated a stippling tex-
ture on an image from input samples by measuring a tex-
ture similarity metric. [TFFR07] investigated various non-
photorealistic illustrations on 2.5D images (images with nor-
mals). [BMS∗10] used Hermite Radial Basis Function Im-
plicits to generate a robust distribution of points on a given
3D surface to position the drawing primitives, which are
then rendered to depict shape and tone using silhouettes
with hidden-line attenuation, drawing directions, and stip-
pling. [VBGS08] proposed a view-dependent shape descrip-
tor called apparent relief, which combines the convexity of
the 3D object and the normal variations in image-space.
Several works focused on using varying line/stroke thick-
ness to depict a 3D shape. [SPCP03] extracted and rendered
feature edges by varying the thickness based on perceived
curvature of the 3D model and [SFWS03] used pen strokes
to depict the 3D shape by making them thicker at certain
curvatures, junctions and creases. [HS07] mimicked the hu-
man drawing process by following the connectivity of the
feature edges and rendering them using a ribbon metaphor,
where the thickness is determined by the twist of the rib-
bon. [GVH07] computed the stroke thickness of contours
and suggestive contours from depth, radial curvature, and
light direction.

The previous works have been tailored to work with only
either color or geometry information. However, we believe
that the archaeological illustrations such as epigraphy repre-
sent not only the geometry of the artifact, but also variations
in texture. We can use the photometric data for both geom-
etry and texture information (normal maps and albedo ex-
tracted from the photometric data, respectively). Examples
of why we need both sources of information are shown in
Figure 3. [BSMG05] and [TFFR07] showed how to use pho-
tometric data for stylized non-photo realistic renderings. The
former produces geometry and tone-aware hatching-like ren-
derings; while the latter explores how to reformulate some
previous work, such as suggestive contours and ridges and
valley lines, for photometric data. Unfortunately, neither of
these produces good results for archaeological illustrations.
They are either incomplete or noisy, as we will show in Sec-
tion 7.

3. Overview

Our main challenge is to produce meaningful (shape-
indicating), relevant (including the most representative fea-
tures) drawings of archaeological inscriptions. Unfortu-
nately, the signal-to-noise ratio is typically low: the inscrip-
tions are shallow, while there is considerable noise caused
by surface roughness. We briefly review how our datasets
are acquired and rectified (Section 4), then divide the prob-
lem into two major components: finding and classifying
the inscriptions with user-guided segmentation (Section 5),
and then rendering them in different geometry-aware non-
photorealistic styles (Section 6). We present results on a
number of datasets, and argue that this type of stylization
is difficult to achieve with previous methods (Section 7).

4. Data Acquisition and Preprocessing

We begin with datasets captured at an ancient amethyst min-
ing site in an area of Upper Egypt called Wadi el Hudi, which
was documented in 1952 by [Fak52]. The terrain consists
of several hills covered with granite rocks. The inscriptions
are mostly located on the ridges and their position and sur-
roundings make them hard to capture. The ridges are steep
and the rocks on the ridges are usually loose, which makes
it challenging to set up an acquisition system on the ground.
Because of the environmental conditions, the recording must
be done during the day under strong sunlight. Also, carrying
heavy equipment or power sources to the site is impractical,
since it takes a short hike to reach some of the inscriptions.
However, the resolution of the acquisition system should still
be high, because the inscriptions are mostly on flat surfaces
with shallow depth. For these reasons, the most practical
setup is one based on a camera and flash, in preference to 3D
acquisition systems such as structured-light scanners, multi-
view stereo, or a laser scanner.

The datasets are captured using a
photometric acquisition setup sim-
ilar to the one used by Toler-
Franklin et al. [TFFR07], as
shown at left. Specifically, a se-
ries of digital-SLR images of the
object are captured with a fixed
camera position, and a hand-held
flash is moved around the object to
obtain different light directions. A

black cloth is used to shade the object and the camera. Sev-
eral mirror and white diffuse spheres, which will be used
to estimate the light directions and intensities in each im-
age later, are placed next to the object. Also, one image with
no flash is taken at the beginning of each capture session,
which will be subtracted from all other images with flash
to remove ambient lighting as much as possible. After the
photometric datasets are captured, we use a variant of the
photometric stereo algorithm [Woo80] to estimate surface
normals and the true albedo from those images: example re-
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Figure 3: Left column: Color images of some rock inscrip-
tions; Right column: Normal maps. Top row: While the in-
scriptions are visible on the color image, some of them are
not recognizable on the normal map. Bottom row: Normal
map reveals more information than the color image for some
other cases.

sults are shown in Figure 3. In this paper, we show results
from around 10 representative datasets.

4.1. Rectification

One of the important conventions of documenting rock
drawings is that they need to be recorded from a perpendic-
ular view to the surface. However, it is not always possible
to place the camera perpendicularly to the surface because
of the position and height of the object or the steepness of
the terrain around it. Another problem is that the inscrip-
tions sometimes start from one face of the rock and continue
on the other. Recording them from an angle will make them
look skewed, and this is not desirable for documentation. Ar-
chaeologists usually warp the image to straighten the parts
of the image by either eyeballing to flatten these regions, or
if they recorded some 3D points via some terrain mapping
systems such as total station, they manually select the con-
trol points on the image corresponding to those 3D points
and rectify the image. However, it is time-consuming to both
capture those 3D points and rectify the image based on those
points.

In our system, we allow the user to rectify the image with-
out any extra data. The user can select a nearly planar region
R, by selecting a few points around the region to create a
closed polygon. Given this selection, we automatically rec-
tify the region as follows:

~nmean = normalize
(

∑
(x,y)∈R

N(x,y)
)

(1)

~r =~nmean ×< 0,0,1 > (2)

α = acos(~nmean ·< 0,0,1 >) (3)

(a) (b) (c)

Figure 4: (a), (b) Rectified inscription and normal map
where the planar region to be rectified is defined by user.
(c) User defined rotation axis (marked with red arrow) and
flattened inscription.

where N is the normal map, ~r is the rotation axis, and α

is the rotation angle. Once the rotation axis and angle are
computed, the region is rotated around~r and all the normal
values are rotated accordingly as shown in Figure 4.a and b.
This approach assumes that the region is nearly planar which
is the case for most of the datasets. We also allow the user to
draw a rotation axis manually by drawing a line on the image
and use this axis instead to rotate the image around, which
requires two rotation operations: first we rotate the image
so that the average normal along the user-defined rotation
axis would be equal to the z-direction and then we rotate the
image around this fixed rotation axis to make the region flat
as shown in Figure 4.c. The user also can control scaling of
the preselected region after flattening, as done in Figure 4.

5. Segmentation

We focus on rock inscriptions, which can be classified into
two types: carved grooves, and “pecked out” areas on the
rock surface.† Their characteristic roughness and incom-
pleteness caused by erosion make the creation of epigraphy
very difficult. Existing NPR techniques are insufficient to
produce nice and understandable illustrations for such rock
inscriptions. We approach the problem by first performing a
robust segmentation to create masks for the two types of in-
scriptions, and then stylize them separately. An implemen-
tation pipeline for this segmentation part is described in the
following subsection, with details described below.

5.1. Implementation Pipeline

Preprocessing includes downsampling, histogram equaliza-
tion, and bilateral filtering to reduce noise and increase
contrast between the foreground inscriptions and the back-
ground rock surface. Figures 5.a and 5.b show a color image
before and after the preprocessing, respectively.

† Pecking-out is a term used to describe areas where the rock sur-
face has been roughened to form a design or figure.

c© The Eurographics Association 2015.



Sema Berkiten, Xinyi Fan, and Szymon Rusinkiewicz / Semi-Automatic Digital Epigraphy from Images with Normals

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5: (a) Original color image. (b) Color image after
preprocessing. (c) A close up look at the superpixel over-
segmentation. (d) User input strokes for labeling. (e) Graph-
cut foreground segmentation result. (f) Foreground segmen-
tation result after post-refinement. (g) Foregrounds classifi-
cation result. (h) Foreground mask for stylization after user
cleanup.

Over-segmenting the color image can help to enforce lo-
cal consistency, thus better maintaining the boundaries of
the foreground inscriptions. We apply a clustering-based al-
gorithm [ASS∗12] to aggregate pixels into superpixels and
create an over-segmentation of the image: Figure 5.c shows
an example.

Feature descriptors are extracted from both colors and
normals. Color-based features are based on statistics over

each superpixel. These are augmented by information from
normal maps that helps improve descriptiveness, especially
when some inscriptions are difficult to see in the color im-
age. The normals also help with distinguishing between
carved grooves and pecked-out areas. Details are explained
in section 5.3.

In the labeling step we ask the user to draw sparse
strokes to indicate pixels belonging to 3 different classes. As
shown in Figure 5.d, red strokes refer to foreground grooves,
green strokes refer to foreground pecked-out areas, and blue
strokes mark the background.

A graph-cut approach [BVZ01, KZ04, BK04] is used to
group the pixels into foreground and background. Energy
functions are designed based on feature descriptors and user
labeling as explained in section 5.3.

Post-refinement is applied to the graph-cut segmentation
output to enhance foreground connectivity and remove noise
on the background. Figure 5.e and Figure 5.f give an ex-
ample of the segmentation result before and after the post-
refinement processing.

Foreground classification is done after fore-
ground/background segmentation to produce masks for
the two types of rock inscriptions. A Naive Bayes classifier
is trained based on the user input labels. Figure 5.g shows
an example classification result. We also allow the user to
edit the label of each connected component, so that they can
fix mislabeled components or remove irrelevant parts from
the foreground, as illustrated in Figure 5.h.

5.2. Feature Design

We compute a feature descriptor for each pixel using cues
from both color and normal images.

Color-based features. Color images of rock carvings
are noisy, and just using the color of each pixel as a fea-
ture yields results that are not robust. Instead, we first over-
segment the color image into near-equal-sized superpix-
els. As shown in Figure 5.c, these superpixels preserve the
boundaries in the original image while capturing redundancy
in the data, and they also help to reduce computational cost
by allowing features to be computed only once per super-
pixel (instead of per pixel). Means and standard deviations
are computed for each RGB channel within the neighbor-
hood defined by each superpixel. Pixels from the same su-
perpixel are assigned the same color feature. Figure 6.a and
Figure 6.b visualize the color feature for the image shown in
Figure 5.a.

Normal based features. By only looking at the color
image, it is hard to distinguish the carved grooves from
the pecked-out regions. However, these two types of in-
scriptions have recognizably different normal statistics, as
illustrated in Figure 7. Therefore, it is reasonable to com-
pute features from normals in addition to color. We take
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(a) (b)

(c) (d)

Figure 6: (a) Visualization of color mean within each super-
pixel. (b) Visualization of color standard deviations within
each superpixel. (c) Visualization of the approximated sur-
face gradient magnitude. (d) Visualization of the bigger
eigenvalues of the structured tensors. (The contrast of the
images are increased for better visualization.)

the x and y components from the normal image to approxi-
mate surface gradient, and then compute the gradient magni-
tude. We also compute the covariance matrix in a Gaussian
weighted square neighborhood for each pixel, and add the
bigger eigenvalue as a new entry to the feature descriptor:
this helps to distinguish grooves (which will have one big
eigenvalue) from roughened regions (which will have two
small eigenvalues). As visualized in Figure 6, normal based
features help to capture edges on the surface.

5.3. Inscription Segmentation

In order to produce labeled segmentation for both grooves
and pecked areas, we first run a graph-cut based binary seg-
mentation to obtain foreground and background, and then
train a classifier on the foreground segment to distinguish be-
tween the two types of inscriptions. Such a two-fold process
is more efficient and more reliable, compared to multi-label
graph-cut segmentation.

Training. We ask the user to label the two types of fore-
ground inscriptions and the background by drawing strokes
in different colors. Let L = L0 ∪L1 represent the set of la-
beled pixels, where L0 denotes the background labeled pix-
els and L1 = L10∪L11 denotes the two types of foreground
labeled pixels. For labeled pixels from L0 and L1, we run
hierarchical clustering [ML12] to aggregate them into clus-
ters in feature space. Let f s

α j denote the centroid of the j-th

(a) (b)

(c) (d)

Figure 7: (a) Normals of a region with 2 types of inscrip-
tions. (b) Color image of the same region with 2 types of
inscriptions. (c) A close up look at the carved in region (in
red rectangle). (d) A close up look at the pecked out region
(in green rectangle).

cluster with label α ∈ {0,1}. We call f s
0 j background seeds

and f s
1 j foreground seeds.

Energy function. We define a graph on the image in
which each pixel is a node and each node has 4 edges
connecting its 4-neighbors. A binary graph-cut segmen-
tation algorithm is applied to find the least-cost bound-
aries that smoothly partition the graph into foreground and
background by minimizing an energy function E(α, f ),
where α = (α1,α2, ...,αn) is the label assignment, f =
( f1, f2, ..., fn), is the vector of feature descriptors, and n de-
notes the number of pixels. We choose to apply the graph-cut
segmentation on pixels instead of superpixels because the
normal features are extracted from per-pixel neighborhoods.
The energy function consists of two terms:

E(α, f ) =U(α, f )+V (α, f ), (4)

where U(α, f ) denotes the data term and V (α, f ) denotes the
smoothness term.

We define the data term as

U(α, f ) = ∑
p /∈L
− log

min j

∥∥∥ fp− f s
αp j

∥∥∥
∑α min j

∥∥∥ fp− f s
α j

∥∥∥ + ∑
p∈L
− logε,

(5)
where ‖ · ‖ denotes Euclidean distance and ε > 0 is a user
defined small constant.
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The smoothness term is defined as

V (α, f ) = γ ∑
(p,q)∈N

I(αp 6= αq)e−β( fp− fq)
2
, (6)

where γ and β are user-defined positive weighting parame-
ters.N is the set of neighboring pixel pairs in the grid graph.
I(·) is an indicator function that is 1 if αp 6= αq, 0 otherwise.

Cleanup. After the graph-cut segmentation, we perform
a post-refinement process to enhance foreground connectiv-
ity and remove speckles. For each superpixel, we assign the
same label to all pixels within it by taking a majority vote on
pixel labels from the graph-cut output. We then remove noise
in the background and fill small holes in the foreground by
removing small connected components.

Label classification. Finally, we train a Naive Bayes
classifier [Fuk90] based on feature descriptors of labeled
foreground pixels from L1 = L10 ∪ L11, and predict the
type to be either a carved-in or pecked-out inscription. We
then assign pixels within each connected component with
the same label by conducting a majority vote, and create a
labeled segmentation mask for stylization.

Iterative refinement. In order to give the user fine con-
trol over segmentation, we implement an iterative scheme
that allows the user to add strokes to refine the segmenta-
tion. It takes 3− 4 iterations on average for an experienced
user to create a decent segmentation result. An example is
shown in Figure 8.

5.4. Evaluation and Comparisons

Graph-cut on color. We show the results of applying graph-
cut segmentation on only the color image. Figure 9 shows
that color alone is not enough to capture the real foreground
inscriptions, especially the grooves, and therefore it is neces-
sary to have more robust features based on normals as well.

K-means clustering. We compare our fore-
ground/background segmentation result to that of per-
forming k-means clustering on pixels in feature space.
Figure 10 shows side-by-side comparisons between our
results and the k-means results. We notice that simple
clustering yields more noise and incomplete foreground.

We also compare our final labeled segmentation result to
aggregating the pixels into 3 clusters by k-means, as shown
in Figure 11. On the basis of this, we conclude that a super-
vised approach yields more reliable results for segmenting
rock inscriptions.

Multi-label graph-cuts. We show result of directly
performing multi-label graph-cut segmentation and com-
pare it to foreground/background segmentation followed by
foreround classification. The computation time of the multi-
label segmentation is roughly 50% higher than our method.
As shown in Figure 12, our two-stage process produces more
reliable results.

(a) Iteration 1

(b) Iteration 2

(c) Iteration 3

Figure 8: Left column: Labels drawn by the user. Right
column: Segmentation result.

(a) (b)

Figure 9: (a) Our foreground/background segmentation re-
sults. (b) Foreground/background segmentation results of
graph-cut on color.

6. Stylization

Our system uses the labeled segmentations to drive stylized
rendering. We describe two categories of stylization: shape
illustration that depicts the depth of grooves or the general
shape of the whole rock surface, and detail illustration to
depict surface details in the pecked-out regions.
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(a) (b)

(c) (d)

Figure 10: (a) Our segmentation result before cleanup. (b)
K-means clustering result before cleanup. (c) Our segmenta-
tion result after cleanup. (d) K-means clustering result after
cleanup.

(a) (b)

Figure 11: (a) Our final labeled segmentation result. (b) K-
means 3 clustering result.

6.1. Shape Illustration

We first extract contours from the segmentation masks and
convert each into a discrete curve by sub-pixel sampling the
contour. Then, the user can manipulate the contours by con-
trolling parameters for Gaussian smoothing, bilateral filter-
ing, and unsharpening along the contour. Each filter can be
applied to change either the contours’ shape or their prop-
erties such as normals, curvatures, and colors. The user can
also add a sense of relief by varying stroke thickness, or pro-
vide an impression of overall shape using stippling.

Relief. Some of the inscriptions are carved into the rock
(grooves) which makes them either sunk or bas-relief de-
pending on the carving technique. One way of represent-
ing reliefs with line drawings is to draw them with different
line thicknesses. One of most common conventions used for
reliefs in digital epigraphy is to assume a light source at a

(a) (b)

Figure 12: (a) Our final labeled segmentation result. (b) 3-
label graph-cut result.

(a) (b)

Figure 13: (a) Thickness calculation. (b) Example of a relief
illustration.

45◦angle from the top-left side of the image. The goal is to
use line thickness to indicate the shading of the surface under
this hypothetical lighting. In digital epigraphy, this is done
manually by offsetting the mask for the inscriptions. How-
ever, this method only gives us general information about
whether it is sunk relief or bas relief. For a more precise de-
piction, we use the depth of the inscription to determine the
line thicknesses.

To determine the depth of the inscription without actu-
ally integrating the normal map, we take a small window,
W , from each curve point in the opposite direction of the
curve normal as shown in Figure 13.a and take the average
normal within that window. Later, we could just use the dot
product of the light direction with the average normal to de-
termine the line thickness. However since the surface is not
necessarily perpendicular to the camera and we want to get
rid of the noise caused by the rough surface, we first apply
a band-pass filter (Difference of Gaussians) on the normal
map, N:

NDoG = N ∗G(σ1)−N ∗G(σ2) (7)

where G(.) are 2D Gaussian functions with σ1 removing the
noise caused by the surface roughness and σ2 removing the
low frequency component of the normal map, which repre-
sents the rough shape of the surface. We later use the DoG
to compute the average direction for each point on the curve,
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(a) (b)

Figure 14: (a) Stippling on a sphere. (b) Stippling to depict
the rough shape of a curved boulder.

and the thickness is set proportional to the dot product of the
average DoG and the imaginary light direction.

t(i) =< 1,−1,0 > ·
( 1
|Wi| ∑

(x,y)∈Wi

NDoG(x,y)
)

(8)

where t(i) is the computed line thickness at point i. Later, the
user can further smooth the thickness along the curve to have
a smoother transition along the contour as described below:

t(i)smooth =
1

gtotal

r

∑
j=−r

g( j,r)t(i+ j) (9)

where g( j,r) is a Gaussian function in which the variance
of the function is calculated from the maximum range r. In
Figure 13.b, an example is shown where the relief illustration
is applied to the grooves while the pecked out regions are
rendered with a constant line thickness.

Stippling. To depict the rough shape of the surface, we
use stippling derived from the normal map. We compute the
stippling density in small grids by taking the dot product of
the z direction with the average normal within the grid, W ,
as follows:

d = 1−
(
< 0,0,1 > ·

( 1
|W | ∑

(x,y)∈W
N(x,y)

))
(10)

A number of stippling points proportional to the density are
randomly rendered within the small grid with a color in-
versely proportionally to the density. When the surface is
tilted away from the camera, the stippling density will be
close to one and the color will be darker, and vice versa, as
shown for a sphere in Figure 14.a. This method can be used
over all the image when the rock surface is curved to indicate
the general shape of the surface as shown in Figure 14.b.

6.2. Detail Illustration

To illustrate the surface details, we compute the dot product
of the surface normals with either the z-direction or the local
average normal as follows:

I(x,y) =

{
d = N(x,y) ·B(x,y) if d < τ

1 otherwise.
(11)

where τ is a user defined threshold, which controls the elim-
ination of the flatter features and B(x,y) is either < 0,0,1 >
or the low frequency component of the normal map, Ng(x,y),
computed by Gaussian filtering the normal map. When the
z-vector is used, it will depict the general shape of the sur-
face such as curviness; on the other hand, if Ng(x,y) is used,
it will reveal the local surface details only. If the surface is
flat and perpendicular to the camera, both methods will give
similar results. In our results, extracted details are applied to
the pecked out regions as a texture.

6.3. User Control

The user can control all the sigma and threshold values, and
can use either the albedo, gray tones, or black and white for
details. The stippling method described in the previous sec-
tion can also be used for detail illustration by using Ng(x,y)
instead of the z-direction. Different methods for detail illus-
tration are shown in Figure 15.

7. Results and Discussion

In this section, we show results on several inscription and
non-inscription datasets, as well as comparisons to some pre-
vious work. Figure 16 demonstrates several styles of our
epigraphy pipeline on one dataset. We demonstrate gener-
ating outlines of the inscriptions, adding surface details, giv-
ing relief effect to the grooves, stippling for shape depiction,
and stippling to illustrate the surface details respectively. For
comparison, Figure 17 shows a digital epigraphy done man-
ually by archaeologists in two styles. As they reported, it
took 5-6 hours to trace over the image and another 1-2 hours
to add texture details to the pecked out regions. The main
reason of the manual epigraphy taking such a long time is
the desire for great precision rather than lack of experience.

In Figures 18 and 19, several previous works are com-
pared. Results from image-based line drawings are shown in
Figure 18, where we compare our result to Coherent Line
Drawings (CLD) by [KLC07] and extended Difference of
Gaussians (xDoG) by [Win11]. Even though xDoG handles
the noise caused by surface roughness better than CLD, it
fails when the variation in color is small, such as in the
right column of the figure. To test 3D line drawing meth-
ods, we project the surface normals onto a 3D plane and use
those projected normals to compute 3D contours. As seen
in Figure 19, previous works cannot handle the noise well,
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Figure 15: Detail illustrations for pecked out regions. Top
row: details computed using Equation 11; Bottom row: ran-
dom stippling; Left column: B =< 0,0,1 >; Right column:
B = Ng(x,y).

and even when the surface is smoother it does not produce
contours enclosing the inscriptions as needed for epigraphy.
Given that the previous works use only 2D color or 3D ge-
ometry information, the comparison to our approach could
be potentially unfair. However, it also shows the necessity of
using both color and geometry information.

Results on several other rock inscriptions are shown in
Figure 20, where the last two datasets are deeply engraved
stones different than other rock inscriptions. We also demon-
strate our system’s usability on non-inscription datasets in
Figure 21.

8. Conclusion

In this paper, we presented a user-guided system to produce
digital epigraphy from photometric datasets. The pipeline
consists of segmenting the inscriptions from the rock surface
and labeling them based on their carving techniques and ren-
dering them in various non-photorealistic styles. We stated
that our system efficiently and quickly (in less than 10 min-
utes) produces results comparable to the manual epigraphy
done manually by archaeologists in hours. We compared our
results to several previous works on both 2D and 3D line
drawing algorithms. Finally, we showed results for several
rock inscriptions, rock engravings, and non-inscription ob-
jects.

(a) Outlines (b) Details

(c) Relief (d) Stippling (e) Stippling Details

Figure 16: (a) Outlines of the inscriptions computed by
the segmentation algorithm, grooves are drawn with thicker
lines than pecked out regions. (b) Pecked out regions are tex-
tured by adding surface details using Equation 11. (c), (d),
and (e) are closeup images showing relief, random stippling
for shape depiction and stippling for detail illustration, re-
spectively.

Figure 17: Digital epigraphy done manually by archaeolo-
gists using Adobe Photoshop and Illustrator.
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(a) CLD on Albedo [KLC07]

(b) CLD on Normals [KLC07]

(c) xDoG on Albedo [Win11]

(d) xDoG on Normals [Win11]

(e) Our Results

Figure 18: Comparisons to previous image-based line draw-
ing techniques.

(a) Ridges & Valleys [IFP95]

(b) Suggestive Contours & Highlights [DR07]

(c) Apparent Ridges [JDA07]

(d) Relief Edges [KST09]

(e) Isophotes

Figure 19: Comparisons to previous 3D model-based line
drawing techniques.
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