AudioQuilt: 2D Arrangements of Audio Samples using
Metric Learning and Kernelized Sorting

Ohad Fried
Princeton University
ohad@cs.princeton.edu

Zeyu Jin
Princeton University
zjin@cs.princeton.edu

Reid Oda
Princeton University
roda@cs.princeton.edu

Adam Finkelstein
Princeton University
af@cs.princeton.edu

ABSTRACT

The modern musician enjoys access to a staggering num-
ber of audio samples. Composition software can ship with
many gigabytes of data, and there are many more to be
found online. However, conventional methods for navigat-
ing these libraries are still quite rudimentary, and often in-
volve scrolling through alphabetical lists. We present Au-
dioQuilt, a system for sample exploration that allows audio
clips to be sorted according to user taste, and arranged in
any desired 2D formation such that similar samples are lo-
cated near each other. Our method relies on two advances
in machine learning. First, metric learning allows the user
to shape the audio feature space to match their own prefer-
ences. Second, kernelized sorting finds an optimal arrange-
ment for the samples in 2D. We demonstrate our system
with three new interfaces for exploring audio samples, and
evaluate the technology qualitatively and quantitatively via
a pair of user studies.

Keywords

Sound Exploration, Sample Library, Metric Learning, Ker-
nelized Sorting

1. INTRODUCTION

The age of “big data” has brought upheaval in many as-
pects of our lives including photography, retail, social net-
works and music. The modern musician or composer has
at her disposal a vast array of sound samples, and acquir-
ing more requires little effort. Once the acquisition process
becomes easy, the burden passes to the next stage, which
is managing, searching, and exploring this data. A huge
audio database is rendered nearly useless if it is impossible
to navigate and find a desired clip.

Proper organization of audio samples is a challenging
problem because similarity between samples is largely sub-
jective. Audio features that are important to one user may
be less important to others. Additionally, it’s unclear how
a sorted collection should be arranged on a computer screen
in order to make best use of the space, and to maximize the
browsing experience. In this paper we offer two techniques
to address these problems. First, metric learning (Section
3.1) allows users to specify their own groupings of samples.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NIME’ 14, June 30 — July 03, 2014, Goldsmiths, University of London, UK.
Copyright remains with the author(s).

The system then learns which features are important, by
upweighting those which are most useful for classification,
and ignoring those that are not important, and can then
apply these weightings to new, as of yet unseen, samples.
Next, we use kernelized sorting [18] (Section 3.2) in order
to place samples onto target locations on a 2D plane, such
that similar samples are near each other. This means that
the samples can be arranged in any arbitrary pattern, such
as a grid, a circle, a line, or a cluster. Kernelized sort-
ing places the samples on the targets locations in a manner
that respects the distances learned by metric learning. This
approach provides particular flexibility when working with
interfaces where real estate is scarce, or when building tan-
gible controllers that have discrete buttons.

Our main contributions are (1) using metric learning to
transform descriptors into a better space via user guidance
and (2) using kernelized sorting to place the samples in a
specific arrangement. While both techniques are known in
other fields, their combination and usage for sound explo-
ration is novel. Finally, we demonstrate two novel interfaces
for audio navigation supported by our approach, and evalu-
ate it both qualitatively and quantitatively via user studies.

2. BACKGROUND

In this section we discuss previous work and established
methods for sound exploration and layout. We also provide
background regarding metric learning and set matching, the
two main components of our approach.

2.1 Sound Exploration and Layout

Sorting samples by timbral similarity, and visualizing them
in a 2D plane is a well-studied field [9]. The process usu-
ally involves three steps. The first step is feature extrac-
tion. Commonly used features include bark-scale coeffi-
cients [15, 6], MPEG-T7 [20, 15], and mel-frequency cepstral
coefficients [8, 3]. Bark scale and mel-frequency cepstral
coeffients are representations of the spectral envelope, com-
pressed to smaller dimensionality, while MPEG-7 includes
features which are relevant to perception of timbre [17].
Next, the similarity between each sample is expressed.
Common approaches include embedding the sample in multi-
dimensional space and expressing the similarity as a dis-
tance such as euclidean [7, 8], generalized minkowski[16],
mahalanobis [8, 20]. Sometimes the dimensions are reduced
using PCA, multi-dimensional scaling [7] or similar.
Finally, the samples are represented in a 2D plane. The
most popular approach is to use self-organizing maps [4,
6, 23, 24]. Our chosen method for embedding, kernelized
sorting [18], differs from self-organizing maps in that it al-
lows us to specify where the samples should be placed, and
achieves a 1-to-1 mapping between sound samples and tar-

Figure 1: We produce a 1-to-1 matching between
sound samples and grid locations (left), while meth-
ods such as Self Organizing Maps can match several
or no samples to the same node (right).

get locations (i.e. all target locations are filled). This allows
us to place the samples on dense structures such as grids.
In comparison, in the training phase, self-organizing maps
create a map by assigning values to a set of nodes (neu-
rons), and in the mapping phase each element is mapped
to its closest node. This means that many samples can be
mapped to the same node, and some nodes might remain
vacant (Figure 1).

2.2 Metric Learning

Embedding high dimensional features to 2D grid relies heav-
ily on the measurement of similarity or distance. Many ma-
chine learning techniques such as K-means and KNN assume
Euclidean space and L2 distance, where the dimensions are
assumed to be independent and equally important. How-
ever, the Euclidean assumption is often not true. When
measuring the similarities of snare drums samples based on
spectrum and envelope features, the interactions between
spectral dimensions and the difference scaling factors be-
tween the spectrum (energy) and the envelope (time) make
the space non-Euclidean. Furthermore, when it comes to
audio exploration, different users have different perceptions
of the similarity. Metric learning properly adjusts the fea-
ture space to be Euclidean.

There are two types of metric learning, supervised and
unsupervised. The unsupervised metric learning method
transforms a vector & by a matrix M such that the elements
in Mx are independent and normalized. Principal Compo-
nent Analysis (PCA) and Multidimensional Scaling (MDS)
both fall into this category. The main difference between
the two is that PCA preserves the data variance while MDS
preserves the inter-point distance [28]. However, unsuper-
vised metric learning does not find the best presentation
when the data is sampled from multiple subspace clusters.
That is why we refine the feature space based on supervised
metric learning.

Supervised metric learning requires that the data is la-
beled with pairwise constraints of either “similar” or “dissim-
ilar.” The simplest supervised metric learning method is lin-
ear discriminative analysis (LDA), which uses class labels to
maximally separate two classes of data [12]. A more sophis-
ticated method is devised by Xing et al. [26] for Mahalanobis
distance metric [14]. It finds a new metric M, such that the
new distance measure d(z,y) = /(z — y)TM(x — y) min-
imizes the distance of similar samples, and preserves the
distances of dissimilar samples. For multiple data clusters
(especially in the context of audio sample browsing) we ex-
tend this learning scheme to group-based constraints where
we maximize the between-group distance, while preserving
the upper-bound of the in-group distance.

2.3 Set Matching

Picking the best locations for audio samples can be formu-
lated as a set matching problem, where the first set cor-
responds to the audio samples and the second to the 2D

locations. Given two sets for which intra-set distances are
known (but not inter-set distances), the problem of finding
a permutation that best matches the two sets can be formu-
lated as a Quadratic Assignment Problem (QAP) [11]. Since
QAP is NP-Hard, an exact solution is generally out of reach
and approximations or relaxations should be pursued. Such
relaxations include kernelized sorting (KS) [18] and convex
kernelized sorting (CKS) [5], both of which we use as part
of our algorithm. Other options include KS-NOCCO and
LSOM [27]. We choose KS due to its simplicity and speed,
and find the performance to be adequate. We also imple-
ment CKS, which generally gives improved quality but at
the cost of noticeably slower performance for large arrange-
ments. (Future work might quantize the just-noticeable-
differences and/or quantitatively compare different sorting
approaches.) It is important to note that any of these meth-
ods can be used interchangeably in our algorithm, as we do
not rely on any specific implementation details.

3. ALGORITHM

Our algorithm is formed as a two-part process, in which we
aim to (1) automatically learn the correct relationships be-
tween sound samples based on user preferences and (2) au-
tomatically place the sound samples in a predefined arrange-
ment that respects the previously learned relationships. We
achieve these two tasks by using metric learning and kernel-
ized sorting, respectively. In this section we describe these
techniques and how we build on them in AudioQuilt.

3.1 Learning Correct Relationships

Metric learning allows us to incorporate user-supplied group-
ings of data. In the standard formulation, we suppose we
observe a set of points {x;}1.» € R™ and are given the
grouping information {y;}i.m C {1,2,..., K}" where y; is
the group label of point x;. The supervised Mahalanobis
metric learning problem is to learn the new distance met-
ric ||z — ylla = da(z,y) = /(xz —y)TA(z —y), such that
the pairwise distances of the points in the same group are
kept small, while the distances of points between different
groups are maximized. Note that the matrix A needs to
be semi-definite such that the triangle property is satis-
fied for the new metric. Because /(z —y)TA(x —y) =
V(@ —y)TBTB(x — y) where B = A2 this method es-
sentially finds a new space Bx for vector x. According to
Xing et al. [26], a plausible formulation for multiple group
metric learning can be:

max E
A

(4,9)|yi #y;

s.t. Z

(0.9)lyi=y;=k

i —][(1)
l|zi — 2|3 <1 forke[K], A=0

Note that the objective is the sum of distances, and not
the sum of squared distances, so semi-definite programming
cannot be utilized. We do not want to change the objective
to the sum of squared distances, because it leads to a rank-
one solution of A, where all the data points are aligned onto
a line [26]. But because of the convexity of this formula, we
can still obtain the global maximum using gradient descent
and iterative projection. However, the optimization is slow,
which is unsuitable for a real-time application. To boost the
speed and avoid low-rank solution, we propose the following
optimization scheme for the metric learning;:

2 2
max Soodwi—zli-x D lw—alh (2
(4,9 lvi#y; (4,9 lyi=vy;

st o —zi|A <1 (6,9) € {6, 0)|yi =y}, A=0

where the term) is the weight of in-group distance penalty.
Increasing this term yields more concentrated groups, which
are closer to one another. In this work, we set this value to
1, meaning both in-group concentration and between-group
divergence are important.

The new formula can be optimized using semi-definite
programming and thus much faster to compute compared
to the previous method.

3.2 Location Assignment

The inputs to the location assignment part of our algorithm
are pairwise distances between n sound samples (i.e. d;; is
the distance between sound sample ¢ and sound sample j,
di; = 0) and target locations. Target locations P is an arbi-
trary set of 2D (or 3D) points in Euclidean space, such that
|P| = n. The goal is to find a bijection between the sound
samples and the locations, such that pairwise distances are
preserved as much as possible. Intuitively, we would like
for similar sound samples to be placed close together and
for dissimilar samples to be far apart. We achieve this goal
by using two previously established algorithms: kernelized
sorting [18] and convex kernelized sorting [5].

kernelized sorting. While we aim to solve a specific
problem of matching sound samples to target locations, ker-
nelized sorting is a general method to match any two equally
sized sets, given an intra-set similarity measure (but not
inter-set). More formally, we are given two sets X = {x; }i—;
and Y = {y;}i=1, which may belong to two different do-
mains X and). We are also given two kernel functions
k:XxX - Rand !l :)Y x)Y — R which indicate the
similarity between objects of X and) respectively (i.e. a
large value of k(z;,z;) indicates that z; and z; are sim-
ilar). We can represent the kernel values of our data in
matrix notation as K and L, where K;; = k(z;,x;) and
L;; = l(yi,y;) (we borrow the same notation as in KS [18]).
Let us mark K and L as the centralized versions of K and
L. The goal of KS is to find a permutation matrix IT such
that K and IIT LII are similar. The similarity criteria used
is the Hilbert-Schmidt Independence Criterion [21]. An it-
erative approach is used to maximize an approximation of
that criteria. We refer the reader to [18] for more details.

In our case, X are sound samples and Y are 2D locations
as specified by the user. We compute similarity between
sound samples by the Euclidean distance of the adjusted
feature space learned from supervised metric learning. The
similarity between two locations is the reciprocal of the Eu-
clidean distance between them. KS allows us to interac-
tively assign sound samples to user-specified locations.

Convex Kernelized Sorting Over the years several im-
provements to kernelized sorting have be proposed. One
such method is convex kernelized sorting (CKS) [5]. The
objective function is changed so that the problem becomes
a convex minimization problem, as shown in Equation 3.
We use II, K and L as before, and || - || » denotes the Frobe-
nius norm.

min|K 117 — (L 10)" | (3)

The authors of CKS [5] show that the new method achieves
better results in tasks such as image matching. The im-
proved performance comes at a cost of a slower algorithm,
due to a non-linear optimization step. We have incorporated
CKS into our system and can dynamically pick between KS
and CKS, achieving a performance-vs-runtime balance.

It is important to note that while we had good reasons to
choose these specific algorithms (as explained above), they
can be easily swapped in and out. Any other algorithm that
can create a bijection from a distance measure is suitable

for our needs, and the rest of the pipeline does not depend
on the specific implementation.

4. APPLICATIONS

In this section we present 3 interfaces that we prototyped
using our system. We demonstrate applications for sound
sample navigation, as well as audio synthesis.

4.1 Snare-Drum Navigator

Much like fabric for the clothes designer and wood for the
carpenter, sound samples are essential building material for
the modern day music composer. It is not unusual for an
artist to collect hundreds and thousands of sound snippets,
ranging diverse categories. All those samples are, at best,
arranged by category (e.g. electric guitar, tires screeching,
female vocals) and at worst just dumped into a single folder
and sorted alphabetically according to file name. Despite
a number of viable sample exploration systems [8, 25, 2,
19] developed by researchers in past years, it appears that
commercial composition tools are only just now beginning
to implement a “more like this” feature for sound samples [1],
and we feel the interface can go even further.

Our snare drum navigator is simple to describe: the user
is presented with a 2D grid of rectangles, each with a slightly
different color. Proximity of rectangles implies similar sound
qualities. The color can either emphasize similarity, or be
used as a channel to convey an extra layer of information. In
this application we applied two coloring scheme. The first
one is generated by Isomap [22] which projects the original
features (24-D) to 2D and use them as the first two channels
in LAB color space (the thrid channel is fixed in this case).
The second scheme is to apply k-means to find clusters, then
use the 3 principal components of the features to create an
initial coloring based LAB space, and finally move the color
of each sample towards the center of its assigned cluster.
The corresponding waveform is displayed inside each rect-
angle. Following feedback from early users, we also show
the history of the exploration process by fading out visited
cells and fading them back in over time.

The feature vector for this application is constructed as
follows. First the samples are normalized; the onset time
is detected and aligned via a threshold of -30dB. Next we
use MIRtoolbox [13] to obtain the envelope and the log
attack time; we compute the temporal centroid and two 11-
coefficient MFCCs of window size 2048 at the onset and

Figure 2: Snare drum navigator. The user is pre-
sented with a grid of colored rectangles, each corre-
sponds to a sound sample. Hovering over samples
produces sound; similar sounds are placed in prox-
imity. The feature vector consists of MFCC descrip-
tors, log attack time and temporal centroids. We
support several coloring schemes, either according
to the features used or according to other informa-
tion we wish to convey. Here we show Isomap col-
oration (left) and k-means based coloring (right).

800

Files Layout | Compute Assignment

) Grid Help | Synth | AutoKey |

() No Group OGroup1 @Grawp2 O

O Group4 O Group 5

Figure 3: Our interface for metric adjustment. Each
circle corresponds to a sound sample. The user can
hover over samples to play them. Circles are color
coded by the user according to their group by click-
ing (groups are shown at the bottom). Pressing
“Compute Assignment” triggers a calculation of a
new metric such that the user supplied labeling is
respected. This GUI allows for interactive manipu-
lation of the distance metric according to the user’s
needs, which can be applied to create new sound
layouts (Figure 2).

after the attack (sustain). We concatenate these three at-
tributes (24 dimensions in total) as the feature descriptor.

Figure 2 shows our snare drum navigator. We first learned
the metric space using a training set of snares, manually la-
beling 176 samples out of a total of 839 in the training set
into 12 categories. We note that this is a one time process
for each data type (i.e. we can now sort snares without
repeating this process). The total labeling time was about
30 minutes. We then applied the metric to the displayed
test set. The result is an arrangement with different types
of snares clustered in different parts of the interface. In the
upper left are aggressive, punchy snares, while in the lower
right are thin, snappy snares. In between there is a gra-
dient of snare types ranging (moving top to bottom) from
hip-hop vinyl snares, to woody acoustic snares, to thin and
light acoustic snares. We refer the user to the accompany-
ing video for a more audible experience. We also show the
same sound layout, with a different color scheme.

We also allow the user to interactively adjust the learned
metric by assigning group labels to examplars. Figure 3
shows the interface. Starting from a layout, a user can lis-
ten to the samples and indicate the proper group by chang-
ing the colors of the nodes. Then he/she presses “compute”
and the system uses the grouping information to learn a new
metric that enlarges the difference between different colors,
and then apply it to the distance matrix for kernelized sort-
ing to obtain a new layout.

4.2 Synth Explorer

We can also use our method to explore audio synthesizer
parameters. The task of navigating synthesizer parameters
can be challenging due to the diverse sounds and the nonlin-
ear ways in which parameters interact. Furthermore, many
novice users do not understand all the different buttons and
knobs that are present on a synth. We aim to alleviate the
problem by supplying an intuitive interface for exploring
synth parameters and the resulting sounds.

In this system we use a simple synthesizer with 4 param-
eters: Pitch, FM amount, FM frequency, and Ring modula-
tion frequency. The features used are MFCCs with a 8000
sample window and the log attack time.

The interface is shown in figure 4. Each node represents a
sound created by a given synth parameter setting. To begin,

86006
Files Layout

Re-compute Grid Grid Help | Compute + ™ synth | Auto Key

i

e
() No Group (#) Like () Dislike | Play this gros ng (o O

Figure 4: Synth sound explorer. Synthesizer pa-
rameters are sampled to create sound snippets and
arranged by sound similarity. The user hovers over
the circles to listen to the snippets, and can indicate
likes/dislikes. The space is re-sampled and re-sorted
interactively according to the user’s selection. We
refer the reader to the accompanying video for a
more vivid demonstration.

we sample uniformly at random, from the parameter space
of the synthesizer. For each parameter setting we record a
1-second sound clip, and use kernelized sorting to map it
onto a node, so that timbrally similar sounds are near one
another. Mousing over a node plays the sound. The layout
of nodes is freely configurable. If the nodes are moved (the
user can drag the circles), the sound-to-node mapping is re-
computed to maintain the timbral relationships. The user
then indicates which sounds they like, and some that they
don’t like. These two labels are used as classes for met-
ric learning to recompute the space. Once the space has
been recomputed, the system samples around the parame-
ter space of each “liked” setting. This creates a hierarchical
method for exploring the space. The new samples are ar-
ranged in the same manner described earlier. Note that
sounds with very different parameters, but similar timbres,
will be arranged next to one another, enabling the user to
search by audio, not parameter. When they want to learn
the parameters, they click the node, and the parameters of
the synth are shown on the right side of the screen. They
can also search by adjusting the parameters directly.

S. USER STUDIES

We evaluated our system using two methods — one in-person
and the other online. The in-person study aims to get qual-
itative feedback from musicians on the usability of the sys-
tem, while the online study was geared towards quantitative
results, to help us understand which aspects of the system
affected search time and accuracy. Both studies used the
snare drum navigator shown in Figure 2.

5.1 In-Person Qualitative Study

Our in-person study involved 5 musicians. Each of them
were familiar with composition using a DAW, and the pro-
cess of sample selection. They ranged from 20-33 years in
age and consisted of 2 undergraduate students, 2 graduate
students and one faculty member.

We adopted a contextual observation style approach, giv-
ing the user only basic instructions and offering information
only when asked. Before the user study, we pre-trained the
system using metric learning. The users were instructed to
use the system as if they were browsing for snare drums
for a project. As they browsed they narrated their experi-
ence. After they had located a few snares that they liked,

we conducted a semi-structured interview.

The most common feedback we received is that the sys-
tem was very “fast”. People liked the ability to audition
a number of samples very rapidly. All of the users spon-
taneously identified clusters of similar snares in the inter-
face. Some comments included “these here have scooped
out mids” and “here are a bunch of hip-hop vinyl samples”.
However, they were sometimes surprised by certain snares
that seemed not to fit their neighbors at all, “this snare
should be over there”, was a common comment. These un-
expected snares appeared to diminish the user’s confidence
in their understanding of the system.

5.2 Online Quantitative Study

The goal of our second study
is to evaluate our system

Find Similar Sounds (page 3 of 4)

quantitatively by testing a pmmmpmEmrazamm

person’s ability to find par- &] AT T T []
ticular sounds among a col- =}-=====}=
lection. In a typical com- BRI e e
position situation an artist 1] ----}=

might not be looking for a
specific sound among their

||

collection, just one that is -
“close enough.” For each test, we generated 10 “close
enough” sounds, which are similar to an exemplar sound,
and 90 samples that are dissimilar. The goal of the task is
to find as many of the 10 “close” samples as possible within
60 seconds. To create samples, we first randomly generate
2000 synthesized samples; then we extract the audio fea-
tures and compute k-means to obtain 10 clusters; finally,
we pick sample around the cluster centers.

In the study, subjects were presented with our grid inter-
face as well as the reference exemplar sound (shown inset).
Before the test began, each subject read a short explana-
tion of the task. Then they were allowed to listen to the
exemplar as many times as they liked. Once they began
browsing the grid of samples, they were given 60 seconds to
mark up to 10 similar sounds. To mark a sound as similar,
they clicked on the rectangle and a check mark appeared;
an optional subsequent click would remove the mark. If
subjects were satisfied with their selection, they could end
the task early.

In our test, the independent variables were: (1) grid color-
ing enabled or disabled, crossed with: (2) Kernelized Sort-
ing versus random arrangement. This yielded 4 different
conditions. Each condition was paired with a different sam-
ple set (selected randomly from among 8 total sets) and ev-
ery subject was presented with all four conditions in random
order. We recruited 100 subjects using the Amazon Me-
chanical Turk (a microtask marketplace shown to be effec-
tive for online user studies [10]). Each subject spent approx-
imately 5 minutes completing one “human intelligence task”
(HIT). Each subject was randomly assigned a set-condition
pair, and did exactly one HIT. In total we collected data
from 100 HITs, and thus our experiments include a total of
400 trials (100 in each condition).

The 400 trials are plotted in Figure 5 as the correct num-
ber of marked samples vs. time. Notice there is a distinct
shape to the spatially sorted trials: the subject tends to
make little progress for a while, then the number of correct
answers skyrockets. We hypothesize that this is the moment
when the proper cluster is found. In contrast, the unsorted
trials show a slower progress towards the maximum, with
no great leaps. Overall, the bird’s eye view is that the best
performing condition (quickest to achieve high numbers of
correct answers) is the use of sorted arrangements together
with color.

(¢) sorted, no color (d) sorted, color
Figure 5: Individual and aggregate results from the
online user study. Each thin lines is the perfor-
mance of a single user in the 60 second trial, Y-axis
is number of correct answers. Wide dashed line in-
dicates mean over all 100 trials; wide solid indicates
median. Steeper is better, and in aggregate the
sorted arrangement with color (d) is best.

10"

p-values

107

10°)
50 10

EJ E) g EJ
time (seconds)

(b) 45 Users, 100 HITs

EJ E) g
time (seconds)

(a) 100 users, 100 HITs

Figure 6: P-value plots against time. Four ANOVA
tests are shown; the response variable is the num-
ber of correct answers at time t. Tests are “sorted”:
sorted versus unsorted; “color”: color versus no
color; “+color”: sorted with versus without color;
“4sorted”: colored with versus without sorting.
Legend labels also refer to Figure 5. Left: 100
unique users. Right: 45 users, each allowed to re-
peat the HIT up to 5 times (100 HITs in total).

We also evaluate these trajectories numerically. Our de-
pendent variable is the number of correct answers at time .
We constructed 4 tests and evaluated their p-values every 2
seconds. The results can be seen in Figure 6(a). The data
shows that spatial sorting has significant effects early on (p-
value < 107% at around 20 seconds). Spatial sorting also
has an effect when only considering colored data (p-value
~ 1073 in the 30-40 second time-frame). The U-shape of
the curves hints that given enough time, all conditions will
converge (since the user can inspect all samples when time
is abundant). Color is mostly insignificant. We hypothesize
that our users did not have a chance to learn the meaning of
color. Thus, in another experiment (Figure 6(b)) we allow
the same user to perform several HITs (45 users, 100 HITs),
in which case color becomes significant. In both versions of
the experiment, arrangement was the most important factor
in user success.

We logged all the events in the study, so we were able
to see exactly how a subject interacted with the system.
We found that people used different strategies depending

on the interface. These different strategies give us insight
into why users find the system “fast” to use. When using
the uncolored, unsorted task first, the user was likely to
adopt a linear approach, auditioning every square row-by-
row. With the colored, sorted interface, they would begin
with the linear approach, but as they became aware that the
samples were spatially sorted, they changed their strategy,
and moved from cluster to cluster, rapidly exploring ho-
mogeneously colored regions before moving onto the next.
We expect even better performance on a real world system
which is familiar to the user.

6. CONCLUSIONS AND FUTURE WORK

In this work we have shown AudioQuilt, a way to harness
metric learning and kernelized sorting in order to provide
superior layouts of sound samples. We demonstrated how
these layouts can be used for sample navigation and as an
interface for musical instrument creation. We have shown
several applications using snare-drum samples and synth
sounds. A promising direction for future work is to experi-
ment with other families of sound samples, such as different
instruments, vocals and movie effects. Another exciting di-
rection for future work will allow metric learning with less
or no user supplied input (using, for example, inductive
transfer to propagate information between sound families).
We would also like to investigate, in more depth, the effect
that different coloring schemes have on search quality. We
feel that sound sample exploration is at a stage where much
more exciting work can be done.

7. ACKNOWLEDGMENTS

We thank our study participants for the informative dis-
cussion and our anonymous reviewers for their helpful com-
ments and suggestions. This work was supported in part
by generous gifts from Adobe, Google, and the Project X
Fund at Princeton.

8. REFERENCES
[1] iZotope BreakTweaker, Jan. 2014.

http://www.izotope.com/products/audio/breaktweaker/.

[2] V. Akkermans, F. Font, J. Funollet, B. de Jong,

G. Roma, S. Togias, and X. Serra. Freesound 2: An
improved platform for sharing audio clips. In
Late-breaking demo abstract of the Int. Soc. for Music
Information Retrieval Conf, 2011.

[3] G. Coleman. Mused: Navigating the personal sample
library. Proc. ICMC, Copenhagen, Denmark, 2007.

[4] P. Cosi, G. D. Poli, and G. Lauzzana. Auditory
modelling and self-organizing neural networks for
timbre classification. Journal of New Music Research,
23:71-98, 1994.

[5] N. Djuric, M. Grbovic, and S. Vucetic. Convex
Kernelized Sorting. pages 893-899, 2011.

[6] A. Eigenfeldt and P. Pasquier. Realtime Sample
Selection Based Upon Timbral Similarity: A
Comparison Between Two Methods. 2004.

[7] J. M. Grey. Multidimensional perceptual scaling of
musical timbres. The Journal of the Acoustical Society
of America, 61:1270, 1977.

[8] S. Heise, M. Hlatky, and J. Loviscach. Soundtorch:
Quick browsing in large audio collections. 2008.

[9] P. Herrera-Boyer, G. Peeters, and S. Dubnov.
Automatic classification of musical instrument sounds.
Journal of New Music Research, 32(1):3-21, 2003.

[10] A. Kittur, E. H. Chi, and B. Suh. Crowdsourcing user
studies with mechanical turk. In Proceedings of the

(11]

(12]

(13]

(14]

(15]

[16]

(17]

18]

(19]

[20]

(21]

22]

23]

24]

(25]

[26]

27]

28]

SIGCHI conference on human factors in computing
systems, pages 453-456. ACM, 2008.

T. C. Koopmans and M. Beckmann. Assignment
problems and the location of economic activities.
Econometrica, 25(1):pp. 53-76, 1957.

B. Kulis. Metric Learning: A Survey. Foundations
and Trends in Machine Learning, 5:287-364, 2012.

O. Lartillot, P. Toiviainen, and T. Eerola. A matlab
toolbox for music information retrieval. In Data
analysis, machine learning and applications, pages
261-268. Springer, 2008.

P. C. Mahalanobis. On the generalized distance in
statistics. Proceedings of the National Institute of
Sciences of India, 2:49-55, 1936.

E. Pampalk, P. Herrera, and M. Goto. Computational
Models of Similarity for Drum Samples. IEEE
Transactions on Audio, Speech & Language
Processing, 16:408-423, 2008.

E. Pampalk, P. Hlavac, and P. Herrera. Hierarchical
organization and visualization of drum sample
libraries. In International Conference on Digital
Audio Effects, 2004.

G. Peeters, S. McAdams, and P. Herrera. Instrument
sound description in the context of mpeg-7. In
Proceedings of the 2000 International Computer
Music Conference, pages 166—169. Citeseer, 2000.

N. Quadrianto, A. J. Smola, L. Song, and

T. Tuytelaars. Kernelized sorting. IEEFE transactions
on pattern analysis and machine intelligence,
32(10):1809-21, Oct. 2010.

S. V. Rice and S. M. Bailey. Searching for sounds: A
demonstration of findsounds.com and findsounds
palette. In Proc. of the International Computer Music
Conference, pages 215218, 2004.

D. Schwarz, R. Cahen, and S. Britton. Principles and
applications of interactive corpus-based concatenative
synthesis. Journées d’Informatique Musicale, GMEA,
Albi, France, 2008.

A. Smola, A. Gretton, L. Song, and B. Scholkopf. A
Hilbert space embedding for distributions.
Algorithmic Learning Theory, pages 1-20, 2007.

J. B. Tenenbaum, V. de Silva, and J. C. Langford. A
global geometric framework for nonlinear
dimensionality reduction. Science,
290(5500):2319-2323, 2000.

P. Toiviainen. Optimizing auditory images and
distance metrics for self-organizing timbre maps.
Journal of New Music Research, 25:1-30, 1996.

G. Tzanetakis, M. S. Benning, S. R. Ness, D. Minifie,
and N. Livingston. Assistive music browsing using
self-organizing maps. In International Conference on
Pervasive Technologies Related to Assistive
Environments, pages 1-7, 2009.

E. Wold, T. Blum, D. Keislar, and J. Wheaten.
Content-based classification, search, and retrieval of
audio. MultiMedia, IEEE, 3(3):27-36, 1996.

E. P. Xing, A. Y. Ng, M. I. Jordan, and S. J. Russell.
Distance Metric Learning with Application to
Clustering with Side-Information. In Neural
Information Processing Systems, pages 505-512, 2002.
M. Yamada and M. Sugiyama. Cross-Domain Object
Matching with Model Selection. arXiv preprint
arXiv:1012.1416, 15:807-815, 2010.

L. Yang. Distance metric learning: A comprehensive
survey, 2006.

