
Finding Distractors In Images

Ohad Fried
Princeton University

ohad@cs.princeton.edu

Eli Shechtman
Adobe Research
elishe@adobe.com

Dan B Goldman
Adobe Research

dgoldman@adobe.com

Adam Finkelstein
Princeton University
af@cs.princeton.edu

Abstract

We propose a new computer vision task we call “distrac-
tor prediction.” Distractors are the regions of an image that
draw attention away from the main subjects and reduce the
overall image quality. Removing distractors — for example,
using in-painting — can improve the composition of an im-
age. In this work we created two datasets of images with
user annotations to identify the characteristics of distrac-
tors. We use these datasets to train an algorithm to predict
distractor maps. Finally, we use our predictor to automati-
cally enhance images.

1. Introduction
Taking pictures is easy, but editing them is not. Profes-

sional photographers expend great care and effort to com-
pose aesthetically-pleasing, high-impact imagery. Image
editing software like Adobe Photoshop empowers photog-
raphers to achieve this impact by manipulating pictures with
tremendous control and flexibility – allowing them to care-
fully post-process good photos and turn them into great
photos. However, for most casual photographers this effort
is neither possible nor warranted. Last year Facebook re-
ported that people were uploading photos at an average rate
of 4,000 images per second. The overwhelming majority of
these pictures are casual – they effectively chronicle a mo-
ment, but without much work on the part of the photogra-
pher. Such cases may benefit from semi- or fully-automatic
enhancement methods.

Features like “Enhance” in Apple’s iPhoto or “Auto
Tone” in Photoshop supply one-click image enhancement,
but they mainly manipulate global properties such as ex-
posure and tone. Likewise, Instagram allows novices to
quickly and easily apply eye-catching filters to their images.
Although they have some more localized effects like edge
darkening, they apply the same recipe to any image. How-
ever, local, image-specific enhancements like removing dis-
tracting areas are not handled well by automatic methods.
There are many examples of such distractors – trash on
the ground, the backs of tourists visiting a monument, a

car driven partially out of frame, etc. Removing distrac-
tors demands a time-consuming editing session in which
the user manually selects the target area and then applies
features like iPhoto’s “Retouch Tool” or Photoshop’s “Con-
tent Aware Fill” to swap that area with pixels copied from
elsewhere in the image.

In this work we take the first steps towards semi-
automatic distractor removal from images. The main chal-
lenge towards achieving this goal is to automatically iden-
tify what types of image regions a person might want to
remove, and to detect such regions in arbitrary images. To
address this challenge we conduct several studies in which
people mark distracting regions in a large collection of im-
ages, and then we use this dataset to train a model based on
image features.

Our main contributions are: (1) defining a new task
called “distractor prediction”, (2) collecting a large-scale
database with annotations of distractors, (3) training a pre-
diction model that can produce distractor maps for arbitrary
images, and (4) using our prediction model to automatically
remove distractors from images.

In the following sections we describe related work (Sec-
tion 2), describe and analyze our datasets (Section 3), ex-
plain our distractor prediction model (Section 4), evaluate
our predictor (Section 5) and present applications of dis-
tractor prediction (Section 6). With this publication we also
make available an annotated dataset containing images with
distractors as well as code for both analyzing the dataset and
computing distractor maps.

2. Related Work
A primary characteristic of distractors is that they attract

our visual attention, so they are likely to be somewhat
correlated with models of visual saliency. Computational
saliency methods can be roughly divided into two groups:
human fixation detection [13, 11, 15] and salient object
detection [7, 6, 22, 20]. Most of these methods used ground-
truth gaze data collected in the first 3-5 seconds of viewing
(a few get up to 10 seconds) [15]. Although we found some
correlation between distractor locations and these early-
viewing gaze fixations, it was not high. Our hypothesis

1



Figure 1. User annotations. Top: 35 user annotations for one
input image. Bottom, from left to right: input image, average
annotation, overlay of thresholded annotation with input image.
We collected 11244 such annotations for 1073 images.

is that humans start looking at distractors after longer
periods of time, and perhaps only look directly at them
when following different viewing instructions. Existing
computational saliency methods are thus insufficient to
define visual distractors, because the main subject in a photo
where people look first usually has a high saliency value.
Moreover, many of these methods (especially in the second
category) include components that attenuate the saliency
response away from the center of the image or from the
highest peaks - exactly in the places we found distractors
to be most prevalent.

Another line of related work focuses on automatic im-
age cropping [29, 21, 34]. While cropping can often remove
some visual distractors, it might also remove important con-
tent. For instance, many methods just try to crop around the
most salient object. Advanced cropping methods [34] also
attempt to optimize the layout of the image, which might
not be desired by the user and is not directly related to de-
tecting distractors. Removing distractors is also related to
the visual aesthetics literature [16, 19, 23, 30] as distrac-
tors can clutter the composition of an image, or disrupt its
lines of symmetry. In particular, aesthetics principles like
simplicity [16] are related to our task. However, the com-
putational methods involved in measuring these properties
don’t directly detect distractors and don’t propose ways to
remove them.

Image and video enhancement methods have been pro-
posed to detect dirt spots, sparkles [17], line scratches [14]
and rain drops [8]. In addition, a plethora of popular
commercial tools have been developed for face retouching:
These typically offer manual tools for removing or attenu-
ating blemishes, birth marks, wrinkles etc. There have been
also a few attempts to automate this process (e.g., [32])

Mechanical Turk Mobile App

Number of images 403 376
Annotations per image 27.8 on average 1
User initiated No Yes
Image source Previous datasets App users

Table 1. Dataset comparison.

that require face-specific techniques. Another interesting
work [28] focused on detecting and de-emphasizing dis-
tracting texture regions that might be more salient than the
main object. All of the above methods are limited to a cer-
tain type of distractor or image content, but in this work we
are interested in a more general-purpose solution.

3. Datasets

We created two datasets with complementary properties.
The first consists of user annotations gathered via Amazon
Mechanical Turk. The second includes real-world use cases
gathered via a dedicated mobile app. The Mechanical Turk
dataset is freely available, including all annotations, but
the second dataset is unavailable to the public due to the
app’s privacy policy. We use it for cross-database validation
of our results (Section 5). Table 1 and the following
subsections describe the two datasets.

3.1. Mechanical Turk Dataset (MTurk)

For this dataset we combined several previous datasets
from the saliency literature [1, 15, 18] for a total of 1073
images. We created a Mechanical Turk task in which users
were shown 10 of these images at random and instructed as
follows:

For each image consider what regions of the image are
disturbing or distracting from the main subject. Please
mark the areas you might point out to a professional
photo editor to remove or tone-down to improve the im-
age. Some images might not have anything distracting
so it is ok to skip them.

The users were given basic draw and erase tools for
image annotation (Figure 2). We collected initial data for
the entire dataset (average of 7 annotations per image) and
used it to select images containing distractors by consensus:
An image passed the consensus test if more than half of
the distractor annotations agree at one or more pixels in
the image. 403 images passed this test and were used
in a second experiment. We collected a total of 11244
annotations, averaging 27.8 annotations per image in the
consensus set (figure 1).



Figure 2. Data collection interfaces. Left: MTurk interface with
basic tools for marking and removal. Right: Mobile app using
inpainting with a variable brush size, zoom level and undo/redos.

3.2. Mobile App Dataset (MApp)

Although the Mechanical Turk dataset is easy to col-
lect, one might argue that it is biased: Because Mechan-
ical Turk workers do not have any particular expectations
about image enhancement and cannot see the outcome of
the intended distractor removal, their annotations may be
inconsistent with those of real users who wish to remove
distractors from images. In order to address this, we also
created a second dataset with such images: We created a
free mobile app (Figure 2) that enables users to mark and
remove unwanted areas in images. The app uses a patch-
based hole filling method [4] to produce a new image with
the marked area removed. The user can choose to discard
the changes, save or share them. Users can opt-in to share
their images for limited research purposes, and over 25% of
users chose to do so.

Using this app, we collected over 5,000 images and over
44,000 fill actions (user strokes that mark areas to remove
from the image). We then picked only images that were
exported, shared or saved by the users to their camera roll
(i.e. not discarded), under the assumption that users only
save or share images with which they are satisfied.

Users had a variety of reasons for using the app. Many
users removed attribution or other text to repurpose images
from others found on the internet. Others were simply
experimenting with the app (e.g. removing large body parts
to comical effect), or clearing large regions of an image
for the purpose of image composites and collages. We
manually coded the dataset to select only those images with
distracting objects removed. Despite their popularity, we
also excluded face and skin retouching examples, as these
require special tools and our work focused on more general
images. After this coding, we used the 376 images with
distractors as our dataset for learning.

3.3. Data Analysis

Our datasets afford an opportunity to learn what are
the common locations for distractors. Figure 3 shows
the average of all collected annotations. It is clear that
distractors tend to appear near the boundaries of the image,

Figure 3. An average of all collected annotations. Distractors tend
to appear near the image boundary.

with some bias towards the left and right edges. We use this
observation later in Section 4.2.

We can also investigate which visual elements are the
most common distractors. We created a taxonomy for the
following objects that appeared repeatedly as distractors in
both datasets: spot (dust or dirt on the lens or scene), high-
light (saturated pixels from light sources or reflections),
face, head (back or side), person (body parts other than
head or face), wire (power or telephone), pole (telephone
or fence), line (straight lines other than wires or poles), can
(soda or beer), car, crane, sign, text (portion, not a com-
plete sign), camera, drawing, reflection (e.g. in images
taken through windows), trash (garbage, typically on the
ground), trashcan, hole (e.g. in the ground or a wall).

Treating each annotated pixel as a score of 1, we thresh-
olded the average annotation value of each image in the
MTurk dataset at the top 5% value, which corresponds to
0.18, and segmented the results using connected compo-
nents (Figure 1). For each connected component we manu-
ally coded one or more tags from the list above. The tag ob-
ject was used for all objects which are not one of the other
categories, whereas unknown was used to indicate regions
that do not correspond to discrete semantic objects. We also
included three optional modifiers for each tag: boundary (a
region touching the image frame), partial (usually an oc-
cluded object) and blurry. Figure 4 shows the histograms
of distractor types and modifiers. Notice that several dis-
tractor types are quite common. This insight leads to a po-
tential strategy for image distractor removal: training task-
specific detectors for the top distractor categories. In this
work we chose several features based on the findings of fig-
ure 4 (e.g. a text detector, a car detector, a person detector,
an object proposal method). An interesting direction for fu-
ture work would be to implement other detectors, such as
electric wires and poles.

All distractor annotations for the MTurk dataset are
freely available for future research as part of our dataset.

4. Distractor Prediction

Given input images and user annotations, we can con-
struct a model for learning distractor maps. We first seg-
ment each image (section 4.1). Next we calculate features



0 50 100 150 200 250 300

camera

can

trashcan

tree

drawing

face

head

crane

hole

line

shadow

trash

sign

text

pole

reflection

car

wire

unknown

spot

highlight

person

object

Distractor Types

Number of distractors
0 200 400 600 800

blurry

partial

boundary

others

Property Types

Number of distractors

Figure 4. Distractor Types. Left: histogram of distractor types
described in Section 3.3. Right: histogram of distractor properties,
indicating whether the distractor is close to the image boundary,
occluded/cropped or blurry.

for each segment (section 4.2). Lastly, we use LASSO [31]
to train a mapping from segment features to a distractor
score — the average number of distractor annotations per
pixel (section 4.3). The various stages of our algorithm are
shown in figure 5.

4.1. Segmentation

Per-pixel features can capture the properties of a single
pixel or some neighborhood around it, but they usually do
not capture region characteristics for large regions. Thus,
we first segment the image and later use that segmentation
to aggregate measurements across regions. For the segmen-
tation we use multi-scale combinatorial grouping (MCG)
[2]. The output of MCG is in the range of [0, 1] and we
use a threshold value of 0.4 to create a hard segmentation.
This threshold maximizes the mean distractor score per seg-
ment over the entire dataset. We found empirically that the
maximum of this objective segments distracting objects ac-
curately in many images.

4.2. Features

Our datasets and annotations give us clues about the
properties of distractors and how to detect them. The
distractors are, by definition, salient, but not all salient
regions are distractors. Thus, previous features used for
saliency prediction are good candidate features for our
predictor (but not sufficient). We also detect features that
distinguish main subjects from salient distractors that might
be less important, such as objects near the image boundary.
Also, we found several types of common objects appeared

Figure 5. Various stages of our algorithm. Top left: original image.
Top right: MCG segmentation. 2nd row: examples of 6 of our
192 features. 3rd row left: our prediction, red (top three), yellow
(high score) to green (low score). 3rd row right: ground truth.
Bottom row: distractor removal results, with threshold values 1, 2,
3, 20 from left to right. The 3 distractors are gradually removed
(3 left images), but when the threshold is too high, artifacts start
appearing (far right).

frequently, and included specific detectors for these objects.
We calculate per-pixel and per-region features. The 60

per-pixel features are:
• (3) Red, green and blue channels.

• (3) Red, green and blue probabilities (as in [15]).

• (5) Color triplet probabilities, for five median filter window
sizes (as in [15]).

• (13) Steerable pyramids [27].

• (5) Detectors: cars [10], people [10], faces [33], text [24],
horizon [25, 15].

• (2) Distance to the image center and to the closest image
boundary.

• (7)∗ Saliency prediction methods [12, 13, 20, 22, 25].

• (2)∗ Object proposals [35]: all objects, top 20 objects. We
sum the scores to create a single map.

• (2) Object proposals [35]: all objects contained in the outer
25% of the image. We create 2 maps: one by summing all
scores and another by picking the maximal value per pixel.

• (9) All features marked with ∗, attenuated by F = 1 −
G/max (G). G is a Gaussian the size of the image with a



standard deviation of 0.7∗
√
d1 ∗ d2 (d1 and d2 are the height

and width of the image) and centered at the image center.

• (9) All features marked with ∗, attenuated by F as defined
above, but with the Gaussian centered at the pixel with the
maximal feature value.

All the per-pixel features are normalized to have zero
mean and unit variance.

To use these per-pixel features as per-segment features,
we aggregate them in various ways: For each image seg-
ment, we calculate the mean, median and max for each of
the 60 pixel features, resulting in 180 pixel-based features
per segment.

Lastly, we add a few segment-specific features: area,
major and minor axis lengths, eccentricity, orientation,
convex area, filled area, Euler number, equivalent diameter,
solidity, extent and perimeter (all as defined by the Matlab
function regionprops). All features are concatenated,
creating a vector with 192 values per image segment.

4.3. Learning

For each image in our dataset we now have a segmen-
tation and a feature vector per segment. We also have user
markings. Given all the markings for a specific image, we
calculate the average marking (over all users and all seg-
ment pixels) for each segment. The calculated mean is the
ground truth distractor score for the segment.

We use Least Absolute Selection and Shrinkage Opera-
tor (LASSO) [31] to learn a mapping between segment fea-
tures and a segment’s distractor score. All results in this
paper are using LASSO with 3-fold cross validation. Using
LASSO allows us to learn the importance of various fea-
tures and perform feature selection (section 4.4).

Besides LASSO, we also tried linear and kernel SVM [9]
and random forests with bootstrap aggregating [5]. Kernel
SVM and random forests failed to produce good results,
possibly due to overfitting on our relatively small dataset.
Linear SVM produced results almost as good as LASSO,
but we chose LASSO for its ability to rank features and
remove unnecessary features. Nonetheless, linear SVM is
much faster and may be a viable alternative when training
time is critical.

4.4. Feature Ranking

Table 2 shows the highest scoring features for each of the
datasets. We collect the feature weights from all leave-one-
out experiments using LASSO. Next we calculate the mean
of the absolute value of weights, providing a measure for
feature importance. The table shows the features with the
largest mean value.

Using our feature ranking we can select a subset of
the features, allowing a trade-off between computation and
accuracy. Using the label Fk to denote the set of k highest
scoring features when trained using all features, Table 4

MTurk MApp

Torralba saliency1† Torralba saliency2†

RGB Green3 Coxel saliency3

Torralba saliency2† RGB Probability (W=0)1

Itti saliency1† RGB Probability (W=2)3

RGB Blue probability3 Text detector1

RGB Probability (W=4)1 RGB Green probability1

RGB Probability (W=2)1 Boundary object proposals1

Object proposals3‡ Hou saliency3‡

RGB Probability (W=16)1 Hou saliency1†

Distance to boundary3 Steerable Pyramids2
1mean 2median 3max

†attenuated with an inverted Gaussian around image center
‡attenuated with an inverted Gaussian around maximal value

Table 2. Feature selection. For each dataset we list the features
with the highest mean feature weight across all experiments.

shows results with only F5 and F10 features. Although
these results are less accurate than the full model, they can
be calculated much faster. (But note that feature sets Fk as
defined above are not necessarily the optimal set to use for
training with k features.)

5. Evaluation

For evaluation, we plot a receiver operating characteris-
tic (ROC) curve (true positive rate vs. false positive rate)
and calculate the area under the curve (AUC) of the plot.
We use a leave-one-out scheme, where all images but one
are used for training and the one is used for testing. We re-
peat the leave-one-out experiment for each of our images,
calculating the mean of all AUC values to produce a score.

Table 3 summarizes our results. A random baseline
achieves a score of 0.5. We achieve an average AUC of 0.81
for the MTurk dataset and 0.84 for the MApp dataset. The
LASSO algorithm allows us to learn which of the features
are important (section 4.4) and we also report results using
subsets of our features (Table 4). As expected, these results
are not as good as the full model, but they are still useful
when dealing with space or time constraints (less features
directly translate to less memory and less computation
time). We also report results for previous saliency methods
as well as a simple adaptation to these methods where we
multiply the saliency maps by an inverted Gaussian (as
described in Sec. 4.2). This comparison is rather unfair
since saliency methods try to predict all salient regions
and not just distractors. However, the low scores for these
methods show that indeed distractor prediction requires a
new model based on new features.



Method MTurk AUC MApp AUC

Random 0.50 0.50
Saliency IV‡ [25] 0.55 0.56
Saliency I [20] 0.57 0.53
Saliency I‡ [20] 0.58 0.59
Saliency II [22] 0.59 0.57
Saliency II‡ [22] 0.59 0.57
Saliency III‡ [12] 0.62 0.59
Saliency III [12] 0.65 0.69
Saliency I† [20] 0.67 0.65
Saliency II† [22] 0.68 0.68
Saliency III† [12] 0.70 0.75
Saliency IV† [25] 0.72 0.72
Saliency IV [25] 0.74 0.76
Our method 0.81 0.84
Average Human 0.89 -

†attenuated with an inverted Gaussian around image center
‡attenuated with an inverted Gaussian around maximal value

Table 3. AUC scores. We compare against saliency prediction
methods as published, and the same methods attenuated with
an inverted Gaussian, as described in Section 4.2. Our method
outperforms all others. As an upper bound we report average
human score, which takes the average annotation as a predictor
(per image, using a leave-one-out scheme). We also compared
against individual features from Table 2 (not shown): all scores
were lower than our method with a mean score of 0.59.

Method Average # MTurk AUC
of used features

Ours (F-5 features) 3.40 0.72
Ours (F-10 features) 7.43 0.80
Ours (all features) 28.06 0.81

Table 4. AUC scores. Results using all 192 features and subsets
F5 and F10 described in Section 4.4. Column 2 is the mean (over
all experiments) of the number of features that were not zeroed out
by the LASSO optimization. F10 produces a score similar to the
full model, while using 5% of the features.

5.1. Inter-Dataset Validation

Using Mechanical Turk has the advantage of allowing
us to get a lot of data quickly, but might be biased away
from real-world scenarios. We wanted to make sure that
our images and annotation procedure indeed match distrac-
tor removal “in the wild”. For that purpose we also cre-
ated dataset collected using our mobile app (MApp dataset),
which contains real world examples of images with distrac-
tors that were actually removed by users. We performed
inter-dataset tests: training on one dataset and testing on the
other, the results are summarized in table 5. We show good

Train Test # of features # of used AUC
Dataset Dataset features

MTurk MApp 192 37 0.86
MApp MTurk 192 25 0.78

Table 5. Inter-dataset AUC scores. We train on one dataset and test
on the other, in order to validate that our MTurk dataset is similar
enough to the real-world use cases in MApp to use for learning.

results for training on MTurk and testing on MApp (0.86)
and vice versa (0.78). The MApp dataset contains a single
annotation per image (vs. 27.8 on average for the MTurk
one). We therefore believe that the value 0.78 can be im-
proved as the MApp dataset grows.

6. Applications
We propose a few different applications of distractor

prediction. The most obvious application is automatic in-
painting (Section 6.1), but the ability to identify distracting
regions of an image can also be applied to down-weight the
importance of regions for image retargeting (Section 6.2).
We also posit that image aesthetics and automatic cropping
can benefit from our method (Section 7).

6.1. Distractor Removal

The goal of distractor removal is to attenuate the distract-
ing qualities of an image, to improve compositional clarity
and focus on the main subject. For example, distracting re-
gions can simply be inpainted with surrounding contents.
To illustrate this application we created a simple interface
with a single slider that allows the user to select a distractor
threshold (figure 6). All segments are sorted according to
their score and the selected threshold determines the num-
ber of segments being inpainted (figure 5). For a full demo
of this system please see our supplementary video. Some
before and after examples are shown in figure 7. We chose
a rank order-based user interface as it is hard to find one
threshold that would work well on all images, however we
found that if distractors exist in an image they will corre-

Figure 6. User interface for distractor removal. The user selects the
amount of distracting segments they wish to remove. We refer the
reader to the accompanying video for a more lively demonstration.



Figure 7. Examples of distractor removal results. Each quadruplet shows (from left to right): (1) Original image. (2) Normalized average
ground-truth annotation. (3) Order of segments as predicted by our algorithm. (4) Distractor removal result. We urge the reader to zoom
in or to look at the full resolution images available as supplementary material. The number of segments to remove was manually selected
for each image. Segments are shown on a green-to-yellow scale, green being a lower score. Segment selected for removal are shown on an
orange-to-red scale, red being a higher score. Notice how the red segments correlate with the ground-truth annotation. Also notice that we
manage to detect a variety of distracting elements (a sign, a person, an abstract distractor in the corner, etc.)



Figure 8. Image retargeting using seam carving [3]. From left
to right: original image, retargeted image using a standard cost
function (gradient magnitude), retargeted image using distractor
cost function described in Section 6.2.

spond to the first few segments with the highest score.

6.2. Image Retargeting

Image retargeting is the task of changing the dimensions
of an image, to be used in a new layout or on a different
device. Many such methods have been developed in the past
years [3, 26]. In addition to the input image and the desired
output size, many of them can take an importance mask,
which may be derived (based on image gradients, saliency
prediction and gaze data) or provided by the user.

We can thus use our distractor prediction model to en-
hance a retargeting technique such as seam-carving [3]. For
this application we view the distractor map as a complement
to a saliency map: Whereas saliency maps give information
regarding areas we would like to keep in the output image, a
distractor map gives information regarding areas we would
like to remove from the output. We thus calculate the gra-
dient magnitudes of the image (G) and our distractor pre-
diction map (D). Next, we invert the map (D′ = 1 − D)
and normalize for zero mean and unit standard deviation
(Ĝ, D̂′). Our final map is Ĝ+ αD̂′. We use α = 1.

Even this simple scheme produces good results in many
cases. In figure 8, notice how the top-right image does not
contain the red distractor and the bottom-right image does
not contain the sign on the grass. (See figure 7 for the full
distractor maps for these images.) However, we believe that
a model which combines saliency and distractor maps will
produce superior results. The creation of such a model is
left for future work.

7. Conclusion and Future Work
We have acquired a dataset of distracting elements in

images, used it to train a learning algorithm to predict such

Figure 9. Two model failures, a segmentation failure, and an in-
painting failure (see Section 7). Top row: original images. Bottom
row: output images.

regions in novel images, and applied our predictor to a novel
system that can in-paint distractors, removing them from an
image with little or no user input.

Although our system shows great promise, there is
plenty of room for improvement. Figure 9 illustrates sev-
eral cases where our approach produces unsatisfactory re-
sults: The first two cases on the left illustrate a failure of our
learned model. We predict the patch on the jeans of the main
subject, and an entire person, even though they are critical
parts of the main subject or the composition. The third ex-
ample shows a segmentation failure, where only part of the
arm at the lower right corner is removed. The last shows a
removal-method failure, in which the sign behind the right
person is correctly detected as distracting, but our patch-
based hole filling method failed to remove it properly and
instead duplicated the person.

Each of these failures suggests directions for future
work. The first two cases suggest our model could be im-
proved by using features related to image composition, a
main subject detector, or relations between different ele-
ments in the image. The segmentation failure suggests fo-
cusing on improving the segmentation using the detected
saliency. And of course, other image manipulations beyond
patch-based hole filling [4] could be used to attenuate dis-
tractors like the last example: Since color saturation and
contrast are key components of distractors, we can also con-
sider removing them via de-saturation, exposure and con-
trast attenuation, blurring and various other methods. Im-
plementing several removal methods and learning a model
to automatically select the best one for a given distractor is
an interesting direction for future work.

There are also additional applications of distractor pre-
diction that we have not fully explored. For example, in ad-
dition to retargeting and inpainting, automatic cropping [34]
could make use of distractor maps. However, since objects
cut off at the edge of frame are often highly distracting, one
would have to take into account the change in prediction
that occurs as a result of the crop itself. One could also
consider the use of distractor prediction as a cue for compu-
tational image aesthetics methods.



References
[1] H. Alers, H. Liu, J. Redi, and I. Heynderickx. Studying the

effect of optimizing the image quality in saliency regions at
the expense of background content. In Proc. SPIE, volume
7529, 2010. 2

[2] P. Arbeláez, J. Pont-Tuset, J. Barron, F. Marques, and J. Ma-
lik. Multiscale combinatorial grouping. In IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2014. 4

[3] S. Avidan and A. Shamir. Seam carving for content-aware
image resizing. In ACM Trans. on Graphics (Proc. SIG-
GRAPH), New York, NY, USA, 2007. ACM. 8

[4] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Gold-
man. PatchMatch: A randomized correspondence algorithm
for structural image editing. ACM Trans. on Graphics (Proc.
SIGGRAPH), (3), Aug. 3, 8

[5] L. Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996. 5

[6] K.-Y. Chang, T.-L. Liu, H.-T. Chen, and S.-H. Lai. Fusing
generic objectness and visual saliency for salient object de-
tection. In International Conf. on Computer Vision (ICCV),
2011. 1

[7] M.-M. Cheng, G.-X. Zhang, N. Mitra, X. Huang, and S.-M.
Hu. Global contrast based salient region detection. In IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
pages 409–416, June 2011. 1

[8] D. Eigen, D. Krishnan, and R. Fergus. Restoring an image
taken through a window covered with dirt or rain. In
International Conf. on Computer Vision (ICCV), pages 633–
640, 2013. 2

[9] R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection
using second order information for training support vector
machines. Journal of Machine Learning Research, 6:1889–
1918, Dec. 2005. 5

[10] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan. Object Detection with Discriminatively Trained Part
Based Models. IEEE Trans. on Pattern Analysis and Ma-
chine Intelligence (PAMI), 32(9):1627–1645, 2010. 4

[11] J. Harel, C. Koch, and P. Perona. Graph-based visual
saliency. In Advances in Neural Information Processing
Systems, pages 545–552. MIT Press, 2007. 1

[12] X. Hou and L. Zhang. Saliency Detection: A Spectral
Residual Approach. In IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), June 2007. 4, 6

[13] L. Itti and C. Koch. A Saliency-Based Search Mechanism for
Overt and Covert Shifts of Visual Attention. Vision Research,
40:1489–1506, 2000. 1, 4

[14] L. Joyeux, O. Buisson, B. Besserer, and S. Boukir. Detection
and removal of line scratches in motion picture films. In
IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 548–553, 1999. 2

[15] T. Judd, K. Ehinger, F. Durand, and A. Torralba. Learning
to predict where humans look. In International Conf. on
Computer Vision (ICCV), 2009. 1, 2, 4

[16] Y. Ke, X. Tang, and F. Jing. The design of high-level features
for photo quality assessment. In IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), volume 1, pages
419–426, 2006. 2

[17] A. C. Kokaram. On missing data treatment for degraded
video and film archives: A survey and a new bayesian
approach. IEEE Trans. on Image Processing, 13(3):397–415,
Mar. 2004. 2

[18] H. Liu and I. Heynderickx. Studying the added value of
visual attention in objective image quality metrics based on
eye movement data. In IEEE International Conf. on Image
Processing (ICIP), Nov. 2009. 2

[19] W. Luo, X. Wang, and X. Tang. Content-based photo quality
assessment. In International Conf. on Computer Vision
(ICCV), Nov 2011. 2

[20] R. Mairon and O. Ben-Shahar. A closer look at context:
From coxels to the contextual emergence of object saliency.
In European Conf. on Computer Vision (ECCV). 2014. 1, 4,
6

[21] L. Marchesotti, C. Cifarelli, and G. Csurka. A framework
for visual saliency detection with applications to image
thumbnailing. In International Conf. on Computer Vision
(ICCV), pages 2232–2239, 2009. 2

[22] R. Margolin, A. Tal, and L. Zelnik-Manor. What Makes a
Patch Distinct? IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 1139–1146, June 2013. 1, 4, 6

[23] N. Murray, L. Marchesotti, and F. Perronnin. Ava: A large-
scale database for aesthetic visual analysis. In IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2012.
(In press). 2

[24] L. Neumann and J. Matas. Real-time scene text localization
and recognition. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2012. 4

[25] A. Oliva and A. Torralba. Modeling the shape of the scene: A
holistic representation of the spatial envelope. International
journal of computer vision, 42(3):145–175, 2001. 4, 6

[26] M. Rubinstein, D. Gutierrez, O. Sorkine, and A. Shamir. A
comparative study of image retargeting. ACM Transactions
on Graphics, 29(6):160:1–160:10, Dec. 2010. 8

[27] E. Simoncelli and W. Freeman. The Steerable Pyramid: A
Flexible Architecture For Multi-Scale Derivative Computa-
tion. IEEE International Conf. on Image Processing (ICIP),
1995. 4

[28] S. L. Su, F. Durand, and M. Agrawala. De-emphasis of
distracting image regions using texture power maps. In
Applied Perception in Graphics & Visualization, pages 164–
164, New York, NY, USA, 2005. ACM. 2

[29] B. Suh, H. Ling, B. B. Bederson, and D. W. Jacobs. Au-
tomatic thumbnail cropping and its effectiveness. In Pro-
ceedings of the 16th Annual ACM Symposium on User In-
terface Software and Technology, UIST ’03, pages 95–104,
New York, NY, USA, 2003. ACM. 2

[30] X. Tang, W. Luo, and X. Wang. Content-Based Photo
Quality Assessment. IEEE Transactions on Multimedia
(TMM), 2013. 2

[31] R. Tibshirani. Regression Shrinkage and Selection Via the
Lasso. Journal of the Royal Statistical Society, Series B,
58:267–288, 1994. 4, 5

[32] W.-S. Tong, C.-K. Tang, M. S. Brown, and Y.-Q. Xu.
Example-based cosmetic transfer. Computer Graphics and
Applications, Pacific Conference on, 0:211–218, 2007. 2



[33] P. Viola and M. Jones. Robust Real-time Object Detection.
In International Journal of Computer Vision (IJCV), 2001. 4

[34] J. Yan, S. Lin, S. Bing Kang, and X. Tang. Learning
the change for automatic image cropping. In IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), June
2013. 2, 8

[35] C. L. Zitnick and P. Dollár. Edge Boxes: Locating Object
Proposals from Edges. In European Conf. on Computer
Vision (ECCV), 2014. 4


