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ABSTRACT

State-of-the art voice conversion methods re-synthesize voice from
spectral representations such as MFCCs and STRAIGHT, thereby
introducing muffled artifacts. We propose a method that circumvents
this concern using concatenative synthesis coupled with exemplar-
based unit selection. Given parallel speech from source and target
speakers as well as a new query from the source, our method
stitches together pieces of the target voice. It optimizes for three
goals: matching the query, using long consecutive segments, and
smooth transitions between the segments. To achieve these goals,
we perform unit selection at the frame level and introduce triphone-
based preselection that greatly reduces computation and enforces
selection of long, contiguous pieces. Our experiments show that
the proposed method has better quality than baseline methods, while
preserving high individuality.

Index Terms— Voice conversion, unit selection, concatenative
synthesis, exemplar-based

1. INTRODUCTION

The goal of voice conversion (VC) is to modify an audio recording
containing the voice of one speaker (the source) so that the identity
sounds like that of another speaker (the targer) without altering the
speech content. Approaches to VC typically rely on a training set of
parallel utterances spoken by both the source and target. State of the
art parametric methods [1, 2] then explicitly model a conversion
function mapping from the source to the target in some feature space
such as MFCC [3] or STRAIGHT [4]. A new source utterance (the
query) may be transformed into the feature space and then mapped
through the conversion function to match the target. The output of
such parametric methods must be re-synthesized from these features,
and artifacts are inevitable since these feature spaces do not perfectly
model human voice. Thus, the converted speech usually has a
muffled effect [5] as a result of re-synthesis.

Voice conversion can be used in many applications such as
generating speech synthesis voices with small samples [6] and
bandwidth expansion [7]. In order to avoid artifacts due to re-
synthesis, an alternative to the parametric approach relies on unit
selection. The basic idea is to choose segments of the target
speaker’s training samples whose corresponding source samples
sound like the query, while also seeking smooth transitions between
neighboring segments. Modern text-to-speech synthesis systems [8]
demonstrate that unit selection can generate high quality speech with
high individuality, which is crucial for VC. These systems require
very large training sets (many hours up to days) as well as substantial
human annotation. Yet, in typical VC applications, we have a limited
training set (such as one hour) and usually no manual effort.
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Researchers have investigated several approaches for overcom-
ing these limitations in the context of unit selection. For example,
the method of Fujii et. al. [9] and Sndermann et. al. [10] relies
on automatic speech recognition to generate phoneme level annota-
tions for units. As noted by the former, segmentation errors among
the phonemes yield significant artifacts. Another line of research re-
duces the need for very large datasets by performing frame-level unit
selection (thereby increasing the number of units) [11].

Wau et al. further improve frame-level unit selection using ex-
emplars [12], defined as time-frequency speech segments that span
multiple consecutive frames [13]. We find that this method greatly
reduces distortion from frame-based unit selection, but there remains
a significant quality gap between this approach and phoneme-level
unit selection where substantial user annotation is involved.

We introduce a hybrid method called CUTE that leverages four
major components described in various contexts in the literature:

o Concatenative synthesis
o Unit selection
o Triphone pre-selection

Exemplar-based features

This combination offers a significant improvement over previous ap-
proaches such as phoneme-based and exemplar-based unit selection.
The basic idea of our method is to concatenate segments from the
target speaker’s voice so that they match the query and form long
consecutive segments, with smooth transitions between them. To
have sufficient units and flexibility in choosing the segments, we de-
fine unit selection at the frame level. To enforce smooth transition,
we compute features using exemplars, concatenated spectral repre-
sentations of multiple consecutive frames. To better match the query
prosody, we exchange the F'0 contour of source and target voices
so that the query F0O is transformed and matched to the target F'0
directly. Finally, we introduce a triphone preselection method to
sift the candidate list before unit selection, ensuring large consec-
utive segments to be preserved in the candidate list. To evaluate
our method, we performed two listening tests with human subjects:
an XAB preference test and an ABX individuality test. The results
show that our method offers significantly higher quality than two
other unit selection based methods, and that high individuality is
maintained. The contributions in this paper are:
e Adapting exemplar-based unit selection framework for con-
catenative synthesis.
e Using phonetic information to improve exemplar-based unit
selection for voice conversion.
e Experiments showing that the proposed method has better
quality than baseline methods, while preserving high individ-
uality.



2. EXEMPLAR-BASED UNIT SELECTION FOR
CONCATENATE SYNTHESIS

2.1. Pairing

Given the source speaker’s frame sequence X = {z1,z2,...,ZN}
in the time domain and the target speaker’s frame sequence ¥ =
{y1, 92, ..., ym }, we first perform dynamic time warping (DTW) to
align the source voice to the target in order to obtain frame-wise
pairings A = {(Inl » Yma )7 ($"2 » Ymo )7 te (1’,”}( » Ympe )} where for
n,m = 1,2,..,k, nr € [1.N] and my € [1..M]. We then
construct a mapping function r(j) = Y; where Y; = {ylnr =
J, (@n,,y) € A}. This is the mapping we use to translate pairings
to actual frames.

2.2. Exemplar feature extraction

Having multiple parallel frames, we define an exemplar frame as
two parallel sequences of source and target frames with the central
frame aligned. With a central frame (zn, , Ym, ), an exemplar frame
is defined as:

Tn k—t
Ymy —t
We define our exemplar as a concatenation of the weighted features

of the member frames. Suppose a parallel frame (zn, , ym, ) has
feature vector fy, m, ,then an exemplar is:
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The weights w_;.; are used to attenuate the influence of non-central
frames, emphasizing the central frame. A triangule-shaped window
function may be used for weights:

wi = ((t—|i| + 1)/(t + 1))” 3)

Here 8 > 0 is used to control the amount of attenuation - the higher
the value, the less emphasis on the non-central frames. An exemplar
has better temporal resolution than a large frame, which allows us
to model transition between phonemes. Using exemplars in unit
selection also improves smoothness because similar exemplars share
similar contexts; when concatenating these frames using overlap-
add, the overlapping region is likely to produce less artifacts.

In this work, we define the weight function as a triangular
function (8 = 1) and we use two sets of exemplars: (1) matching
exemplars includes the MFCCs of the source frames concatenated
with the target frames’ FO (in log space), denoted as { A1, ..., Ax };
we use these exemplars to match the spectral envelope and prosody
of the query. (2) concatenation exemplars are formed by the MFCCs
and the FO of the target frames, denoted as { B4, ..., Bk }. These
exemplars are used to enforce transition smoothness between the
selected frames.

2.3. Pre-selection of candidates

The next several steps involve finding the exemplars that match the
query. The first step is to construct exemplars from {q1, .., gs} and
calculate the exemplar features {Q1,...,Qs} using the matching
feature descriptors we defined in section 2.2. Because the source
FOs are in a different range of the target F'0s, we adapted logarithm
Gaussian normalized transformation [3] to convert query F'0 contour
to the target’s:

(log DPser — ,Ufscr) (4)
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logpconv = Mgt + et
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where jug and ai,[ are the mean and variance of the target voice’s
log FOs; fisr and o2, are the mean and variance of the source voice’s
log FOs. psr and peonv are the query and the converted FOs.

Then, for each query exemplar, we want to select one exemplar
from the dataset that resembles the query and makes a smooth
transition to the next exemplar. The Viterbi algorithm can be used
for this purpose. However, it does not scale well with the number
of states (exemplars) [14]. We pre-select the candidates per query
exemplar in order to reduce run-time computation. One way to do
this is to compute K nearest neighbors and choose the candidates
that are closest to queries [12]. In this work, we found that pre-
selecting exemplars that share the same phoneme as the query
exemplar generates better result. We will present our approach in
Section 3. Denote the candidates (indices of exemplars) for Q) as
{¢k1, k2, .-, Cku,, } Where uy, is the number of candidates for the
k-th query exemplar.

2.4. Optimization

The objective of matching is to select one candidate source frame
per query so that the corresponding target frames when concatenated
together speak the same word as the query and at the same time
sound natural without artifacts, noise or unnatural prosody. To
translate that into an optimization scheme, we want to minimize
the target cost T (gs, Acw.) between the query ¢s and a candidate
exemplar with index c;,; and concatenation cost Cs(Be,_, ;, Be, ;)
between neighboring candidates with subscripts cs—1,; and cs ;:

min T(Q1, Ac, 4,)
s

dy,...,d
s 5)
D T(Qs, Ac, ) +Ca(Beoyay , Be.ay)

s=2

Note that different exemplar features are used for the matching and
the concatenation costs. One difference between this scheme and
previous unit selection method is that concatenation cost function
varies over s. In other words, some statistics about the query gs is
used in calculating the cost function. Here are the equations we use
to calculate costs

T(@Q,A)=Q — Al2 (6)
Cs(Bi, Bj) = d(Bs, B;)P (i, ) R(E(gs)) @)

In equation 7, d(B;, B;) is defined as the Euclidean distance be-
tween the first 2¢ frames in exemplar B; and the second last 2¢
frames from exemplar B;, modeling the smoothness at the overlap-
ping region between frames. The second term is defined as break
costs, which prefers candidates that are originally neighbors; it also
allows skips and repeats, adding more flexibility in the query length.

0, j—i=1
. Co, j—i=2
P@ﬁ—{w’;i_o ®)
cp, else

¢s, ¢ and ¢y, are skip, repeat and break penalty multipliers. Through
experiment, we found 10, 2, 2 are reasonable choices for cp, ¢, and
¢s. The last term R(E(qs)) is penalty reduction considering the
significance of the query. E(qgs) extracts the features for significance
and in our experiment we define it as energy times periodicity
extracted using YIN [15] algorithm. It means we prefer breaks
at silences and noisy parts such as background noise or unvoiced
consonants. Mapping R normalizes the value to be in [0,1].



2.5. Translation and Concatenation

The last step is to convert exemplars to actual frames. Suppose we
have selected candidates with indices {ci, ..., ¢s }, we first remove
the repeats and skips and then translate them into target frames
using the function r(j) = Yj defined in section 2.1. Then we
concatenate elements in sequences (Ye,,Ye,, ..., Yc,) to obtain a
series of frames. We obtain the final result using overlap-add [8].

3. TRIPHONE PRESELECTION

We have observed two limitations in the above mentioned method:
first, when the query contains unfamiliar prosody (strong emphasis,
high or low F0s), the query exemplars might lack true nearest
neighbors in the dataset and therefore are likely to be matched
to target exemplars with incompatible phonemes. Secondly, if a
different utterance of the same query word exists in the dataset, the
above mentioned method fails to extract the whole word most of the
time. We think these problems have to do with the fact that spectral
envelope is not completely independent of prosody, especially at
extreme F'0Os and emphasis. As a result, different utterances of the
same word might have high gross spectral distances with each other,
making several frames of the word not appearing in the K nearest
neighbors. To encourage concatenating long segments and reduce
the negative effects of extreme prosody, we propose using phonetic
information to preselect the candidates.

3.1. Pre-selection using phonemes

To obtain phoneme segmentation, we first translate the transcripts
into phoneme sequences and then apply forced alignment to align
phonemes to the target speaker’s voice [16]. For each pair of source
and target frames, we annotate it with a phoneme label, such as “AH”
or “P”. Then for each exemplar, we label it with its central frame’s
phoneme. In the pre-selection step, for each query exemplar, we
include only the candidates that share the same phoneme.

Using phoneme pre-selection, we guarantee that if other utter-
ances of the same query word exist in the dataset, their frames are
included in the candidate lists. With a proper break cost, we can
extract a full word from the target speech to match the query. This
overcomes the issue faced by KNN pre-selection. Unit selection
at the frame level with phoneme pre-selection also outperforms
phoneme-level unit selection because it allows breaks in the middle
of a phoneme, making it possible to form longer or shorter phones.
This approach is also robust to phoneme segmentation errors since
an incorrectly segmented frame is often dissimilar from the query
and thus excluded in the optimization step. The drawback of this
method however is that the candidate table gets very large for fre-
quent phonemes such as vowels; because the complexity of Viterbi
algorithm scales with the squared size of candidates, this method
seems impractical for large datasets. Even if we select the K nearest
candidates after phoneme preselection, there is still chance of omit-
ting frames that potentially make up long sequences. Our solution
to this drawback is to use Triphones to pre-select the candidates.

3.2. Decision graph for triphone pre-selection

A triphone is a three-phoneme sequence, composed of a center
phoneme and its two immediate neighbors. In tasks such as speech
recognition and text-to-speech synthesis, triphones are superior to
phonemes as they capture contextual information [17]. To preselect
exemplar candidates, we propose labeling frames with triphones
instead of individual phones. Although the triphone vocabulary is

large, the number of instances per triphone is small. Therefore,
we adopt a simple scheme to deal with triphones nonexistent in
the dataset: first, we look for candidates with exact triphones; if
we cannot find enough candidates (e.g. less than 10), we look
for candidates with similar diphones; and if we again fail to find
sufficient candidates, we apply monophone-based preselection and
only include frames that are closest to the query. One may also adopt
decision trees used in speech recognition [18] to inform triphone
selection procedure.

This preselection scheme has several merits: (1) The frames in
the target dataset having exactly the same phoneme sequence with
the query will be present in the candidate table. (2) Moreover, we
can get away with only a few candidates per query frame - following
the decision table, if we find a correct triphone instance, we include
all candidate frames in that triphone; if not we look for diphones and
include all of them if they exist. If no matching diphone is found, we
can include only a small number of frames that has correct phoneme
because there will be a break at this point anyway. In this way, the
number of candidates can be kept small resulting in faster Viterbi
computation. (3) Using the decision graph, the synthesis quality
improves with increasing amounts of data: the larger the dataset,
the more likely we have triphones in the candidate list.

4. EVALUATION AND DISCUSSION

This section describes subjective and objective evaluations of our
method, in comparison with two other baseline methods in the
literature. We use CMU arctic corpus for these experiments [19].
We examined four conversion schemes based on four voices: DBL-
male to RMS-male (m2m), DBL-male to SLT-female (m2f), SLT-
female to RMS-male (f2m), and SLT-female to CLB-female (f2f).
The training data is composed of 800 utterances, while 20 utterances
are used for evaluation. Transcripts are aligned to utterances via
forced alignment implemented in p2fa-vislab'. No manual
segmentation or adjustment is performed in these experiments, so
segmentation errors are prevalent.

We obtain frames using a 25ms analysis window and a 12.5ms
hop size. To extract exemplar features, we use 24-coefficient
MEFCCs, excluding the Oth energy coefficient, and the YIN algorithm
[15] for FO detection. We compare our method (CUTE) with two
other unit selection voice conversion methods:

1. Phoneme-level unit selection (PUS) [9]: We used the same
phoneme segmentation to extract the units. Unlike the exper-
iments in the original paper, we did not perform manual ad-
justment to phoneme segmentation. This is a baseline used to
show that using frame-level concatenation and phonetic pre-
selection can overcome segmentation problems.

2. Exemplar-based unit selection (EUS) [12]: This method is
similar to our method without triphone-based preselection
and penalty reduction terms in the Viterbi algorithms. In
our experiments, we notice that noisy discontinuities are
substantially reduced via triphone-based preselection.

4.1. Subjective Evaluation

To compare the quality of the proposed method to the two baseline
methods, we conducted a subjective evaluation using an XAB test,
as follows. We shuffle the order of the 20 utterances, of which
16 are used to compare methods, and the remaining four are used
as a validation described below. For each utterance, we randomly

Uhttps://github.com/ucbvislab/p2fa-vislab



select one out of four voice conversion settings (m2m, m2f, {2m,
and f2f) and one of the two baseline methods. The subject is shown
three tracks: the reference track (X) followed by two other tracks
(A&B) — CUTE track and the baseline method, in random order. A
subject is asked to choose which sample (A or B) sounds more like
the reference track X. In the four validation tests, the A&B tracks
(in random order) are our method and a duplicate of the reference
track X, which should easily be selected as the preferred track. We
assume that when a subject fails any validation tests they are not
paying careful attention, and we omit the data for all 20 utterances
from that experiment.

We recruited subjects on the Amazon Mechanical Turk (MTurk),
a crowdsourcing platform that has become a common tool for
perceptual and other human subjects experiments [20]. In each task
(called a HIT) the subject provided the 20 XAB answers described
above. Of 100 HITs we retain 95 valid results with 1520 (95 x 16)
individual responses. As seen in Figure 1, our method (CUTE)
is almost always preferred when comparing to phoneme-level unit
selection (PUS), with p-values &~ 0 in all four cases. The lower
quality of PUS is possibly due to segmentation errors and insufficient
units. CUTE is also strongly preferred over the exemplar-based
unit selection method (EUS) for same-gender voice conversion. For
cross-gender tests, the margin is smaller, but significant.

In order to corroborate these outcomes obtained on MTurk, we
also ran a duplicate experiment with only a dozen subjects recruited
in the research lab at Adobe. Of these, only 9 passed the validation
test, insufficient data to break out the four separate gender settings.
Nevertheless, the aggregate results (labeled ‘lab’ in the figure) were
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Fig. 1: XAB test results. Our method (CUTE) has better quality
than two baseline methods (PUS and EUS — similar to those found
in the literature). Label ‘all’ refers to aggregating the four preceding
gender settings, while ‘lab’ refers to a smaller experiment performed
in the lab. Note that p-values ~ 0 in all cases except for EUS-m2f,
EUS-f2m, and EUS-lab with p-values < 10™%.
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Fig. 2: ABX individuality test results. The performance of subjects
is compared between identifying voices for real samples and syn-
thetic samples generated using the proposed method.

similar to the aggregate from MTurk (labeled ‘all’).

We hypothesize two reasons for the significant improvement in
CUTE: first, CUTE overcomes phoneme segmentation errors by se-
lecting new concatenation points: if the query has two phonemes and
in the candidate table there is no consecutive paths between them,
CUTE finds the best concatenation points within both phonemes that
produces the least cost. The new cut points are not necessarily at
the recognized boundaries that may deviate from the true bound-
ary. Secondly, with triphone preselection, we can reduce noise of
concatenating small segments by enforcing less breaks with a large
break penalty. Triphone preselection ensures that these larger seg-
ments are phonetically consistent with the source. Note that having
a large break penalty is not effective in pure frame-level unit selec-
tion as it over-smooths the distance and thus may select chunks that
are not phonetically consistent.

We also conducted 100 ABX tests on MTurk, in order to test
if our method preserves individuality claimed in the phoneme-level
unit selection method [9]. In these tests, a subject is presented
with Person A’s and Person B’s voice samples (same gender) and
then an unknown sample X. The task is to choose which voice (A
or B) is that of the sample X. In these tests, X can be either an
actual voice sample from A or B, or generated using our proposed
method (CUTE). As shown in Figure 2, the subjects have similar
performance on generated samples and on real samples, meaning
individuality is well preserved in CUTE.

The audio clips and results of the experiments described in this
section may be found at http://voxogram.com/CUTE/.

4.2. Objective Evaluation

As an objective evaluation, we computed Mel-cepstral distortion
(MCD) [21] to measure the distortion between the target voice sam-
ple and the converted samples. The results contradict the subjective
evaluation results — MCDs of samples generated by our method are
about 1dB higher than those generated by EUS even though the
synthesized samples have better perceptual quality verified in the
subjective listening tests. We hypothesize two explanations: (1) we
use query FOs to control the output and therefore the prosody may
vary from the target sample; as noted before, the spectral envelope
may vary with prosody — a natural sounding sample can have high
distance to other versions of it. (2) MCD is an over-smoothed mea-
sure of the spectral envelope, artifacts and noises are evened out.
We found that having a low break cost would result in much lower
MCD, but because of many breaks, the output sounds noisy.

5. CONCLUSION

We have proposed a concatenative voice conversion method based
on exemplars and phonetic pre-selection of units. We defined two
types of exemplars, target exemplar and concatenation exemplar, to
allow controlling the prosody with source examples and enforce con-
catenation smoothness in the target samples. Using phoneme infor-
mation to pre-select the phonemes, we ensure the longest possible
phonetically correct segments to be used in concatenative synthesis.
Experiments demonstrate that our CUTE method has better quality
than previous exemplar-based voice conversion methods and high in-
dividuality comparable to real samples. One limitation is that it still
suffers from the lack-of-data problem faced by phoneme-based unit
selection — sometimes the result is phonetically correct but unsatis-
factory in prosody due to the lack of samples with appropriate FOs. It
also relies on speech recognition for phoneme segmentation. Future
work includes refining pre-selection to balance phonetic correctness
and prosodic continuity.
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