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Abstract

A long-standing challenge in geometric modeling is pro-
viding a natural, intuitive interface for making local defor-
mations to 3D surfaces. Previous approaches have provided
either interactive manipulation or physical simulation to
control surface deformations. In this paper, we investigate
combining these two approaches with a painting interface
that gives the user direct, local control over a physical sim-
ulation. The “paint” a user applies to the model defines its
instantaneous surface velocity. By interactively simulating
this velocity, the user can effect surface deformations. We
have found that this painting metaphor gives the user direct,
local control over surface deformations for several appli-
cations: creating new models, removing noise from existing
models, and adding geometric texture to an existing surface
at multiple scales.

1 Introduction

Creating intuitive geometric modeling interfaces is a fun-
damental problem in computer graphics. The need to ma-
nipulate complex geometric models arises in a variety of ar-
eas from making movies and video games to designing cars
and buildings. The ultimate goal of any interface is to em-
power 3D modelers with direct control of a model’s shape,
freeing them from understanding the underlying machin-
ery. However, it is inherently difficult to manipulate 3D ob-
jects with typical 2D devices such as a mouse and computer
screen. This, in part, follows from the difficulty of specify-
ing locations and directions of motion inℜ 3 from cursor ac-
tivity restricted to the 2D image plane. Another difficulty is
allowing a user to specify complex, large-scale changes to a
model’s surface that might require the creation/positioning
of thousands of vertices. Moreover, many interfaces lack a
physically intuitive connection between editing the shape of
the object and the human modeler’s activity.

In this paper, we describe a novel modeling interface that
gives the user direct, local control over a model’s surface.
The key idea is a metaphor that allows the user to “paint”
directly onto the model as a way of expressing surface de-

formations. These deformations are achieved by assigning
an instantaneous velocity to the model’s surface as a func-
tion of its paint and then interactively simulating the implied
surface motion over a user-controlled time interval.

Figure 1(c) shows a model created using our painting in-
terface. The surface of this blueberry muffin is quite com-
plex and it’s not clear how one would use existing model-
ing tools to create both its overall shape and the detailed
cracking along its top. However, the muffin is the result of
a physical process: as it cooked, the surface of hot dough
expanded outward from the top of a cylindrical solid. In
this context, the muffin’s overall shape could be captured
by simulating this cooking process in terms of surface ve-
locity. This is the approach we take in our modeling in-
terface. We begin with a simple base model and paint its
surface in order to produce the desired change to its shape
(Figure 1(a)). After interactively simulating this motion and
obtaining the muffin’s overall shape, we add more paint that
will create ridges along the base of the muffin, form bulges
for the blueberries, give the surface the texture of cooked
bread, and produce an irregular crack along the muffin’s top
(Figure 1(b)). We alternate between painting and interac-
tively simulating until we arrive at the model shown in Fig-
ure 1(c).

The main advantage of our approach is in exposing the
inherently intuitive nature of physical simulation as a mod-
eling tool through a direct painting interface. We accom-
plish this by establishing a metaphor that allows the user to
“paint” the surface’s instantaneous velocity which is then
simulated to gain the desired change to the model’s shape.
By applying this type of paint using traditional 2D brushes
to a model’s 3D surface, the user can quickly and easily ex-
press complex surface deformations.

Our contributions are establishing this painting inter-
face and developing a prototype system based on dynamic
polygonal meshes and the level set model. The rest of this
paper focuses on the definition of paint and the associated
user interface before presenting our results.



(a) Painted Base Model (b) Painted Intermediate Model (c) Result

Figure 1. Many natural objects, like this blueberry muffin, are easy to model with interactive physical simulation.
(a) In our system the user paints a base model in order to control the instantaneous velocity of its surface where
red/green paint correspond to positive/negative speed (with respect to the surface normal). (b) Next, the user
interactively simulates this surface velocity until the overall shape of the muffin is achieved. Then, the user
adds more paint to this intermediate model to further deform its surface. (c) After several iterations of painting
and simulating, we produce the final model.

2 Related Work

We envision our painting interface as being one tool
within a comprehensive modeling package. Clearly, there
are advantages to modeling with other techniques that our
approach cannot match. However, we find our system
useful for quickly and accurately adding detail at various
scales, locally smoothing noisy models, and for creating
certain stylized scenes.

Some of today’s most powerful modeling interfaces di-
rectly expose a mesh of vertices to the user. This mesh acts
as either a representation of the surface itself or as con-
trol points for a NURBS surface [30] or subdivision sur-
face [41]. Through direct manipulation of these vertices, a
user can create smooth, analytical shapes. Adaptive editing
techniques have also been investigated [12, 42]. Alterna-
tively, moving control points can allow the user to deform
the surface by deforming the space around it [31, 9, 23].
For all their advantages, however, this class of modeling
interfaces has the drawback of burdening the user with the
task of positioning control points, adjusting weights, and in-
serting knot vectors. Moving individual control points can
sometimes result in unexpected changes to the surface re-
sulting in the user having to position many control points
to effect detailed changes to a model. Moreover, direct ma-
nipulation of free-form deformations [17] requires solving a
minimization problem, making this technique too expensive
for interactive editing of large models. Our system gives the
user direct control over a physical simulation thus offering
a simpler interface for expressing surface deformations. By
providing adaptive refinement of the underlying mesh, our
system elegantly handles deformations at any level of detail
while still permitting large-scale surface changes.

Virtual sculpting interfaces are available in many model-
ing systems [25, 39, 29, 15, 5, 13, 40, 14]. Although sculpt-
ing offers an intuitive modeling tool for anyone accustomed
to forming real objects from clay or wax, they require the
precise positioning of 3D virtual tools to deform the model’s
surface. Consequently, making detailed changes to a model
can be error-prone and time-consuming. Moreover, con-
trolling the direction and magnitude of the deformation can
often prove difficult. It is our belief that directly painting
the 3D surface to define its temporal behavior before in-
teractively simulating its motion offers a more controllable,
powerful way of expressing surface deformations than ap-
plying external forces.

A third class of modeling interfaces involves physically
based deformable models [36]. Generally speaking, these
are surfaces that minimize an energy functional derived
from a physical description of the model’s properties (e.g.
elasticity, plasticity, etc.). Much like virtual sculpting in-
terfaces, interactive editing of deformable models generally
involves positioning a virtual tool near the model’s surface
that applies external forces, which disrupt the energy func-
tional in a controllable way [35, 37, 34, 7, 32]. As with
virtual sculpting, these modeling interfaces also suffer from
their difficulty at editing large, complex models at various
levels of detail with 3D virtual tools. Also, the complex-
ity of the dynamics can sometimes make the computations
too expensive for interactive manipulation. Alternatively,
using purely geometric approaches to deform models has
been investigated [4, 6, 19, 32]. Although these techniques
offer direct manipulation of the model’s surface, they too
lack powerful control over fine detailed alterations and fail
to easily support various levels of resolution.

Our approach also relates to other work that investigates



physically simulating surface velocity as a modeling tech-
nique. One such approach, [26], provides a set of surface
velocities for smoothing, embossing, and globally diffus-
ing a level set model [28]. However, the user is asked to
construct a surface speed function inℜ 3 and can control
the part of the surface to be deformed only by providing a
super-ellipsoid region of influence. Although we agree that
simulating surface speed is a natural way to affect shape
changes, this interface lacks a physically intuitive connec-
tion between the speed function and the surface to be de-
formed. We address this problem by specifying the velocity
function directly on the surface.

Using simulation as a modeling tool was also examined
in [10] where they describe a system for procedurally au-
thoring solid models. They, in fact, describe “painting” onto
a surface as a means of directly modulating surface velocity,
a source of inspiration for this work. They also explain how
to generate turbulent surface layers by procedurally mod-
ulating the velocity of the current surface. However, their
system does not develop the idea of exposing this painting
metaphor as the user’s primary modeling tool nor does it
address issues of interactivity.

There has been previous work in using 2D painting
metaphors to manipulate 3D models. ThePointshop 3D
system [43] allows interactive editing of a point-based rep-
resentation. The user can specify normal displacements us-
ing either a paint brush to modulate the offset distance or
with virtual chisel tools. The work of [27] uses a painting
metaphor to create and manipulate a layered depth image.
GenerlizingAdobe Photoshop’s[2] approach to 2D image
editing, their system supports editing at different layers of
the scene either directly or with aclone brushingtool. Fur-
thermore, [38] explores the potential of describing the sur-
face of a height-field by directly specifying a 2D shaded im-
age from a known viewpoint. After constructing the shaded
image for known lighting conditions using traditional 2D
image editing techniques, the surface can be extracted us-
ing a shape from shading vision approach. These techniques
differ from our approach in that they do not use a painting
interface to control a physical simulation. As a result, their
changes are largely restricted to a small class of geometric
deformations comprised mainly of normal offsets.

Lastly, we note the similarities between our interface and
the use of displacement maps [8]. Several commercially
available packages [3, 33] even allow the user to directly
“paint” displacement maps onto the surface of an object.
Much like these techniques, our painting interface can be
used to add detail to an existing model. One difference,
however, is that we adaptively refine the underlying surface
mesh to guarantee the resulting geometry will match that in-
tended by the user. With displacement maps, this procedure
must be done manually. Also, our modeling interface al-
lows arbitrary deformations to a model’s surface that super-
sede normal offsets of the vertices and certain operations,
such as surface smoothing, are more naturally expressed in
terms of surface velocity.

3 Basic Approach

Our approach gives the user direct interactive control
over surface deformations. We control the instantaneous ve-
locity of the surface and, consequently, the resulting change
in its shape, using a metaphor that allows the user to paint
the surface in order to define its motion. The user then in-
teractively simulates this surface motion until the desired
change is met.

In our system, the modeling process consists of repeating
the following steps:

� Beginning with a base model (Figure 2(a)), select the
paint and brush that will give the desired deformation
(Figure 2(b)).

� Apply the paint to the model using the selected brush
and a direct painting interface (Figure 2(c)).

� Simulate the motion of the surface until the desired ef-
fect is realized (Figure 2(d)).

The advantages of this approach are five-fold. First, sur-
face velocity is naturally a good way for humans to “think”
about surface deformations, as changing the shape of a
model easily relates to moving its surface at different rela-
tive speeds. Second, our system provides local control over
surface deformations: only the painted area of the surface
moves. Third, our interface allows the user to define sur-
face deformations as a 2D function on an existing surface,
which is easier to understand and to use than ones requir-
ing the user to move points through 3D space. Fourth, our
system displays the simulated motion of the surface at in-
teractive rates, which allows the user to “see” what is tak-
ing place to the model’s shape and stop when the desired
change is met. Finally, many useful modeling operations
have natural specifications in the context of surface veloc-
ity. For example, smoothing/sharpening a model’s surface
is easily framed in terms of curvature-dependent surface ve-
locity, whereas accomplishing this same effect by manipu-
lating control points would be far more difficult.

4 Research Challenges

In realizing an implementation of a system based on this
painting metaphor, several challenges must be met:

� Defining Paint: The first challenge is defining the
relationship between paint and surface velocity. We
would like it to supportanydeformation of a surface
while making the more useful deformations the easiest
to express.

� Applying Paint: We wish to maximize the ease the
user experiences in applying paint. This implies creat-
ing an interface that supports very generic distributions
of paint over the surface.



(a) Original Model (b) Paint (c) Painted Model (d) Result After Simulation

Figure 2. (a) In our system the user begins with a base model. In this example, it is the extended trunk of a
stylized tree for a cemetery scene. (b) Next, the user selects the paint that will give the surface a desired type of
deformation and a brush to modulate its intensity. Here the user has selected a paint-brush pair whose resulting
motion will form a spiky protrusion. The paint creates positive speed of the surface (with respect to the surface
normal). (c) Next, the user directly paints the surface of the model where they desire the simulated motion to
occur. (d) Lastly, the user interactively simulates the motion of the surface until the final result is achieved. In
this case, the user simulated the surface’s motion until the model included a branch of the desired length.

� Evolving the Surface: To support interactive defor-
mations of the surface, we must evolve the surface ef-
ficiently, while maintaining a stable representation of
the model.

� Surface Representation: We need a dynamic repre-
sentation of the model. This should allow the simula-
tion to execute quickly, maintain a high quality repre-
sentation of the model during the simulation, and sup-
port adaptive levels of detail.

The remaining sections describe how we address these
challenges.

5 Defining Paint

We are interested in a simple model of paint to control
the instantaneous velocity of freely moving surfaces. We
describe surface velocity at some point along the model’s
surface,x � ℜ 3, with surface normal,n, as the linear com-
bination of three terms:

v�x� � vprop�x��vadv�x��vcurv�x�� (1)

where each term is defined as follows:

� Propagating velocity causes the surface to move at a
constant speed in the direction of its surface normal:

vprop�x� � α n (2)

When simulated, this type of surface velocity results
in blobby, organic deformations. As an example, the
overall shape of the muffin’s top was created by simu-
lating propagating velocity whose speed smoothly var-
ied over the top of a cylindrical solid (Figure 1(a,b)).

� Advective velocity causes the surface to move at a
constant speed in a constant direction:

vadv�x� � βp (3)

This type of motion gives rise to discontinuous geom-
etry. Traditional sculpting tools that displace vertices
a certain distance along some axis are, in fact, simulat-
ing purely advective motion of a surface over a single,
fixed time step. Another example of simulating this
type of velocity is the spiky tree limb created in Fig-
ure 2.

� Curvature-dependent velocity causes the surface to
move at a speed proportional to its mean curvature,κ ,
in the direction of its surface normal:

vcurv�x� � γκn (4)

This type of surface velocity can be used to smooth ir-
regular meshes [11, 26]. In Figure 3 we use curvature-
dependent velocity to locally smooth a noisy scan from
the Digital Michelangelo Project [20].

The total velocity of a point on the model’s surface is
then:

v�x� � α n�βp�γκn (5)

Every point on the model’s surface can contain an ele-
ment of paint, consisting of the parameters:α , β , γ, and
p (called the “pigment vector”) that fully describe its in-
stantaneous velocity. The velocity is assumed to be zero
over un-painted regions of the surface. Defining a surface
deformation consists of mixing propagating, advective and
curvature-dependent paints and applying this mixture di-
rectly to the model’s surface before interactively simulating
its motion.



(a) (b)

(c) (d)

Figure 3. (a) Starting with a noisy scan of the
right leg of Michaelangel’s statue of David, (b) the
user applies curvature-dependent paint to the cor-
rupted area. (c) After physically simulating the
implied motion, only the noisy area is repaired.
(d) An alternative approach, such as global diffu-
sion would remove both the noise and the detail in
David’s sling.

6 Applying Paint

The success of our modeling interface clearly depends
on the user’s ability at controlling the distribution of paint
along a model’s surface. After the work of [16], we directly
paint the object by projecting a 2D image into the scene
from the current center of projection (Hanrahan and Hae-
berli call these “screen-space brushes”).

In our system, the user first selects the paint that will give
rise to the desired type of surface deformation (i.e. the user
adjustsα , β , andγ) and then chooses a 2D image to use
as the brush. Next, the user directly paints the model by
drawing in the image plane with the selected brush.

Additionally, we give the user direct control over the
paint’s pigment vector,p. In our current implementation,
the direction of advective velocity (if any) can be taken
as the surface normal where the paint was applied to the
model, the viewing vector for the camera position at the
time the paint is applied, or as an arbitrary global vector.
These options help easily express directed motion of the
surface. One application of defining the pigment vector at
each point to be the current surface normal is embossing
(Figure 4).

(a) Before (b) After

Figure 4. Simulating advective motion where the
direction of the velocity is the existing surface nor-
mal can create embossing effects. In this example,
the user adds the Princeton emblem to a kabuto by
painting positive advective paint onto its crown.

We find the process of creating 2D brush images and
painting directly onto a 3D surface to be a powerful and
easy way of expressing surface deformations. Although
not explored in our system, other techniques that advance
the idea of direct texture painting could easily be incorpo-
rated [18]. However, unlike texture painting, we are inter-
ested in giving each vertex a physical property as opposed
to decorating the object by interpolating images across faces
of the mesh. Therefore, considerations about texture space
warping are not directly related to our approach. Instead,
we pay particular attention to the mesh’s vertices because
we directly sample the projection of the 2D image at these
points. Accurately sampling this projection often requires
adaptive refinement of the mesh, where adding a sufficient
number of vertices to sample this projection guarantees that
the resulting geometric detail will match the deformation
implied by the model’s paint.

7 Evolving the Surface

Once the instantaneous surface velocity has been painted
onto the model, the user interactively simulates the im-
plied motion. We gain interactivity by explicitly integrating
these simple equations of motion and updating the painted
vertices at each time step. Maintaining a stable mesh is
achieved through a heuristic that scales the speed of the sur-
face by the average length of the painted edges. This pro-
vides fine control (small displacements) for highly-detailed
areas and coarse control (large displacements) for less de-
tailed portions of the model. By scaling the speed of the
surface, we effectively normalize the values of the paint pa-
rameters (α , β , andγ) to lie between -1.0 and 1.0 and the
time step to lie between 0.0 and 1.0 for any level of detail.
We also use the normalized mean curvature [11] that per-
mits explicit integration, although our current system does
not compute curvature at boundary points.



In our current implementation, the user can set the time
step to any value between 0.0 and 1.0 and advance the sim-
ulation with either the keyboard or mouse. This provides
interactive control, allowing the user to “see” the surface
move and stop once the desired deformation is achieved.
Additionally, we offer the facility to “undo” a modeling op-
eration by saving copies of the model before the user de-
forms its surface and tracking the user’s painting operations.

8 Surface Representation

We wish to accurately and efficiently represent a dy-
namic surface that moves at interactive rates. We have im-
plemented our painting interface with two types of surface
representations: level sets and polygonal meshes. In the
end, we found dynamic polygonal meshes more suitable for
our interactive application.

8.1 Level Sets

Level set methods [28] describe a dynamic surface as the
zero level set of a time-dependent function. The main ad-
vantages of this approach are its elegant handling of topo-
logical changes to the surface and its ability to uniformly
sample a moving surface. To incorporate level sets in our
modeling system, we need an implicit representation of the
surface paint. We accomplish this by defining a “paint vol-
ume” such that paint on the surface at some pointx corre-
sponds to the value at the same location in the paint volume.
By warping this paint volume after each time step according
to the changes in the implicit representation of the model,
we cause the paint to move with the surface. Furthermore,
we must maintain a paint volume with at least twice the res-
olution of the model itself in order to prevent “bleeding” of
the paint from one side of the model to another.

Although our level set prototype system robustly handles
arbitrary topology changes, its main drawbacks are that it
cannot support both high resolution and interactive updates
(Figure 5). Narrow band level set techniques [1] ensure
that their simulation time is proportional to the number of
voxels that intersect a model’s surface and we update the
narrow band only along the painted regions. Nevertheless,
when creating models of varying complexity, a level set ap-
proach must sample the signed distance field at its finest
resolution. Furthermore, taking an approach where only the
painted region is converted into a level set representation
does not work either as the surface deformations can cover
large distances and a majority of the model is often painted.
At each time step, we must also extract and display the zero
level set, [22], which further decreases the update rate of the
simulation. While multiresolution level set methods might
address these issues, using them in an interactive modeling
tool is still a future topic of research.

(a) (b)

Figure 5. (a) A melting candle created with a pro-
totype system of our modeling interface using
a level set representation with a volume grid of
100x100x200 voxels. (b) The lack of adaptive res-
olution in the level set model prohibits the user
from editing the model at various levels of detail.
Moreover, this simple model took approximately
45 minutes to create due, in part, to the slow sim-
ulation speeds permitted by level sets.

8.2 Polygonal Mesh

Alternatively, the moving surface can be represented as
a polygonal mesh where the vertices are free to move in
space. Because updating polygonal meshes is an inexpen-
sive operation, they can easily support real-time simulation
of the surface’s velocity. The paint can also be stored at each
vertex, avoiding the need for an implicit paint volume as re-
quired for a level set approach. Also, commonly available
graphics hardware renders polygonal meshes much more ef-
ficiently than volumetric representations.

With polygonal meshes we can support adaptive resolu-
tion of the dynamic model. This is necessary while the user
paints the model’s surface because the distribution of ver-
tices in the brush’s 3D projection must accurately sample
its 2D image. Ignoring this situation can result in aliasing
of the paint along the model’s surface creating undesirable
affects on the resulting deformation. The reason for this is
that high frequency components in the brush’s image con-
vey quickly varying relative speeds that will create high fre-
quency geoemtric components along the model’s surface.
To prevent undersampling the brush image, we locally re-
fine the mesh until the location of vertices along the model’s
surface matches the resolution of the image projection (Fig-
ure 6(a)). This refinement guarantees that the mesh’s com-
plexity matches the geometric detail in the resulting surface
deformation (Figure 6(b)).

We also refine the mesh during the simulation. In order
to maintain an even sampling of vertices along the model’s
surface we perform edge splits, edge collapses, and edge
swaps as in [24]. These operations maintain roughly con-



(a) (b)

Figure 6. (a) We subdivide the mesh as a function
of the painting direction and location. This refine-
ment guarantees that vertices along the model’s
surface accurately sample the brush bitmap. (b)
This results in a mesh whose complexity matches
the geometric detail of the deformation.

stant edge lengths while maximizing the minimum interior
angles of the faces.

The main drawback of using polygonal meshes is their
difficulty in handling events like topological changes and
self-intersections. Although our current implementation
does not explicitly handle either case, techniques do exist to
prevent self-intersections, [24], and could be added to our
modeling system. For our purposes, however, we found the
fast simulation rate that meshes permit more important than
their difficulty in handling these degeneracies.

The advantage polygonal meshes provide over level sets
are gained through their adaptivity and by allowing an ex-
plicit representation of the surface paint. At each time step
far more voxels must be updated as compared to the cor-
responding number of vertices in an adaptive polygonal
mesh representing the same surface. Moreover, a polyg-
onal mesh representation avoids the implicit paint volume
required with level sets because the paint can be stored ex-
plicitly at each vertex. Lastly, commonly available graphics
hardware favors efficient rendering of polygonal meshes as
opposed to volumetric representations.

9 Results

We have found our painting interface useful for creating
certain stylized scenes, adding detail to existing models at
various scales, and locally smoothing noisy models. The
following results were created with our system:

� Locally Smoothing a Noisy Model: (Figure 7) This
example demonstrates the usefulness of providing lo-
cal surface deformations. Starting with a model of
a human male foot acquired from the Visible Hu-
man project [21], the user has painted the undesirable

(a) (b) (c)

Figure 7. (a) A model of a human foot has an un-
desirable wire running along its top. (b) The user
applies curvature-dependent paint (visualized in
bright blue) only to this area. (c) Next, the user in-
teractively simulates the implied motion to remove
this unwanted artifact.

wire running along the top of the foot with curvature-
dependent paint. The user then simulates this motion,
smoothing away this unwanted artifact. Other, more
global, diffusion techniques would have removed the
detail in the rest of the foot and toes, demonstrating the
usefulness in providing local control over a smoothing
process.

� Stylized Cemetery: (Figure 8) This stylized ceme-
tery scene was created quickly with our modeling sys-
tem. Starting with a base plane, we first created the
tree trunk using positive advective paint and then filled
in its crown of branches using brush-dependent refine-
ment and more advective paint. The gravestones were
grown off the base plane using a smoothly varying
brush bitmap of a rectangle that decreased in intensity
at its ends. The engravings on the gravestones show
how brush-dependent refinement can create highly de-
tailed geometry on an initially simple object. Other
examples of multi-resolution deformations include the
grassy texture of the ground and the knot in the trunk
of the tree.

� Melting Candle: (Figure 9) This candle was created
by first growing its overall shape from a base plane
using advective paint. Next, we added an indenta-
tion to its top using negative advective paint. To give
the model a melting look, we added the wax dripping
down its sides by simulating a mixture of propagat-
ing and advective paint modulated with a small brush
bitmap the user manually moved along the side of the
candle. The pool of wax around the candle’s base was



Figure 8. This stylized cemetery was created by
“painting” surface deformations onto a model.

Figure 9. Compared to the melting candle modeled
with a level set approach (Figure 5), this exam-
ple demonstrates the fine resolution that meshes
can provide while maintaining interactive simula-
tion rates.

created in the same way. Lastly, we added a wick to the
candle’s top using a small circular brush. This exam-
ple highlights the main advantage of polygonal meshes
over level sets. The melting candle created with the
level sets system (Figure 5) does not have nearly the
resolution of this candle because interactively simulat-
ing its motion would not be feasible for larger volu-
metric representations.

� Modifying a Terrain Scene: (Figure 10) In this ex-
ample we used a mixture of advective and propagat-
ing paint to add a deep ravine to an existing terrain
scene. This highlights another useful feature of our
painting interface: easily expressing large-scale defor-
mations. With other modeling techniques, this defor-
mation would have to be formed incrementally, requir-

(a) Original

(b) Modified

Figure 10. (a) The user starts with a terrain scene.
(b) Using a mixture of negative advective and prop-
agating velocity, they create a deep ravine that cuts
across the terrain.

ing the user to move along the location of the ravine,
manually deforming the surface appropriately. With
our interface, however, the user was able to paint the
location of the deformation all at once before simu-
lating its motion. Therefore, expressing a large-scale
deformation that involves re-positioning hundreds of
vertices spread across the entire model was as simple
as expressing a small, local surface deformation.

� Entrance to a Cave: (Figure 11) Starting with a single
plane, we grew the overall shape of the cave’s entrance
using advective paint before growing the spiky stalac-
tites and stalagmites. Lastly, we added the bumpy tex-
ture using a noisy brush bitmap and a combination of
advective and propagating paint. This example high-
lights the usefulness of painting on many parts of the
model at one time and then interactively simulating its
motion. Sculpting techniques would require individu-
ally moving the model’s surface for each spike. This
highly detailed scene would also pose problems for a
level-set approach that uses constant-sized voxels to
represent the model.



Figure 11. Starting with a plane, this entire model
was created with our painting interface.

10 Limitations

Although our painting interface does offer a powerful
setting for executing certain modeling operations, it still has
several limitations. For one, this interface is not suited for
every model one might wish to create. Generally speaking,
it makes most sense to use this interface to create organic
objects or to edit scanned objects and probably is not suit-
able for mechanical CAD. Moreover, although our system
allows editing at multiple scales, it does not support mul-
tiresolution editing where fine details are preserved when
coarse edits are made. Lastly, this interface relies upon the
user’s ability to view the portion of the model where the
deformation is to take place and, consequently, performs
poorly when modeling highly self-occluding objects like,
for example, deforming the camshaft in a truck engine.

11 Conclusion

In this paper, we have described a new interface for inter-
active 3D modeling in which a user specifies deformations
by painting directly onto the model’s surface. This approach
combines direct manipulation with physical simulation in
an interactive modeling tool. Our implementation includes
several tools for applying paint to surfaces and algorithms
for evolving a mesh data structure and a level set model as
a surface deforms.

Although our modeling interface does not outperform
existing techniques in all scenarios, it does provide unique
control over an interactive simulation useful for creating

new models, removing noise from existing models, and
adding texture to an existing surface at multiple resolutions.

Topics for future work include:

� Utilizing graphics hardware to accelerate the simula-
tion of dynamic polygonal meshes.

� Investigating adaptive level set methods.
� Investigating the potential of describing geometry as

simulated surface velocity for compression applica-
tions.

� Using paint to transfer geometric texture from one part
of a model to another.

� Developing a constructive theory of geometry for how
paint texture relates to resulting geometric detail.

� Extending the current interface to support time-
dependent pigment vectors.
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