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Abstract

As image-based surface reflectance and illumination gain wider use in physically-based rendering systems, it is
becoming more critical to provide representations that allow sampling light paths according to the distribution
of energy in these high-dimensional measured functions. In this paper, we apply algorithms traditionally used for
curve approximation to reduce the size of a multidimensional tabulated Cumulative Distribution Function (CDF)
by one to three orders of magnitude without compromising its fidelity. These adaptive representations enable new
algorithms for sampling environment maps according to the local orientation of the surface and for multiple
importance sampling of image-based lighting and measured BRDFs.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism 1.3.6 [Computer Graphics]: Methodology and Techniques

1. Introduction

Techniques are now common for accurately measuring real-
world surface reflectance and illumination. As a result,
densely sampled tabular representations of lighting and Bi-
directional Reflectance Distribution Functions (BRDFs) ap-
pear in off-line, physically-based rendering pipelines. Be-
cause global illumination algorithms typically use Monte
Carlo integration, employing common variance reduction
techniques is critical to achieving a feasible rate of conver-
gence. Consequently, it is important that representations of
measured environment maps and BRDFs provide efficient
importance sampling.

While several specific representations of measured en-
vironment maps and BRDFs do allow direct sampling,
there is still no single representation that is appropriate for
general multidimensional measured functions. As higher-
dimensional datasets find their way into rendered scenes
(e.g. light fields, reflectance fields, etc.), a general method
for sampling them will become more important. Moreover,
for the specific case of environment maps, existing represen-
tations do not account for the local orientation of the surface
(i.e. the cosine term in the rendering equation). This property
can limit the effectiveness of environment map sampling in
reducing variance for many scenes. Another important draw-
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Figure 1: We represent a 1D CDF with a set of non-
uniformly spaced samples of the original function. This re-
sults in a more compact yet accurate approximation of the
original function than uniform spacing would allow. In addi-
tion, the final CDF maintains many key properties necessary

for unbiased multiple importance sampling.

back of some existing environment map representations is
that they are not readily incorporated into a multiple impor-
tance sampling framework [VG95].

In this paper, we apply a curve approximation algorithm
to the task of compressing multidimensional tabular Cumu-
lative Distribution Functions (CDFs) derived from measured
datasets. Assume we have a 1D CDF, P(x), sampled uni-
formly in x. In order to compress this function, we lift the
restriction that the samples must be uniformly spaced, as
shown in Figure 1. We use the Douglas-Peucker greedy al-
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gorithm for polygonal approximation of 2D curves [DP73,
HS92] to compute the location of these adaptive samples.
We further extend this algorithm to represent multidimen-
sional CDFs. To accomplish this, we compute marginal 1D
CDFs in each dimension by summing the energy contained
across the orthogonal dimensions. Each of these 1D CDFs is
represented by non-uniformly spaced samples and the result-
ing set of these “cascading CDFs” approximates the original
high-dimensional distribution. There are several benefits of
using this adaptive numerical representation:

e Allowing placement of non-uniformly spaced samples re-
duces the number that must be stored to accurately rep-
resent the original CDF. This is especially true for multi-
dimensional distributions because the storage grows ex-
ponentially with the number of dimensions. Significant
reduction is also achieved for common “peaky” distribu-
tions, for which many methods require O(n) storage.

e Generating directions according to the distribution, ac-
complished using numerical inversion of the CDF, sim-
ply requires a binary search over the sorted samples of
P(x). This is essentially the same algorithm as is used for
uniformly sampled CDFs, but with the position of each
sample along the domain stored explicitly.

e Storing a “cascading set” of conditional 1D CDFs, each
represented by non-uniformly spaced samples of the orig-
inal functions, promotes a direct implementation of unbi-
ased stratified importance sampling. This results from the
fact that each dimension can be sampled independently.

e The probability of a sample not drawn from the CDF itself
can be efficiently computed from the final representation.
This property is critical for combining distributions with
standard multiple importance sampling algorithms.

To demonstrate the benefit of our adaptive representation,
we present a novel algorithm for sampling measured envi-
ronment maps in an orientation-dependent manner. This is
accomplished by sampling the 4D function that results from
modulating an environment map with the horizon-clipped
cosine term in the rendering equation. This algorithm is
more efficient than existing techniques that sample only a
single spherical distribution. Lastly, we show how our adap-
tive representation can be used within a multiple importance
sampling framework.

2. Related Work

Monte Carlo importance sampling has a long history in
Computer Graphics [Vea97]. For stratified sampling from
2D CDFs on a manifold (in the practical examples of this pa-
per, the manifold is a sphere or hemisphere), Arvo [Arv01]
describes a particular recipe when an analytic description of
the function is available, with analytic sampling strategies
available in some cases [Arv95]. When dealing with mea-
sured illumination or reflectance data, as in this paper, non-
parametric or “numerical” CDFs are unavoidable, and it is
important to compress them.

One possible approach is to use general function com-
pression methods, such as wavelets or Gaussian mixture
models. Wavelets have been previously used for importance
sampling of BRDFs [CPB03,LF97]. However, the computa-
tional cost for generating a sample can be significant, espe-
cially if non-Haar wavelets are used (as is necessary to avoid
many kinds of blocking artifacts). Additionally, the imple-
mentation for multidimensional functions such as measured
illumination and BRDFs can be difficult, requiring sparse
wavelet data structures and a hexa-decary search.

A second approach to compact CDF representation that
has been applied for BRDFs is factorization [LRR04]. This
method takes advantage of the structure of the BRDF to fac-
tor it into 1D and 2D pieces, thereby reducing dimensional-
ity while still allowing for accurate representation and effi-
cient importance sampling. The technique proposed here dif-
fers in considering compression of general tabulated CDFs,
and is not limited to BRDF sampling. Additionally, the CDF
compression considered here is independent of dimension
and orthogonal to any factorizations of the input data. It
could therefore be applied equally well to methods that use
a full tabular BRDF representation and sampling scheme (as
shown in this paper), or to lower dimensional components.

Another specialized CDF compression approach, which
has been applied to environment maps, is to decompose the
function into piece-wise constant Voronoi or Penrose regions
on the sphere [ARBJ03,KK03,0DJ04]. As compared to our
method, these techniques offer more optimal stratification,
but do not directly extend to multidimensional distributions.
Another drawback of these representations is that they are
difficult to use with standard multiple importance sampling
algorithms that require computing the probability of a di-
rection generated from a separate distribution. Lastly, these
representations ignore the fact that half of the environment
is always clipped against the horizon of the surface and that
the illumination is scaled by a cosine term (Figure 10).

3. Background

In this paper we address the problem of importance sam-
pling. That is, we seek to generate samples according to
some Probability Density Function (PDF), p, which by defi-
nition is non-negative and normalized (i.e., it integrates to 1).
We accomplish this using the inversion method, which pre-
computes the corresponding Cumulative Distribution Func-
tion (CDF)

P = [ adpt) m

and evaluates its inverse P~ ! (€) at locations given by a uni-
formly distributed random variable € [0, 1].

We are interested in the case of a PDF specified numer-
ically: in 1D, we assume that we are given probabilities p;
at locations x;. We precompute the corresponding CDF val-
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Figure 2: The Douglas-Peucker algorithm greedily com-
putes a polyline approximation of a smooth 2D curve. It
works by inserting the next sample in the approximation at

the point of maximum deviation between the (black) original
curve and the (red) current polyline approximation.

ues P; and, at run-time, invert the CDF by performing a bi-
nary search for the interval [P;, P, 1] that contains the ran-
dom value . Note that this search is required whether or not
the x; are spaced uniformly. This will be the key property
used by our representation: we can represent many functions
more efficiently by having non-uniformly spaced x; without
increasing the run-time cost of importance sampling.

In 2D, the situation is more complex. We must first de-
compose the 2D PDF p(x,y) into two pieces, one dependent
only on x and the other on y:

o) = [ ":dy,,(x,y) @
b = Py)
pOol) = P ®

The numerical representation then consists of a discretized
version of p, given as samples p; at locations x;, together
with a collection of discretized conditional probability func-
tions p;(y|x;). This technique generalizes naturally to any
number of dimensions, producing a “cascading set” of CDFs
where a value in each dimension is generated sequentially
using the appropriate 1D marginal CDF at each step [Sch94].
As an important special case, we note that functions on
a sphere may be represented using the parameterization
p(z,0), where the usual change of variables z = cos 0 is used
to normalize for the area measure d® = sin0d0d¢.

If the CDFs are uniformly sampled along their domain,
the total size of this set of CDFs will be slightly larger
than the size of the original function. In Computer Graph-
ics, it is often the case that these functions can be both
high-dimensional and measured at high resolutions. Conse-
quently, the combined size of the resulting 1D CDFs can
quickly become prohibitively large. This motivates our in-
vestigation into efficient techniques for compressing these
sampled functions without compromising their accuracy or
utility.
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4. Numerical CDF Compression

‘We use polygonal curve approximation algorithms to com-
press a densely sampled CDF by representing it with a re-
duced set of non-uniformly spaced samples selected to min-
imize the reconstruction error.

4.1. Polygonal Curve Approximation

With early roots in cartography, several efficient algorithms
have been developed for computing polygonal approxima-
tions of digitized curves. Polygonal approximation algo-
rithms take as input a curve represented by an N-segment
polyline and produce an M-segment polyline with vertices so
as to minimize the error between the two (typically M < N).

Although algorithms exist that output the optimal solu-
tion [CC96, Goo94, CDO03], we instead use the Douglas-
Peucker [DP73, HS92] greedy algorithm because of its sim-
plicity and speed. It has also been shown that these greedy
algorithms typically produce results within 80% accuracy of
the optimal solution [Ros97].

The Douglas-Peucker curve approximation algorithm
works by iteratively selecting the vertex furthest from the
current polyline as the next vertex to insert into the ap-
proximation (Figure 2). Initially only the endpoints of the
curve are selected, and the algorithm iteratively updates this
approximation until either an error threshold is reached or
some maximum number of vertices have been used. For
curves derived from numerical CDFs, we found this algo-
rithm sufficient for producing near-optimal approximations
with few samples.

4.2. Applying Curve Approximation to CDFs

There are several ways of applying the above curve approx-
imation algorithms to the task of representing numerical
probability functions. First, we can apply them to yield a
piecewise linear approximation of the CDF, which is equiv-
alent to a piecewise constant approximation of the cor-
responding PDF. Because the Douglas-Peucker algorithm,
when applied to the CDF, is guaranteed to yield a nonde-
creasing function with a range of [0..1], the resulting approx-
imation may be used directly as a CDF and differentiated to
find the corresponding PDF.

A second way of using curve approximation algorithms
is to apply them directly to the PDF to obtain a piecewise
linear approximation (which implies a piecewise quadratic
CDF). In this case, the resulting approximation is not guar-
anteed to integrate to one, and must be normalized before
it can be used as a probability function. Figure 3, bottom,
compares these two strategies on a (relatively smooth) func-
tion: note that the two approaches result in samples being
placed at different locations in the domain. For comparison,
Figure 3, top, shows piecewise constant and piecewise linear
approximations using uniform sample spacing.
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Figure 3: A probability density function (corresponding to
environment map in Figure 7) and its piecewise linear and
piecewise constant approximations with 8 samples placed
uniformly (top) and computed by the Douglas-Peucker algo-
rithm (bottom). The piecewise constant approximation was
computed by running Douglas-Peucker on the integral of
the PDF (i.e. the CDF). Note that, for this relatively smooth
function, the piecewise linear approximation is closer to the
original.

One important difference between uniformly-sampled
and adaptively-sampled CDFs is the cost of reconstructing
the value of the approximated function (i.e., evaluating the
probability) at an arbitrary position. This property is nec-
essary for combining several distributions using multiple
importance sampling algorithms [Vea97]. When the sam-
ples are uniformly spaced the cost is O(1), whereas adap-
tively sampled representations require O(logN) time (here
N refers to the number of non-uniform samples). This in-
creased complexity results from having to perform a binary
search over the values of the function sorted along the do-
main to find the desired interval. Because adaptive represen-
tations provide such large compression rates, however, N is
typically small enough to make this added cost insignificant
in practice. In addition, the time complexity of generating
a sample (as opposed to evaluating the probability) remains
the same at O(logN) in both cases.

In our experiments, we always used a piecewise constant
approximation of the PDF (i.e. piecewise linear CDF). Al-
though this results in a slightly larger representation, in our
experience this drawback was outweighed by the simpler im-
plementation required for sampling a piecewise constant ap-
proximation.

5. Multidimensional CDFs: The Cascading
Douglas-Peucker Algorithm

In the previous section, we discussed how to apply curve ap-
proximation algorithms to the task of efficiently representing
numerical 1D CDFs. In this section, we extend these ideas to
accomodate distributions of higher dimension. For the sake
of explanation, we first restrict our discussion to the 2D case
and provide an example with synthetic data in Figure 4. Ex-
tending these techniques to higher dimensions is straightfor-
ward and briefly discussed at the end of the section.

Recall that we can convert any 2D distribution (Figure 4
top) into a single marginal CDF plus a set of conditional
CDFs according to Equations 1, 2 and 3. In order to gener-
ate (x,y) pairs with probability proportional to the magni-
tude of the original function, we first generate a value of x
from the marginal CDF P(x) (Figure 4 bottom, red curve)
and then generate a value of y from the corresponding con-
ditional CDF P(y|x) (not shown in Figure 4).

As described previously, we use the Douglas-Peucker al-
gorithm to select a set of non-uniformly spaced samples
that accurately represent the marginal 1D CDF, P(x). For
the example in Figure 4, we can perfectly approximate the
marginal CDF with samples at the endpoints A and E and at
internal locations B and D. Next, we would compute a set of
conditional CDFs, P(y|x); one for each of these regions in
x (e.g. in Figure 4 these regions are AB, BD and DE). Each
conditional CDF is the average across its associated range:

1 /Xf ) p(,y)
x;) = dx — ' @
P(y| 1) Xp—Xi—1 Jxi_, p('x/)

For all the examples in this paper on measured data, build-
ing a cascading set of CDFs according to Equation 4 was suf-
ficient for accurately approximating the original distribution.
However, there are potential situations where this approach
alone ignores error introduced by approximating the distri-
bution of energy within a region with a single CDF. Figure 4
illustrates such a situation. In this case, the distribution of en-
ergy within the region BD would be poorly approximated by
a single conditional distribution because the two area light
sources are at different heights. In order to address this is-
sue, we must also consider the gradient in the x-direction of
the original distribution:

0 0
s = [ ay ’—”g:y)‘ )

When the function g(x) is large this indicates locations in
x where the conditional CDFs, P(y|x), would nor be well
approximated by a single distribution. Therefore, after our
first application of the Douglas-Peucker algorithm to repre-
sent P(x), we add additional samples according to this gradi-
ent function. Specifically, we can compute a numerical CDF
from g(x) and generate a fixed number of stratified samples
along the domain (e.g. the x-axis) such that they occur at
locations where this function is large. Adding samples ac-
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J. Lawrence, et. al. / Adaptive Numerical CDFs for Importance Sampling

1
08
06
04
02k Marginal CDF s |
Gradient
0
-3 -2 -1 0 1 2 3

Figure 4: Efficiently approximating multi-dimensional dis-
tributions requires computing a cascading set of 1D
marginal and conditional CDFs. Here we show (top) a
synthetic environment map that contains only two equal
sized area light sources. We compute (bottom, red curve) a
marginal CDF in x by summing the total energy across y.
We also consider (bottom, green curve) the average gradient
in the x-direction. We place non-uniformly spaced samples
according to the Douglas-Peucker algorithm at positions A,
B, D and E and any additional points where the gradient
Sfunction is large (i.e. at position C).

cording to the gradient guarantees that both P(x) is well rep-
resented by the non-uniformly spaced samples and that the
conditional CDFs computed for each region, P(y|x;), well
approximate the variation present in the orthogonal dimen-
sions. In the example in Figure 4, we additionally sample the
marginal CDF at location C, separating the 2D distribution
into a total of four regions (AB, BC, CD and DE), where each
region is now well approximated by a single CDF.

Lastly, we extend this sampling algorithm to arbitrary di-
mensions by simply expanding the integrals over the entire
range of free variables (as opposed to just y for the 2D ex-
ample considered above). For an N-dimensional distribution,
p(x1,x2,...xy), both the marginal and conditional CDFs are
proportional to the integral across the remaining free vari-
ables (note: we omit the normalization constant for clarity):

oo oo
p(xi|x1..4x,',1)o</ dx,<+1.../ a’pr(xl.A.xN),
—oo —0o0

and the gradient function would be computed similarly:

o0 i ap(xy...x
g(xi|x1...x,-,1):/ dxi+1~~/ dxy ’M .
—00 —o0 X
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6. Evaluation of Algorithm

In general, global illumination algorithms perform numeri-
cal integration of the rendering equation:

Lo(x,00) = Le(x,00) + A do; Li(x, 0;) p(x, ®;,00) (0; - 1).

A common approach to estimating the value of this in-
tegral is to perform Monte Carlo integration over the space
of incoming directions. Because the entire integrand is usu-
ally not known a priori, a reasonable strategy is to sample
according to the terms that are known. For example, if the
incident illumination L; is represented by an environment
map, we may perform environment sampling. BRDF sam-
pling, on the other hand, generates samples according to ei-
ther p itself or p- (®; - n). Although algorithms exist for sam-
pling BRDFs and environment maps, these functions pro-
vide a convenient platform to evaluate our representation.
Moreover, our approach has several desirable properties that
these existing techniques lack. These enable novel applica-
tions that we present in Section 7.

6.1. Environment Map Sampling

One direct approach for generating samples according to a
measured environmet map [Deb98], is simply to compute a
family of numerical 1D CDFs directly from the 2D spheri-
cal function [PHO4]. Recall that one CDF will quantify the
distribution along ¢, P(¢) and a set of 1D CDFs will control
the distribution of samples along 0 at each sampled location
of ¢, P;(6]9;). These are derived from the intensity of each
pixel in the environment map (i.e. weighted average of color
values) using the method described in Section 3.

If the resolution of these CDFs is proportional to that of
the environment map (as it should be to avoid aliasing) this
representation will be slightly larger then the original mea-
sured dataset itself. Therefore, there is significant opportu-
nity for compression using our adaptive representation. Fig-
ure 5 shows false-color visualizations on a logarithmic scale
of the full-resolution 1000 x 1000 (6 x ¢) PDF of the Grace
Cathedral environment (http://www.debevec.org/Probes/),
together with 16 x 16 and 64 x 64 approximations using both
uniform and non-uniform sample selection. As compared
to uniform sampling, adaptive sample placement results in
a significantly more accurate approximation of the original
distribution.

Figure 6 compares the error of our adaptive numerical
representation with uniform sample placement on two dis-
tributions with qualitatively different behaviors. The upper
graphs show a single scanline (i.e. varying phi for a constant
theta) of the environment map, while the graphs at bottom
plot the RMS error of the approximation as a function of the
number of samples used (note that the horizontal axis is log-
arithmic). At left, we consider a relatively smooth function.
In this case, the gain from nonuniform placement of samples
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(a) Grace Cathedral
Light Probe

(b) Optimal Probability
Distribution

(¢) Distribution w/ 16 x 16
Uniform Samples

(d) Distribution w/ 16 x 16
Non-Uniform Samples

(e) Distribution w/ 64 x 64
Uniform Samples

(f) Distribution w/ 64 x 64
Non-Uniform Samples

Figure 5: False-color visualizations of spherical probability
density functions on a logarithmic scale (red = largest prob-
ability, green = smallest probability). Directions are mapped
to the unit circle according to the parameterization used by
Debevec [Deb98]. (a) A measured environment map of the
inside of Grace Cathedral. (b) The probability density result-
ing from using a numerically tabulated CDF sampled uni-
formly at the same resolution of the original map. The prob-
ability distribution of numerical CDFs computed from (c)
16 X 16 uniform samples (d) 16 x 16 non-uniform samples
(e) 64 x 64 uniform samples and (f) 64 X 64 non-uniform
samples.

is relatively modest. At right, we show a “peakier” function
that is easier to compress with nonuniform sample place-
ment. In this example, our adaptive representation reduces
the number of samples required at equal approximation er-
ror by a factor of 16 compared to uniform downsampling.
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Figure 6: Two different probability distribution functions
and the RMS error in approximating them using different
numbers of points and different sampling strategies. The dif-
ferent sampling algorithms use either uniform or adaptive
placement of sample locations.

6.2. BRDF Sampling

The BRDF gives the ratio of reflected light to incident
light for every pair of incoming and outgoing directions:
p(®o, ;). For glossy materials, it is advantageous to sam-
ple the environment according to the distribution of energy
in the BRDF. Because this is a 4D function (3D if the BRDF
is isotropic), a tabular representation at a modest resolution
would still be quite large. Consequently, we apply our adap-
tive representation to the task of efficiently storing numerical
CDFs derived from measured BRDFs.

We compared the size and accuracy of this representation
with a standard approach of pre-computing the CDFs at their
full resolution [Mat03] for the same set of viewing directions
(Figure 7). We evaluated the efficiency of generating sam-
ples using an adaptive numerical CDF computed from two
measured BRDFs [MPBMO3]: nickel and metallic-blue.

For these results, we first reparameterized the BRDF into
a view/half-angle frame in order to maximize the redun-
dancy among slices of the function giving greater oppor-
tunity for compression [LRRO04]. Each uniformly-sampled
CDF had a resolution of 32 x 16 X 256 x 32 (8, X ¢ X
0, x 0;,) and occupied 65MB. Here, 6;, and ¢;, are the el-
evation and azimuthal angles of the half-angle vector re-
spectively. To compute the corresponding adaptive numer-
ical CDFs required, on average, roughly 30 samples in 6,
and 10 samples in ¢y,. Using the Douglas-Peucker algorithm,
these adaptive samples were selected from an initial set of
2048 x 1024 (8, X ¢p,) uniformly-spaced samples—a reso-
lution prohibitively expensive for the fully tabulated CDFs.
It required 20 minutes of processing time to compute the
adaptive representation for each BRDF.

(© The Eurographics Association 2005.
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Measured Nickel BRDF

Original (65MB) Compressed (3.9MB)

Measured Metallic-Blue BRDF

Original (65MB)

Compressed (2.3MB)

Figure 7: BRDF importance sampling with adaptive numer-
ical CDFs. We compare the variance in images rendered us-
ing a path tracer that generates samples using the fully tab-
ulated CDF and the adaptive CDF. In all cases we estimate
the radiance with 80 paths/pixel. We also list the total size of
the probability representation below each image.

We found that for these BRDFs, sampling the adaptive
numerical CDF is nearly as efficient as the full tabular ap-
proach. For the measured nickel BRDEF, the compact CDF
actually produces slightly less variance in the image because
the uniform sampling was not sufficiently dense to capture
the very sharp highlight.

7. Novel Applications

In this section we present a new algorithm for sampling il-
lumination from an environment map according to the local
orientation of the surface. Additionally, we demonstrate how
our representation facilitates multiple importance sampling
of both illumination and the BRDF.

7.1. Local Environment Map Sampling

Using adaptive numerical CDFs, we introduce a novel algo-
rithm for sampling an environment map in an orientation-
dependent manner. In previous methods of sampling envi-
ronment maps, incoming directions are drawn from a single

(© The Eurographics Association 2005.
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Figure 8: For some orientations and lighting, sampling from
a single distribution will be inefficient because most of the
energy is occluded by the horizon. (a) We examine this in-
efficiency for an example in which the majority of light is
above and slightly behind the object being rendered. (b) A
false-color image visualizes the percentage of samples that
will be generated above the horizon and, consequently, make
a positive contribution to the radiance estimate at that pixel.
In many regions of this image only 5% of the samples are
generated above the horizon.

spherical distribution [ARBJ03, KK03, ODJ04, PH04]. This
approach is inefficient when a significant amount of light in
the scene happens to fall below the horizon for a large num-
ber of pixels. In Figure 8, there are many regions of the im-
age where as few as 5% of the samples are generated above
the horizon—this also indicates the inefficacy of standard
techniques like rejection sampling to address this problem.
Furthermore, sampling from a single spherical distribution
cannot consider the cosine term that appears in the render-
ing equation (i.e. max(0,n- ®;)). Accounting for this cosine-
falloff would require sampling from a 4D function (i.e. there
are two degrees of freedom in the incoming direction and
two in the normal direction). We show several 2D slices of
this function for different normal directions in Figure 9. As
with BRDFs, representing a 4D distribution even at a modest
resolution could require prohibitively large storage.

We can store the 4D distribution that results from mod-
ulating an environment map by the cosine term using our
adaptive CDF representation. During rendering, each pixel
corresponds to a normal direction that becomes an index into
the 4D distribution, producing a 2D distribution over incom-
ing directions that we sample from. In our experiments, we
evaluated the local environment map distribution at 25 x 10
(¢ x 8) normal directions and 1000 x 2000 (¢ x 6) incom-
ing directions. Storing this tabular CDF directly would re-
quire approx. 4GB of space. In contrast, our representation
requires 10-20MB of storage and 1-2 hours of compute time
to provide an acceptable approximation.

We compared local environment map sampling with jit-
tered sampling of a stratified representation [ARBJ03] and
sampling from a uniformly-spaced CDF [PH04] (see Fig-
ure 10). Jittered sampling (Figure 10 left) performed the
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ng =2.35,ny = 4.71

ng =2.35,ny = 1.57

Figure 9: False-color visualizations of several CDFs com-
puted at different surface orientations. Each distribution is
visualized on a logarithmic scale as in Figure 5. For each
surface normal considered we clip the environment map to
the visible hemisphere and multiply each radiance value by
(n- ;) before computing an adaptive CDF representation of
the resulting 4D distribution.

worst mainly because this technique is ineffective for such
low sample counts (note: we are using only 20 samples
here). Moreover, there is significant error due to the bias
introduced by approximating each strata with a radial disk.
Although unbiased jittering is not impossible to achieve, it
is not a simple extension to published algorithms and has
not been reported in previous work. We also compared our
algorithm to sampling from a uniformly-sampled CDF and
rejecting those samples that fell below the horizon [PH04]
(Figure 10 middle). This strategy is most comparable in
quality to our own, but because it does not account for the
horizon-clipped cosine term in the rendering equation, it
fails to achieve the same rate of convergence. Quantitatively,
local environment map sampling achieved approx. 5 times
lower variance than sampling a single CDF computed at full
resolution and approx. 20 times better than jittered sampling
for these test scenes.

7.2. Multiple Importance Sampling

In practice, neither the BRDF nor the incident illumination
alone determine the final shape of the integrand in the ren-
dering equation. Therefore, it is critical that a CDF repre-
sentation supports multiple importance sampling [VG95].

St. Peter’s Basilica

Galileo’s Tomb

Grace Cathedral

Full CDF Local
With Rejection Env. Sampling

Jittered
Sampling

Figure 10: We compare the variance of a Monte Carlo esti-
mator computed according to (left column) jittered sampling
of a stratified representation [ARBJ03], (middle column) a
uniformly-sampled CDF [PHO04] where we reject samples
that fall below the horizon and (right column) using our
local environment map sampling algorithm. We have ren-
dered a perfectly diffuse object at 20 samples/pixel in three
different environments that all exhibit high-frequency light-
ing. Cutouts include a magnified region of the image and a
variance image (note: these are false-color visualizations of
the logarithm of RMS error in image intensity where black
< 0.135 and red > 20.08). All three sampling methods re-
quired approximately 15 seconds to render these images.

The main criterion this imposes is that the representation
must allow efficient computation of the probability of a di-
rection that was not generated from the distribution itself.
Algorithms that decompose environment maps into non-
overlapping strata [ARBJ03, KK03, ODJ04], for example,
do not readily provide this property because determining the
probability of an arbitrary direction would require searching
over the strata. Although not impossible, making this search
efficient has not previously been demonstrated and could be
one direction of future work. With our adaptive numerical
CDF, however, the probability of an arbitrary direction can
be computed in O(logN) where N is the number of non-

(© The Eurographics Association 2005.
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Cook-Torrance BRDF in the Beach Environment

Measured Nickel BRDF in Grace Cathedral Environment

Illumination BRDF
Sampling

Environment
Sampling

Combined
Sampling

Relative
Efficiency

Figure 11: Multiple importance sampling using adaptive numerical CDFs computed from both BRDFs and image-based light-
ing. The 4™ column visualizes the relative reduction in variance using environment sampling vs. BRDF sampling: red = BRDF
sampling has 8x less variance than environment map sampling, blue = environment sampling has 8x less variance than BRDF
sampling. For these scenes, sampling from either the BRDF or environment alone will not effectively reduce variance over the
entire image and performing multiple importance sampling is critical.

uniformly spaced samples. Moreover, because of the com-
pression ratios possible with our representation, N is typ-
ically small enough to make this operation inexpensive in
practice.

We show several scenes for which multiple importance
sampling is critical (Figure 11). In these results, we use
the balance heuristic introduced by [VG95] to combine 50
samples of the BRDF with 50 samples of the environment.
The BRDF samples are generated using our adaptive CDF
discussed in Section 6.2 and the illumination samples are
generated using local environment map sampling (see Sec-
tion 7.1). To demonstrate the benefit of a representation that
supports multiple importance sampling, we also compare
these images to those rendered using 100 samples drawn
from either the BRDF or environment alone.

(© The Eurographics Association 2005.

8. Conclusions and Future Work

We have applied traditional curve approximation algorithms
to compress the size of numerically tabulated Cumulative
Distribution Functions (CDFs) for efficient importance sam-
pling. This representation results in a drastic reduction in the
storage cost of a numerical CDF without sacrificing signifi-
cant accuracy in the reconstructed Probability Density Func-
tion (PDF). We investigated the benefit of using adaptive
numerical CDFs to sample image-based lighting and mea-
sured BRDFs. We also introduced local environment map
sampling, which accounts for the orientation dependence of
the illumination. Lastly, we have demonstrated multiple im-
portance sampling using adaptive numerical CDFs to repre-
sent distributions for both the BRDFs and environment map
in the scene.
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Because of the generality of our adaptive representation,
it has potential applications in many other problems that rely
on sampling from tabulated measured data. For example,
the technique might be used to represent light fields, which
would then be used to illuminate a scene or to sample from
the full product of a cosine-weighted environment map with
a measured BRDF. A second class of applications might in-
volve synthesis of textures, video, or animation based on
probability distributions learned by example.

9. Acknowledgements

This work was supported in part by grants from the Na-
tional Science Foundation (Szymon Rusinkiewicz: CCF-
0347427, Practical 3D Model Acquisition; Ravi Ramamoor-
thi: CCF-0446916, Mathematical and Computational Funda-
mentals of Visual Appearance for Computer Graphics, CCF-
0305322: Real-Time Rendering and Visualization of Com-
plex Scenes), Alfred P. Sloan research fellowships to Szy-
mon Rusinkiewicz and Ravi Ramamoorthi and a NDSEG
fellowhip to Jason Lawrence.

References

[ARBJO3] AGARWAL S., RAMAMOORTHI R., BE-
LONGIE S., JENSEN H. W.: Structured importance sam-
pling of environment maps. In SIGGRAPH 03 (2003),
pp. 605-612. 2,7, 8

[Arv95] ARvoO J.: Stratified sampling of spherical trian-
gles. In SIGGRAPH 95 (1995), pp. 437-438. 2

[ArvOl] ARvo J.: Stratified sampling of 2-manifolds. In
SIGGRAPH 2001 Course Notes, volume 29 (2001). 2

[CC96] CHAN W., CHIN F.: On approximation of polyg-
onal curves with minimum number of line segments or
minimum error. [nt. J. Comput. Geom. Appl. 6 (1996),
59-77. 3

[CD03] CHEN D. Z., DAEScU O.: Space-efficient al-
gorithms for approximating polygonal curves in two-
dimensional space. International Journal of Computa-
tional Geometry & Applications 13, 2 (2003), 95—111.
3

[CPB03] CLAUSTRES L., PAULIN M., BOUCHER Y.:
Brdf measurement modeling using wavelets for efficient
path tracing. Computer Graphics Forum 12, 4 (2003), 1-
16. 2

[Deb98] DEBEVEC P.: Rendering synthetic objects into
real scenes: bridging traditional and image-based graph-
ics with global illumination and high dynamic range pho-
tography. In Proceedings of the 25th annual conference
on Computer graphics and interactive techniques (1998),
ACM Press, pp. 189-198. 5,6

[DP73] DouGLAS D., PEUCKER T.: Algorithms for the
reduction of the number of points required to represent a

digitized line or its caricature. The Canadian Cartogra-
pher 10,2 (1973), 112-122. 2,3

[Goo94] GooDRICH M. T.: Efficient piecewise-linear
function approximation using the uniform metric: (pre-
liminary version). In Proceedings of the tenth annual sym-
posium on Computational geometry (1994), ACM Press,
pp- 322-331. 3

[HS92] HERSHBERGER J., SNOEYINK J.: Speeding up
the douglas-peucker line-simplification algorithm. In Pro-
ceedings of the 5th International Symposium on Spatial
Data Handling (Charleston, South Carolina, 1992), vol. 1,
pp- 134-143. 2,3

[KK03] KoLLIG T., KELLER A.: Efficient illumination
by high dynamic range images. In Eurographics Sympo-
sium on Rendering 03 (2003), pp. 45-51. 2,7, 8

[LF97] LALONDE P., FOURNIER A.: Generating reflected
directions from brdf data. Computer Graphics Forum 16,
3 (1997), 293-300. 2

[LRRO4] LAWRENCE J., RUSINKIEWICZ S., RA-
MAMOORTHI R.: Efficient BRDF importance sampling
using a factored representation. ACM Transactions on
Graphics (ACM SIGGRAPH 2004) 23,3 (2004). 2,6

[Mat03] MATUSIK W.: A Data-Driven Reflectance Model.
PhD thesis, Massachussetts Institute of Technology, 2003.
6

[MPBMO03] MATUSIK W., PFISTER H., BRAND M.,
MCMILLAN L.: A data-driven reflectance model. In SIG-
GRAPH 03 (2003), pp. 759-769. 6

[ODJ04] OSTROMOUKHOV V., DONOHUE C., JODOIN
P.-M.: Fast hierarchical importance sampling with blue
noise properties. ACM Transactions on Graphics 23, 3
(2004), 488-495. Proc. SIGGRAPH 2004. 2,7,8

[PHO4] PHARR M., HUMPHREYS G.: Physically Based
Rendering : From Theory to Implementation. Morgan
Kaufmann, 2004. 5,7, 8

[Ros97] ROSIN P. L.: Techniques for assessing polygonal
approximations of curves. IEEE Transactions on Pattern
Analysis and Machine Intelligence 19, 6 (1997), 659—-666.
3

[Sch94] SCHEAFFER R. L.: Introduction to Probability
and Its Applications (Statistics), 2nd ed. Duxbury Press,
1994. 3

[Vea97] VEACH E.. Robust Monte Carlo Methods for
Light Transport Simulation. PhD thesis, Stanford Uni-
versity, 1997. 2,4

[VGY95] VEACH E., GUIBAS L.: Optimally combining
sampling techniques for Monte Carlo rendering. In SIG-
GRAPH 95 (1995), pp. 419-428. 1,8,9

(© The Eurographics Association 2005.



