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Visualization of very Large Datasets

Improving progressive view-dependent isosurface propagation
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Abstract

Recently, we proposed a new isosurface extraction algorithm that extracts portions of the isosurface in a view-

dependent manner by ray casting and propagation. The algorithm casts rays through a volume to find visible active cells

as seeds and then propagates their polygonal isosurface into the neighboring cells. Small pieces of the isosurface are

generated by distance-limited propagation and joined together to form the final surface. This paper presents our

evaluation of several design choices of the algorithm. We have implemented these design choices and showed that by

making right design decisions, we can substantially reduce the time to obtain most (such as 99.9%) of the isosurface.

r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Applications such as large-scale simulations typically

generate scalar fields and store them as volumetric

datasets. A 3D scalar field F can be represented by a

volumetric dataset that has a set of data points and the

corresponding scalar values sampled at each point in the

set. To visualize the scalar field, a known method is to

display isosurfaces where F ðx; y; zÞ ¼ v for a given

threshold v: To visualize the isosurfaces of massive

datasets, the challenge is to develop an algorithm that

extracts the isosurfaces efficiently, requires modest

rendering power, and supports interactive, adaptive-

resolution visualization on a high-resolution display

system.

Much work has been done on extracting isosurfaces,

but all the existing algorithms have certain drawbacks.

The marching cubes [1] algorithm visits all n cells in the

dataset and triangulates the isosurface in each active cell,

i.e. a cell that has values above and below the given

threshold. Marching cubes are simple and straightfor-

ward, but examining all the cells in the dataset can be

unnecessarily time-consuming. Several subsequent algo-

rithms reduce the time spent on finding the cells that

intersect the isosurface. Wilhelm and Van Gelder used

an octree [2] to leverage object–space coherence and

discard sections of the dataset before examining them.

Cignoni et al. proposed the interval-tree method [3] and

Livnat et al. proposed to use span space [4]. In

preprocessing, both these algorithms sort all the cells

according to minimum and maximum values and

construct a search tree; then, for a given threshold,

these methods search the tree to find all the active cells.

Itoh and Koyamada used the extrema graph [5]

approach to find seeds on the isosurface and propagate

from these seeds. In the worst case, the seed set could

have size OðnÞ: Bajaj et al. described the contour trees

method [6] for finding small seed sets for isosurface

traversal.

Although these methods dramatically improve on the

original marching cubes algorithm, they do not try to

avoid generating occluded polygons, nor do they

manage the level of detail. As a result, they all generate

the complete isosurface at the finest data resolution (one

voxel). For very large datasets, generating and rendering

the whole isosurface will prevent users from viewing the

dataset at an interactive frame rate. Extraction can be

slow, and the sheer number of polygons in the isosurface

may overwhelm the hardware-rendering capabilities.

*Corresponding author. Tel.: +1-609-258-5030 fax: +1-609-

258-1771.

E-mail address: zhiyan@cs.princeton.edu (Z. Liu).

0097-8493/02/$ - see front matter r 2002 Elsevier Science Ltd. All rights reserved.

PII: S 0 0 9 7 - 8 4 9 3 ( 0 2 ) 0 0 0 5 2 - 3



Two isosurface visualization algorithms were recently

proposed to generate only the visible portions of the

surface. Parker et al. proposed a ray-casting algorithm

for isosurface extraction [7] that intersects viewing rays

with the data volume and then computes the isosurface

without generating an intermediate polygonal represen-

tation. For each ray intersecting the isosurface, a cubic

equation is solved to find the normal at the intersection

point. This approach is simple and requires no special

rendering hardware. The authors have parallelized the

algorithm to run on a 128-processor SGI Origin shared-

memory multiprocessor to offer interactive frame rates

for a 512� 512 display. However, the running time of
the algorithm is proportional to the number of pixels in

the display, it is therefore not well-suited for high-

resolution displays.

Livnat and Hansen described WISE as a view-

dependent isosurface extraction algorithm that uses

hierarchical tiles and shear-warp factorization for

visibility testing, which then renders the polygons

utilizing the graphics hardware [8]. They also used a

512� 512 display. Traversing the dataset in a front-to-
back order, (meta) cells are projected on the screen and

tested against the current screen coverage map for

visibility in software. Occluded (meta) cells are dis-

carded. Visible meta-cells are examined recursively. All

the triangles inside a visible cell are extracted and sent to

the graphics hardware, and the current screen coverage

map is updated accordingly. When the resolution of the

display increases, both the coverage map calculation

time and the space requirement for the hierarchical

visibility mask will grow proportionally. Very recently,

Livnat and Hansen have proposed SAGE [9], a view-

dependent algorithm that improves on the performance

of WISE.

Recently, we proposed a new hybrid algorithm that

shares several features of the existing acceleration

methods [10]. The main idea is to use ray casting into

an octree as a way to identify visible seed cells (rather

than computing the complete isosurface as in the

method of Parker et al. [7]) and then use propagation

(as in [5]) to extend the isosurface from the seed cells.

Unlike previous propagation methods that propagate to

the whole isosurface, our method uses a cut-off angle

and some viewing criteria to decide when and where to

stop the propagation for each seed cell. The isosurface

pieces will then be patched together to form a view-

dependent region of the isosurface, which includes all

the triangles that are visible and a small number of

occluded triangles that are near the visible surface. We

have demonstrated with the 512� 512� 209 Visible

Woman head CT data, that our implementation could

extract 99.5% of the visible isosurface quickly by casting

only o1% of the rays on a 1600� 1200 display. The
important feature of the algorithm is, it is progressive

and resolution-insensitive. An interesting question is

how to enhance this algorithm to make it substantially

more progressive and resolution-insensitive.

This paper investigates this issue by first analyzing the

algorithm we recently proposed and then evaluating

several key design choices. The design choices we have

compared include performing exact vs. approximate

intersection calculations, using cut-off angle distance vs.

using a maximum count to limit a propagation, different

values of the maximum count, three different orders of

ray casting, using or not using a screen bounding box,

and caching vs. calculating interpolants and triangles.

Our evaluation shows that some design choices and

parameters affect the performance of the algorithm

significantly, whereas some do not. By choosing the best

design choices, we can substantially reduce the time to

obtain most (e.g. 90%, 99%, or 99.9%) of the isosur-

face. Our experiments with the same dataset show

improvements by more than a factor of 2.4.

The rest of the paper is organized as follows. Section 2

describes the algorithm and several design choices.

Section 3 presents experimental comparisons of the

design choices. Section 4 shows the final result. Section 5

compares our results with other approaches and Section

6 summarizes our study.

2. The algorithm and design choices

The proposed algorithm may be viewed as an

extension to the propagation method [5]. Currently, it

works with structured rectilinear datasets. The main

contribution is to make the propagation algorithm view

dependent in a manner that is both efficient and

incremental, while supporting adaptive-resolution visua-

lization.

For the convenience of the description, let us first

define the active cell as follows. Given a threshold v; we
mark all the data points in the dataset with one of the

two signs: ‘‘+’’ indicates that the scalar value at that

point is above the threshold, while ‘‘�’’ indicates that
the scalar value is below the threshold. We only consider

the non-degenerated case where no one data point has

exactly the value v: If a cell has vertices of different signs,
then it is called an active cell, and the isosurface of

threshold v will intersect this cell.

A key observation the propagation approach made

was that if the vertices on a face of an active cell do not

have the same sign, then the neighboring cell that shares

the same face is also active. Therefore, the isosurface can

be extended into the neighboring cell. This means that

once an active cell is found as the seed, propagating the

isosurface from that cell is efficient because one can

avoid touching and examining inactive cells. However,

neither the extrema graph nor the contour trees

algorithm generates seeds that are guaranteed to be
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visible. An efficient propagation algorithm should

traverse only the active cells that are visible.

Our algorithm is executed in three stages, as Fig. 1

shows. For each pixel in the screen space, first a ray is

cast from the eye through the pixel into the dataset and

the intersection is calculated. Next, the first active cell

that contains a portion of the isosurface that intersects

with the ray (if it exists) is used as the seed and

propagated for a certain distance. Third, all the active

cells that have been visited in this pass are examined,

case numbers are generated and the parts of the

isosurface in these cells are triangulated using Marching

Cubes method.

2.1. Ray casting

Our method uses ray casting to identify active cells as

seeds for propagation. The ray-casting step finds the first

active cell in which the isosurface triangulation intersects

with the ray. This cell is guaranteed to be visible. If it has

not been visited, then this active cell will be used as the

seed for the propagation step. Note that this cell is not

necessarily the first active cell a ray intersects, as Fig. 2

shows. The first active cell a ray intersects may have an

isosurface triangulation that does not intersect with the

ray, which means the triangulation will not render the

corresponding pixel. By finding the first active cell that

actually renders the corresponding pixel, we guarantee

that for each ray cast, the corresponding pixel has the

correct color. After a ray has been cast for each pixel,

the final image will be correct. This proves that our

algorithm is conservative.

2.1.1. Intersection calculation

In order to make the ray-casting step efficient, we

preprocess the dataset to build a branch-on-need octree

(BONO) proposed by Wilhelms and Van Gelder [2]

when it is first read into the memory. In the ray-tracing

method [7], a 3-level hierarchy was used. This is a trade-

off between time and space requirements. The octree has

an OðlogDÞ level hierarchy, where D is the size of the

longest side of the dataset. Thus, it uses more space, but

the intersection computation is faster.

For each ray, first the algorithm runs recursively to

find the first active cell that it intersects. The ray is first

tested against the whole dataset. If it intersects the

dataset and the threshold is between the overall

minimum and maximum of the dataset, then the sub-

regions in the dataset that intersect the ray are examined

in a front-to-back order. The algorithm performs

intersection tests and value comparisons recursively

until it finds an active cell that the ray intersects, as

shown above. If the algorithm exits without finding a

cell, then the ray does not intersect with any active cell in

the dataset.

Once the active cell is found, we proceed to test

whether the isosurface triangulation inside it actually

intersects with the ray. If not, the next active cell the ray

intersects is found and tested. This is done till an active

cell whose isosurface triangulation intersects with the

ray is found or the ray exits the dataset, which indicates

that the isosurface does not cover the corresponding

pixel.

To decide whether the isosurface triangulation in an

active cell intersects the ray, each triangle of the

isosurface within the cell is tested for ray intersection.

The triangulation contains from 1 to 5 triangles and if

any triangle intersects the ray, we render all of them. To

perform ray-triangle intersection tests efficiently, we use

the method proposed by M .oller and Trumbore [11]. The

test algorithm is fast and requires minimum storage.

We use a hash table to record those cells that have

already been visited. If the active cell found by the

recursive algorithm has not been visited, then we will

mark it and use this cell as the seed for the propagation

 

Fig. 1. Illustration of the algorithm. Rays are cast into the

dataset; a patch of surface is propagated from each seed cell

found.

Fig. 2. An example where the first active cell of a ray intersects

does not have an isosurface triangulation that intersects with

the ray.
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step. If the active cell has been visited, then no further

action will be taken.

To accelerate the ray-casting step, we use integer

coordinates for the data points. The eye and screen are

mapped back to the object coordinate system using the

current model view matrix. The coordinates of the data

points are fixed and implicit: each data point is on a grid

and has integer coordinates. The intersection is sig-

nificantly faster than using the world coordinate system

because every intersection test is with a cube with edges

parallel to coordinate axes.

There are two design choices to do intersection

calculation. The first is exact intersection, which involves

isosurface triangulation and vector calculation. The

potential disadvantage of this approach is that multiple

active cells may be visited and tested before the seed is

found. Another method is to approximate an intersec-

tion, where we accept the first active cell that intersects

the ray as the seed and later check the ray to guarantee

correctness. In Section 3.1, we will report our experi-

mental results to compare the two approaches. Based on

the results, we decided to use exact intersection.

2.1.2. Ray-casting order

The granularity of ray casting determines the speed

and the precision of isosurface extraction. Fine-grained

ray casting takes time, but it yields precise isosurface

representation. Our design lets the user control the

density of the rays. When the user changes the threshold

or the viewpoint, all the calculations for the previous

setup are immediately stopped and new ones begin. If

the user does not interrupt, a ray will be cast for each

pixel and the correct isosurface will be generated.

There are several ways to cast rays for the algorithm.

* Fixed refining grids: A straightforward way is to cast

sparse and evenly distributed rays in the screen space,

then cast rays on progressively finer grids to increase

the ray density gradually till a ray has been cast for

each pixel or the user interrupts the extraction. This

method uses a predetermined hierarchy of grids to

determine the ray-casting order. The rays are

organized in a quad-tree fashion. The first level

consists of one ray that moves from the center of the

screen. The second level has 4 rays that are each from

the center of one of the 4 quadrants. In general, each

level of rays forms a uniform grid that doubles the

resolution and contains 4 times as many rays as the

last level. At the deepest level, rays simply fill in the

pixels that have not been accounted for.
* Screen read-back: The second way to cast rays is to

dynamically decide the ray-casting order based on

the pixels rendered so far. After casting all the rays of

a particular level, the algorithm will read back all the

pixels of the screen. This method first casts rays

whose corresponding pixels have not been rendered

and then cast rays whose corresponding pixels have

been rendered.
* Dynamic grid: Another method is to dynamically

decide the grid resolution based on the first piece of

isosurface generated. When the first piece of new

isosurface is generated, the algorithm will test nearby

rays to decide the rough size of the surface and

dynamically generate a grid in the hope of covering

the screen space quickly without leaving any isosur-

face gaps. The rest of the rays are then cast in the

fixed refining grids order.

It is not obvious which of these methods work well.

To evaluate the ray-casting order, we have implemented

all three ray-casting schemes and compared them in

Section 3.2. The dynamic grid performs the best in our

experiments.

2.2. Propagation

Our algorithm uses a queue for propagation. Initially,

the active cell found in the ray-casting step is the only

one in the queue. For each cell in the queue, the

algorithm dequeues it, sends it to the triangulation step,

and checks all its active neighbors. If the active neighbor

cells have not been visited and satisfy certain propaga-

tion criteria, then they will be added to the queue.

An important issue is propagation distance, which

determines how far the propagation for each seed cell

should go. The further the propagation proceeds, the

fewer inactive cells the algorithm has to examine. On the

other hand, although the seed is visible, the cells that it

propagates to are not necessarily visible. More propaga-

tion may increase the chance of traversing occluded

cells. Also, expanding out of the screen space is not

desirable.
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We have considered two design choices. As shown by

the figure on the left, the first way is to calculate the

angle a between the current ray and the vector from the

eye to the cell being propagated. We set a cut-off angle y
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and use it as the propagation distance. At each

propagation step, the algorithm calculates a for the

current cell and stops adding it to the queue if a > y: This
method is fairly conservative in terms of generating

visible triangles, but it requires vector calculations for

each cell visited, which introduces overhead to each

propagation step.

Another method is to simply use a maximum count m

as the propagation distance. In this case, m is the

maximum number of cells the propagation from a seed

cell can visit. It is often possible that each pass of

propagation will visit fewer than m cells. The ray can hit

a gap in the current isosurface and the propagation will

stop once the gap is filled and all the neighboring cells

have already been visited. Or the ray can hit an isolated

isosurface component that contains less than m cells.

The advantage of this approach is its simplicity.

We have evaluated these two approaches in Section

3.3. We decide to use a maximum count because of the

significant improvement in performance. We also

investigated how to choose the value of m in Section 3.6.

2.3. Adaptive-resolution isosurface

For a large dataset, it is possible that a faraway cell is

of sub-pixel size when projected on the screen. If it is an

active cell, then more than one triangle in the isosurface

will be rendered onto the same pixel. That is a waste of

computing resources and does not increase the quality of

image. Our algorithm detects such cases and reduces the

data resolution to 2� 2� 2 (treating a meta-cell that

consists of 8 cells as a single cell and ignoring all the

inside values) or even lower. This is feasible because our

ray-dataset intersection walks down an octree hierarchy.

We can stop at any resolution if the (meta-) cell projects

to less that one pixel on the screen. Given the eye

position, screen position, and screen resolution, we can

compute an array D; such that for a meta-cell of size
2i � 2i � 2i; if its distance from the screen plane is larger

than D½i�; then it should be treated as one single cell.
When the propagation crosses the resolution boundary

defined by D; our algorithm stops at the boundary. At

the resolution boundary, there will be cracks in the

actual representation of the isosurface, i.e. the triangles

from different resolutions may not connect to each

other, but the cracks will not be visible because they are

of sub-pixel size. Every pixel that the isosurface covers

will be rendered by the active cell that is found in the

intersection phase using the ray that goes through the

center of the triangle. This is similar to [8], where the set

of triangles that are rendered is only a subset of all the

visible triangles, and where a single point is used to

represent a faraway meta-cell. The view-dependent

methods generate results that the user perceives as

identical with the complete representation from his

current viewpoint.

Since in many cases the whole dataset is positioned in

the same LOD region, a single test can be done to reduce

the number of dynamic LOD decisions made.

3. Performance evaluation

We have implemented the algorithm on a PC running

Windows 2000, and conducted experiments to evaluate

several design choices described in the previous section.

The PC hardware includes a 933Mhz Pentium III CPU,

an NVIDIA GeForce 3 graphics card, and 512MB of

main memory.

We applied our algorithm to the head section of the

Visible Woman CT data, using a 512� 512� 209
dataset, which is at its original data resolution. The

visualization is done in full screen mode with a screen

resolution of 1600� 1200. In the absence of user

interrupt, 1,920,000 rays will be cast, one from each

pixel.

To quantitatively measure how close an intermediate

representation of the isosurface is to the correct and final

representation, for each pixel that has been rendered in

the final representation, we check whether it has the

same color in the intermediate image, and if so name it

as a final pixel. The percentage of the final pixels among

all the rendered pixels C indicates the correctness of the

intermediate image.

In the following comparisons, we record points where

C ¼ 90; 99, 99.9 and the end of calculation, when every
ray has been cast. Note that 100% correctness can

happen before the end of the calculation. For each

point, the elapsed time, number of triangles generated,

and number of rays cast are measured as a way to

compare different design choices.

The basic implementation is the one reported in our

conference version of the paper [10]. Our original

implementation performs exact ray-isosurface intersec-

tion for each ray, uses a cut-off angle to control the

propagation, and casts rays in fixed refining grids.

3.1. Exact intersection vs. approximate intersection

In Section 2.1.1, we discussed two approaches to

intersection calculation for ray casting: exact intersec-

tion and approximate intersection. Table 1 shows the

performance of both approaches. Both tests use a cut-off

angle y of 21.
Although approximate intersection appears to require

less computation, some rays have to be checked twice.

As a result, the total running time is actually longer than

the exact intersection approach. The difference in

performance is fairly small with the exception of total

running time.
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3.2. Cut-off angle vs. maximum count

We have considered two design choices of propaga-

tion distance to control the extent of the propagation for

each seed cell: cut-off angle and maximum count. Table

2 shows the results of the two approaches with best

parameters of m and y: The left column of Table 2 gives
the performance of using a maximum count of 8000. The

right column is the performance of the cut-off angle

approach with y ¼ 21:
It is clear that the maximum count approach is

superior to the cut-off angle approach. The running time

is substantially less than the cut-off angle approach. This

is because the cut-off angle approach requires more

complex calculations than the simple maximum count

and may generate large numbers of invisible triangles

when propagating to a piece of occluded isosurface that

runs almost parallel to the ray.

3.3. Three ray casting schemes

Three ray casting schemes are considered: fixed

refining grids, dynamic approach based on screen read-

back, and dynamic grid based on the first piece of

isosurface. Table 3 shows the results. In all three tests, a

maximum count of 8000 is used.

The results suggest that the three ray-casting schemes

give similar performance. The dynamic grid scheme has

the best running time to reach C ¼ 99:9%. Since the

improvement is not significant, we still use the Fixed

Refining Grids for its simplicity. We intend to experi-

ment and improve the performance of Dynamic Grid in

the future.

3.4. Caching interpolants and triangles

Isosurface triangulation is expensive because inter-

polation involves floating point divisions. An internal

edge is shared by 4 cells so that it will be visited 4 times.

We use a hash table to record the interpolants.

Each vertex in the isosurface is shared by 6 triangles

on average. Instead of copying the coordinates and

normally repeating it we use indexed face sets as the

representation for a patch of isosurface generated from

one pass of propagation. The interpolant cache is reset

at the beginning of each pass of propagation. When an

item in the hash table is hit, only its index in the vertex

array is returned. In our experiments, indexed face sets

save 60–70% storage space and render faster.

All the triangles generated are cached to accelerate

ray-triangle intersections. All the face sets are stored in a

scratch space so that there is no overhead for triangle

caching.

Table 1

Comparing two intersection choices for ray casting

C Time (s) Ds (K) Rays

Exact

90 1.37 654 833

99 1.72 784 4456

99.9 1.78 786 8711

100 13.8 809 1.92M

Approximate

90 1.44 683 833

99 1.73 774 4508

99.9 1.87 776 4855

100 18.7 798 1.92M

Table 2

Comparing two propagation distance methods: maximum

count and cut-off angle

C Time (s) Ds (K) Rays

Maximum count

90 0.80 380 209

99 0.98 463 879

99.9 1.38 591 18,013

100 13.2 640 1.9M

Cut-off-angle

90 1.37 654 833

99 1.72 784 4456

99.9 1.78 786 8711

100 13.8 809 1.92M

Table 3

Experiment results of three ray-casting orders

C Time (s) Ds (K) Rays

Fixed refining grids

90 0.80 380 209

99 0.98 463 879

99.9 1.38 591 18,013

100 13.2 641 1.92M

Screen read-back

90 0.81 380 209

99 0.98 463 879

99.9 1.34 575 18,013

100 13.5 641 1.92M

Dynamic grid

90 0.73 340 118

99 1.03 486 1016

99.9 1.23 552 8636

100 13.3 650 1.92M
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The performance improvements by using interpolant

and triangle caching are shown in Table 4.

3.5. Screen-bounding box

When the isosurface covers only a small part of the

screen, many ray-isosurface intersection tests will return

negative. In some of the tests, the ray does not intersect

the dataset at all. CPU cycles are wasted without

contribution to the results. We partially solved this

problem by projecting the dataset onto the screen and

finding the screen-bounding box for the dataset. Rays

outside the bounding box will not be cast. In our

experiments, this optimization shortens the running time

for remote viewpoints. When the bounding box covers

the full screen, this optimization introduces negligible

overhead by doing one more comparison per ray. We

scale down the size of dataset on the screen by different

percentages and show the respective reductions in

running time by using screen bounding box in Table 5.

Since in the normal viewpoint we use the dataset which

covers almost the whole screen, there is only minimal

improvement.

3.6. Impact of m

The choice of m can affect the performance of the

algorithm. Table 6 below shows how the position of

point C ¼ 99:9% and total number of triangles rendered

the change with m:
Generally speaking, too small an m causes more rays

to be cast to generate the approximate result, while too

big an m propagates to more invisible triangles. Both

these affect the performance of the program. The best

choice of m also varies with the threshold. Certain

profiling of dataset should be done to decide m offline.

4. Final results

In this section we present test results from our

optimized implementaion. Graph 1 shows, in an

experiment of extracting the visible woman’s skin, how

the correctness, the number of active cells visited, the

number of triangles generated, and the percentage of

rays cast change as the computation proceeds. The three

vertical lines show the positions of points where C ¼ 90;
99, 99.9. The corresponding statistics are shown in

Table 7. The corresponding screen images are shown in

the color plate 1.

Graph 2 and Table 8 show the result from another

experiment that extracts the bone structure from visible

woman’s head. The similarity between the graphs shows

that our algorithm behaves consistently. Both cases

show that the proposed algorithm works progressively

and efficiently. After casting a few rays, our algorithm

generates most of the isosurface.

In the skin extraction case, over 90% of the isosurface

is extracted in 0.52 s with only 79 rays cast, whereas

99.9% of the isosurface is extracted in about 1.07 s with

about 0.7% rays cast. To obtain 100% pixels, it took

11.7 s. The bone extraction case has similar curves but it

took 0.99 s to obtain 90% of the isosurface and 2.65 s to

extract 99.9% of the isosurface. The total extraction

Table 4

The left and right columns show the performance of our

program with interpolant and triangle caching turned on and

off, respectively

C Time (s) Ds (K) Rays

Caching on

90 0.64 380 209

99 0.78 463 879

99.9 1.13 591 18,013

100 11.7 641 1.92M

Caching off

90 0.80 380 209

99 0.98 463 879

99.9 1.38 591 18,013

100 12.9 641 1.92M

Table 5

The effect of using screen-bounding box

Size (% of normal) 100 50 25 10

Reduction in running time (%) 3 24 39 49

Table 6

The effect of various maximum count values

m (K) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C ¼ 99:9 (s) 3.73 1.52 1.31 1.33 1.20 1.07 1.10 1.13 1.07 1.17 1.18 1.15 1.18 1.12 1.26

#T (K) 506 529 558 562 609 620 639 641 661 669 636 659 685 738 768
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took 12.7 s. This is because the isosurface of the bone

has about 70% more triangles to render than the skin.

The last 0.1% of pixels took much longer time to

extract in both cases, but they make very little difference

on the screen.

5. Comparisons with other algorithms

It is difficult to compare our approach quantitatively

with other approaches, without implementing them all

on the same hardware platform. However, we can make

some qualitative comparisons. Here, we focus on view-

dependent work.

Our approach allows viewers, to see the shapes of the

isosurface after casting only a few rays, whereas in the

na.ıve implementation of ray tracing the visual quality is

Table 7

Different points in graph 3, m ¼ 9000

C Time (s) Ds (K) Rays

90 0.52 306 73

99 0.79 461 947

99.9 1.07 569 13,361

100 11.7 661 1.92M

Plate 1. The left column shows four progressively refined

images of the skin surface generated at points C ¼ 90%,

99%, 99.9% and the end of calculation in graph 1. The right

column shows four images of the bone surface generated

at points C ¼ 90%, 99%, 99.9% and the end of calculation in

graph 2.

SKIN (� = 600.5, left column in Color Plate) 

0K

200K

400K

600K

0 2 8 10 12
Elapsed time (s)

0%
20%
40%
60%
80%
100%

# voxels {K} # triangles (K)
correctness (%) rays cast (%)

Graph 1: The front full view of the skin. 

4 6

Bone (�=1224.5, right column in Color Plate) 

0K

500K

1000K

0 4 6 8 10 12
Elapsed time (s)

0%
20%
40%
60%
80%
100%

# voxels {K} # triangles (K)
correctness (%) rays cast (%)

Graph 2:The front fullview of the bone.

2
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linear in both the number of rays cast and the elapsed

time. Also, our approach leverages the cost-effective

rendering performance of PC graphics cards. Similar to

the ray-tracing approach, our algorithm is image–space

based and can be parallelized.

To perform a crude comparison with the WISE

method of Livnat and Hansen [8], we ran our algorithm

using the same size display (512� 512 pixels) as they
used in the recent experiments [9,12] with the same

visible woman dataset. The results of their experiments

indicate that running on an SGI Onyx 2 they extract

344,628 triangles in 35.8 s, and then render this surface

in 0.6 s. In contrast, our method, running on a Pentium

III 933MHz PC with GeForce 3 graphics card, extracts

and renders 463,600 triangles in 4.8 s (m ¼ 500) or

614,937 triangles in 2.4 s (m ¼ 9500). Based on the

relative clock rates on the platforms, we expect that our

performance would be better on the SGI than that of the

WISE algorithm. Very recent work by Livnat and

Hansen introduces SAGE [9,12], a view-dependent

algorithm that improves on the performance of WISE

(and given the relative hardware difference probably

also exceeds the performance of our algorithm), with

a reported extraction time of 4.4 s and a rendering

time of 0.3 s for the same dataset. Since our visibility test

is more conservative, our method extracts and renders

many more triangles than the WISE and SAGE

algorithms. However, our experiments indicate that

triangle rendering is not a bottleneck, and inexact

visibility allows us to quickly find large portions of the

surface. Our algorithm very quickly provides a good

approximation of the surface: 99.9% correctness is

achieved after only 1.01 s on the 512� 512 display

(m ¼ 9500).

Finally, taking the 99.9% entry from Table 7 (1.07 s),

we see that while the number of the pixels increases by

more than a factor of 7 (262,144–1,920,000), the time to

compute the approximate surface increases only

slightly. To extract 99.9% of the isosurface requires

casting 13,361 rays, which is o0.7% of the total pixels

on the screen. This means that the progressive aspect

of our algorithm is very insensitive to screen resolution

and therefore scales well for very high-resolution

displays.

6. Conclusions and future work

This paper studies how to improve a newly proposed

isosurface extraction algorithm based on ray casting and

propagation. We have learned the following from our

evaluation of the design choices of the algorithm:

* Exact intersection calculation is slightly better than

approximate intersection calculation.
* Using a maximum count instead of a cut-off angle to

control propagation can substantially reduce the

running time to extract most of the isosurface.

Maximum count approach produces a smaller

number of triangles than the cut-off angle approach.
* Ray-casting order does matter slightly. The dynamic

grid performs the best. There might be other

improvements to this method.
* Caching interpolants and triangles can improve the

performance.
* Using a bounding box for the dataset can effectively

reduce the number of rays required.
* The maximum count value can impact the perfor-

mance slightly.

By carefully making design decisions, we can improve

the algorithm significantly. The resulting algorithm

improves the progressive aspect substantially. In extract-

ing the same skin isosurface, our old implementation

reaches C ¼ 90% and 99.9% at 1.26 and 3.03 s

respectively. To extract 90% of the isosurface, the new

approach improves over the original one by a factor of

2.4. To extract 99.9%, it improves by a factor of 2.8 and

requires casting only a few number of rays, o0.7% of

the pixels of the display screen.

Our algorithm is suitable for high-resolution displays.

The results reported in this paper were generated using a

PC at full screen (1600� 1200) resolution. We would
like to adapt the algorithms presented here for use with

tiled displays, as part of the Princeton Display Wall

Project [13]. As an initial step, we ran the program on a

large-scale (18-foot) display surface covered by 24 tiled

projectors arranged on a 6� 4 grid, yielding more than
20 million pixels. A server PC drives each projector, and

each PC runs a copy of the isosurface extraction

algorithm. When the isosurface is spread over several

projectors, we find a corresponding performance im-

provement because each PC has a partial view of the

surface and has fewer triangles to extract and render.

However, when the isosurface falls entirely within one

projector, the performance drops to that of a single PC.

To address this problem, we are now working on a load-

balanced parallel version of the algorithm.

Currently, the entire dataset resides in memory, which

limits the size of dataset that can be visualized. Since

surface propagation has a strong data-locality, we

believe that it will be possible to adapt an out-of-core

version of our algorithm.

Table 8

Different points in graph 4, m ¼ 5000

C Time (s) Ds (K) Rays

90 0.99 523 801

99 1.65 830 4738

99.9 2.65 1070 73,099

100 12.7 1112 1.92M
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Remote data visualization has become an important

area of research because massive amounts of data are

generated and distributed over the network. Since our

algorithm aims to reduce the number of triangles

generated as well as maintain a fast extraction speed,

we believe that it is suitable for remote data visualiza-

tion. Moreover, surface propagation yields triangle

patches that should perform well under geometry

compression. Finally, we intend to exploit data-locality

due to frame-to-frame coherence in interactive data

exploration when adapting our algorithm for remote

visualization.
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