
DecoBrush: Drawing Structured Decorative Patterns by Example

Jingwan Lu1,3 Connelly Barnes2 Connie Wan1 Paul Asente3 Radomir Mech3 Adam Finkelstein1
1Princeton University 2University of Virginia 3Adobe Research

(a) (b) (c) (d)

c ©
Ji

ng
w

an
L

u

(e)
Figure 1: The “flower boy” drawing (e) was created by synthesizing decorative patterns by example along user-specified paths (a)-bottom.
(a)-top and Figure 2d show a subset of the exemplars for this floral style. (b), (c), and (d) show a closeup of the right ear. In (b), portions
of the exemplars, shown outlined with dashes in green, yellow and purple, are matched along the user’s strokes. Graph-cuts shown in red
reduce but do not completely eliminate artifacts in the overlap regions, as seen in (c). Starting with this initialization, we run texture synthesis
by example (d) and then vectorize the result (e).

Abstract

Structured decorative patterns are common ornamentations in a va-
riety of media like books, web pages, greeting cards and interior
design. Creating such art from scratch using conventional software
is time consuming for experts and daunting for novices. We intro-
duce DecoBrush, a data-driven drawing system that generalizes the
conventional digital “painting” concept beyond the scope of natural
media to allow synthesis of structured decorative patterns following
user-sketched paths. The user simply selects an example library
and draws the overall shape of a pattern. DecoBrush then synthe-
sizes a shape in the style of the exemplars but roughly matching
the overall shape. If the designer wishes to alter the result, Deco-
Brush also supports user-guided refinement via simple drawing and
erasing tools. For a variety of example styles, we demonstrate high-
quality user-constrained synthesized patterns that visually resemble
the exemplars while exhibiting plausible structural variations.

CR Categories: I.3.4 [Computer Graphics]: Graphics Utilities

Keywords: stroke, stylization, data-driven, decorative patterns

Links: DL PDF WEB VIDEO DATA

1 Introduction

Designers rely on structured decorative patterns for ornamentation
in a variety of media such as books, web pages, formal invitations,

commercial graphics and interior design. Digital artists often create
such patterns from scratch in software like Adobe Illustrator. The
artwork is typically represented as a set of outlines and fills using
vector primitives like Bézier curves. In conventional software,
the creation process can take hours to complete, even for skilled
designers, and represents a steep learning curve for non-experts.
Moreover, restructuring or repurposing an existing pattern can
be painstaking, as it can involve many low-level operations like
dragging control points.

This paper introduces “DecoBrush”, a data-driven drawing system
that allows designers to create highly structured patterns simply by
choosing a style and specifying an approximate overall path. The
input to our system is a set of pre-designed patterns (exemplars)
drawn in a consistent style (Figure 1a). Off-line, we process these
exemplars to build a stroke library. During the drawing process,
the user selects a library, and then sketches curves to indicate an
intended layout. The system transforms the query curves into
structured patterns with a style similar to the exemplar library but
following the sketched paths. DecoBrush allows both experts and
non-experts to quickly and easily craft patterns that would have
been time consuming for the experts and difficult or impossible for
novices to create from scratch.

Our work is inspired by recent progress in example-based drawing
methods, such as the work of Lu et al. [2013] as well as work en-
abling structural variation like that of Risser et al. [2010]. The kinds
of highly-structured decorative patterns shown in this paper present
a particular challenge for example-based texture synthesis, where
most of the methods have been optimized for continuous-tone im-
agery where artifacts are largely hidden by fine-scale texture.

Our pattern synthesis works as follows. We first divide the query
path into segments that are matched to similar segments among the
exemplars, using dynamic programming to efficiently optimize this
assignment. We then warp the segments using as-rigid-as-possible
deformation to approximate the query path. Next at the joints where
neighboring segments overlap, we rely on graph cuts (shown red
in Figure 1b) to form a single, coherent figure that approximates
the hand-drawn path. Despite the use of nearly-rigid warps com-
bined with graph cuts at the joints, the resulting figure generally

http://doi.acm.org/10.1145/2601097.2601190
http://portal.acm.org/ft_gateway.cfm?id=2601190&type=pdf
http://gfx.cs.princeton.edu/pubs/Lu_2014_DDS/index.php
http://gfx.cs.princeton.edu/pubs/Lu_2014_DDS/decobrush.mp4
http://gfx.cs.princeton.edu/pubs/Lu_2014_DDS/Dataset.zip

(a) aboriginal (b) doodle (c) curly (d) floral (e) leaves (f) palm (g) rose (h) wings

Figure 2: Structured stroke patterns used as exemplars. Copyrights: (a) Depositphotos.com/Rud-Volha, (b) Depositphotos.com/pimonova,
(c-d) Webdesignhot.com, (e) Ozerina Anna/Shutterstock.com, (f) Ornate Vector Florals, (g) Depositphotos.com/to mua to, (h) Daichi Ito.

suffers from small stretching artifacts from the warp as well as mis-
alignments at the joints (Figure 1c). Therefore we adapt structure-
preserving hierarchical texture synthesis techniques to repair, refine
and diversify the query stroke appearance. Our texture synthesis
pipeline both ameliorates feature distortion within the warped ex-
emplar segments and repairs broken local structures at the joints
(Figure 1d). We also show that when synthesizing from coarse
levels the pipeline brings additional structural variation into the de-
sign, consistent with the style of the exemplars. If the designer is
not completely satisfied with the result of this process, our system
also supports user-guided refinement of the synthesized result – a
few new strokes with brush or eraser tools form the input to a sup-
plemental texture synthesis step that seamlessly incorporates the
newly-drawn constraints with earlier results. Finally, we obtain a
vector representation of the synthesis results (Figure 1e). The pro-
posed synthesis pipeline is efficient, which facilitates applications
such as user-guided pattern diversification and sketch-based deco-
ration of confined regions.

Our primary contribution is the idea of synthesizing structured dec-
orative patterns along user-sketched paths, thereby generalizing the
conventional digital “painting” concept beyond the scope of natural
media to incorporate art traditionally represented in vector form.
We show that starting from an initial figure carefully constructed
from exemplar segments, a hierarchical texture synthesis pipeline
can efficiently produce structured decorative patterns. DecoBrush
is the first system to be able to synthesize by example structured
patterns like those shown in this paper. Moreover, our pipeline al-
lows the designer to specify both the overall shape of the resulting
pattern as well as user-guided refinement to control fine detail.

2 Related Work

here have been procedural approaches for synthesiz-
ing decorative patterns. The early pioneer work by
Wong et al. [1998] use procedural rules to grow dec-
orative patterns for the application of automatically
filling a confined region. Other than reshaping and

resizing the target region, they do not investigate other types of user
interactions. Other procedural approaches allow growing structured
patterns along a user-specified path ([Chen et al. 2012] and [Ander-
son and Wood 2008]), but the range of supported styles is heavily
limited by the employed simplistic procedural rules. Měch and
Miller [2012] introduce an interactive procedural modeling frame-
work, which generates complex decorative patterns. The procedural
rules target plant-like structures and are hand-crafted by profes-
sional artists. Defining procedural rules for faithful reproduction
of general structured patterns remains a challenging problem.

A variety of research has addressed data-driven stroke synthesis,
where the general goal is to synthesize the appearance of the query
stroke by example based on a 1D input path. The skeletal strokes of
Hsu et al. [1993] warp pieces of the same structured texture to styl-
ize lines. They focus on controlling the deformation of the selected
features on the picture and do not introduce structural variations
into the synthesis results. Curve analogies [Hertzmann et al. 2002]
introduces a statistical model for synthesizing new curves by exam-
ple. However, they target 1D curves instead of the shape and texture
of 2D strokes. Previous work use small patches of stroke exemplars
to stylize users’ input lines ([Kim and Shin 2010] and [Ando and
Tsuruno 2010]). The work of Lu et al. [2013] improves the syn-
thesis quality by warping and blending long exemplar segments.
They also synthesize the natural media stroke interactions by ex-
amples. Other work ([Zhou et al. 2013] and [Lukáč et al. 2013])
support exemplars with repetitive small-scale local structures. We
target multiple exemplars that contain high-level large-scale struc-
tures and characteristic appearance at both ends of the strokes. For
this purpose, we borrow the piecewise matching idea from Lu et
al. [2012], [2013] as the first step of our synthesis pipeline, which
gives a good initial guess of the possible query stroke structure.

Another related line of research is structured texture synthesis.
Markov Random Field-based texture synthesis approaches, stem-
ming from the pioneering work of Efros and Leung [1999], make
the assumption that the appearance of a pixel is only dependent on
a local spatial neighborhood regardless of the rest of the image.
This model works well for homogeneous continuous-tone imagery.
However, this assumption is weakened for highly structured tex-
tures where large-scale geometric features such as long connected
lines are present, especially in binary or vector imagery where ar-
tifacts are difficult to hide. Previous work introduce hierarchical
tile-based synthesis approaches, which better handle structured tex-
tures. Instead of synthesizing the image structure sequentially pixel
by pixel, which often results in unrecognizable structures, previ-
ous work ([Lefebvre and Hoppe 2005] and [Lefebvre and Hoppe
2006]) explore the idea of tiling the exemplars and introducing
structural variations by coordinate jitter and correction. They fo-
cus on synthesizing larger textures from a single small exemplar.
Risser et al. [2010] introduce structure-preserving jitter and showed
further evidence that the hierarchical tile-based synthesis frame-
work is able to preserve, modify and repair image structures. They
also extend the synthesis pipeline to consider multiple source ex-
emplars. However, their goal is to synthesize variations of the
exemplars without any user constraints. We, on the other hand,
target synthesizing new structured patterns following a user spec-
ified path. We borrow ideas from texture synthesis methods and
follow the hierarchical upsampling and correction pipeline. The

Figure 3: Drawing results. From left to right, the butterfly, teapot, fish and tree lady are synthesized using the exemplars in Figure 2c, 2e,
2a, 2f. The blue curves in the lower right corner show the input query paths. c©Jingwan Lu

major difference is that we enforce user constraints by initializing
the synthesis field using the matched exemplar segments that follow
a similar path to the query. We also modify the upsampling and
correction steps to suit our goals. The synthesized patterns contain
meaningful structures and closely follow the input query path.

There has been work to use texture synthesis techniques to arrange
discrete elements, [Barla et al. 2006], [Ijiri et al. 2008], [Hurtut
et al. 2009], [Ma et al. 2011], [Kazi et al. 2012], [Landes et al.
2013] and [AlMeraj et al. 2013]. The general idea is to define rela-
tionships between elements on a graph and synthesize new patterns
by searching for input elements with graph-based neighborhood
matching and pasting them to target locations. These approaches
only support discrete primitives that do not intersect each other.
However, the exemplars we have contain long, curly, intersect-
ing lines and complex layout which pose additional challenges for
defining inter-element relationships.

3 Algorithm Overview

ecent advances in sketch-based stroke synthesis ([Lu
et al. 2013] and [Lukáč et al. 2013]) demonstrate
promising results for synthesizing natural media
strokes. The input strokes are not structured and can
be combined using simple alpha blending. These ap-

proaches generate results that closely follow the user’s sketches, but
cannot be directly applied to decorative patterns due to the diffi-
culty of combining exemplar segments of very different structures.
On the other hand, there has been remarkable progress in texture
synthesis for structured exemplars ([Lefebvre and Hoppe 2006] and
[Risser et al. 2010]) . However, the synthesis of high-level semantic
contents following user constraints remains a challenging problem.
We combine the advantages of both types of approaches for the new
application of “painting” decorative patterns.

To prepare the exemplars for synthesis, we need to extract a stroke-
like semantic structure for each exemplar. We optionally convert
the exemplars to a signed distance field representation (Section 4.1),
which can preserve lines better for some exemplars. We then semi-
automatically parameterize the exemplar stroke (Section 4.2). We
also precompute the neighborhood information at every pixel so
that runtime synthesis is efficient (Section 4.3).

At runtime, given a query stroke spine specified by the user, we
look for long segments of exemplar strokes that have similar shape
(Section 5.1) and apply as-rigid-as-possible deformation to align
them with the query path (Section 5.2). We then apply graph cut
to optimize the transition boundaries between the nearby exemplar
segments (Section 5.3). The result of graph cut provides a good
initial layout for the query stroke. We then use hierarchical texture
synthesis approach to further reduce the warping artifacts and repair
the broken image structures (Section 5.4). Finally, we vectorize the
synthesized result using Adobe Illustrator.

4 Exemplar Processing

e target synthesizing structured patterns such as
the ones in Figure 2. The exemplars can have
either a raster or vector representation. We have
focused on synthesizing decorative florals, styl-

ized fonts and other structured vector patterns. The exemplars share
common characteristics: 1) They are composed of variable width
curves and other simple solid-colored geometric shapes; 2) They
have stroke-like structures with a clear directionality indicated by a
center curve and/or the orientations of a group of curves; 3) They
have unique appearance at the beginning and the end of the stroke.

We collect several libraries of structured patterns. Each library
contains between 8 and 12 strokes all following a consistent design.
The design is characterized by the choice of geometric primitives,
the branching structures, the thickness and curviness of lines, etc.
We collect strokes of different shapes, lengths and spine curvatures,
which are then semi-automatically processed to create a library.
Each library stroke is limited to lie within a square of resolution
512x512. We rasterize the exemplar strokes and optionally compute
Signed Distance Field (SDF) representation (Section 4.1). Then
we parameterize the exemplars (Section 4.2) in preparation for
the runtime synthesis. Finally, we also pre-compute per-pixel
neighborhood information on the raster exemplar (Section 4.3) for
efficient runtime synthesis.

4.1 Signed Distance Field

Before further processing, we rasterize the input
exemplars and optionally calculate the Signed
Distance Field (SDF) [Leymarie and Levine
1992]. In the SDF, black pixels have negative
distances to the shape boundary and the white pixels have positive
distances. The SDF effectively thickens the feature lines and in-
troduces gradient information enriching the neighborhood informa-
tion, which facilitates the piecewise matching process (Section 5.1)
and the texture synthesis process (Section 5.4). Before the final
vectorization, we simply threshold the SDF to extract a level set.
However, as shown in Figure 4, the use of SDF can prove detrimen-

(a) SDF (b) non-SDF (c) SDF (d) non-SDF

Figure 4: Tradeoff of using SDF vs not using SDF. Lines are
often joined better when using SDF (a,b), however this can also
sometimes make spurious joins between unrelated lines (c,d).

tal on some exemplars, where it can join unrelated lines. Thus we
leave SDF usage as optional (we note in the supplementary where
it has been used). The inset figure on the right shows an example of
the SDF representation.

4.2 Exemplar Parameterization

Each decorative stroke has a clear directionality. The directionality
is sometimes suggested by a continuous line that runs from the start
to the end of the stroke. Other times, a number of lines collectively
hint where the center branch is. To conduct synthesis, we need to
extract the location of the main branch as a sequence of sample
positions. To simplify the problem, we manually specify the start
and end points of the main branch. Note that the start and end points
do not have to be located on the tips of the structure or even on any
of the feature lines (Figure 5a). The curls at the ends of the stroke
serve for the purpose of decoration more than direction indication.
They are part of the style that should be preserved in the synthesis
results. By straightening the main branch towards the ends of
the stroke, we can effectively simulate such curly appearance even
when the query path is relatively straight.

With the two end points specified, we solve for the main branch
by optimizing a path between them. Our goal is that the path
does not wiggle too much, roughly follows the edge tangent flow
(ETF) ([Kang et al. 2007]) of the exemplar, and is smooth. We find
a polyline found by running Dijkstra’s algorithm on a pixel grid
containing the exemplar, where nodes of the graph are the pixels,
and edges connect each pixel to neighbors distributed roughly
uniformly in 32 directions. Each edge carries a weight w based on
the vector v between the two adjacent pixels as w = |v|+ wf (1−
fp) + wc(1 − c) where: f is the dot product of the v with the
ETF sampled at its midpoint; c is the difference in curvature at the
ends of this edge; and wf , wc and p are user-specified constants
that control the behavior of these terms. (We found wf = 10,
wc = 3 and p = 4 to work well in practice.) Finally, we fit a quartic
polynomial to the vertices of the polyline to produce a smooth main
branch that fits the artwork.

This typically produces a good match to the artwork and requires
very little user effort. However, sometimes it fails to match the
artwork well, especially where semantic understanding of the shape
is required. In these cases, it is straightforward for the user
to sketch a preferred path for the main branch directly over the
artwork. The optimized main branch (red to green indicates the
stroke directionality in Figure 5a) coincides with the “center” of
the pattern, slightly straightened up at both ends of the stroke. We
then follow [Lu et al. 2013] to obtain the uv parameterization of
the whole stroke (Figure 5b). Each stroke consists of between 30
and 100 samples, where a sample t = {x̂, l̂, r̂} consists of the 2D
positions of the spine, left and right outline samples respectively.

(a) (b) (c)
Figure 5: Parameterization. (a) The user specifies the blue end
points and the spine. The transition from red to green indicates
the directionality of the stroke from the start to the end. (b) The
system then automatically parameterizes the stroke. (c) Given the
end points, we can optionally optimize the red spine automatically.
The blue square and arrow indicate the search neighborhoods are
aligned with the stroking orientation.

4.3 Per-Pixel Processing

For efficient runtime synthesis, we further pre-process the exemplar
image (or SDF if used) to extract hierarchical per-pixel information.
We calculate three Gaussian pyramid levels for each exemplar.
Note that since we do not jitter the coordinates, the Gaussian
stack [Lefebvre and Hoppe 2005], which requires more memory
and computation, is not needed. At each level, we only consider
the pixels inside the automatically extracted stroke outline. We
calculate a per-pixel orientation ωe = (ωe

x, ω
e
y), by interpolating

the stroking orientations at the spine and the outline samples.
The orientation of the spine is defined as x̄i = x̂i − x̂i−1. The
orientation of the outline is defined as ⊥ l̄i and ⊥ r̄i, where
l̄i = l̂i − x̂i and r̄i = r̂i − x̂i. We then calculate an oriented 5x5
local neighborhood for each pixel with the upright direction (blue
square and arrow in Figure 5c) of the neighborhood aligned with
the per-pixel orientation ωe.

5 Query Stroke Synthesis

ere we describe our process for converting a user-
drawn stroke into a decorative pattern of roughly
the same overall shape. First, we consider how to
match segments from the exemplar set to overlapping
portions of the query path. Next, we warp their

shapes to better match the path. Because the warped shapes
overlap at joints between the segments, we use graph-cuts to seek
a seamless boundary between neighboring segments. Finally, to
address distortion artifacts and mismatched boundaries, we use
texture synthesis to find a shape similar to the output from warping
and graph-cuts but everywhere locally matches the exemplar set.

5.1 Piecewise Matching

Given a query spine (blue curve in Figure 6a), we estimate a rough
2D shape (based on pressure sensing) and the uv parameterization
(Section 4.2). We then adapt the piecewise matching algorithm
proposed by Lu et al. [2013] to find a sequence of exemplar
segments from the library and merge them together for the query
stroke. To collect candidate nearest neighbors from the exemplars,
for each query sample, we use the same feature vector as proposed
by Lu [2013] that includes the turning angle, the stroke width and
the distance to the endpoints. In the dynamic programming step,
we heavily penalize the ends of the query stroke being matched
to the middle parts of the exemplars. For structured exemplars, it
is especially critical to avoid cutting short the ends, since it might
destroy important features and lead to broken lines that are hard to
repair. We also avoid matching the middle parts of the query stroke
to the end parts of the exemplar strokes and heavily penalize any
jumps between library segments that have very different appearance
or have very different stroke thickness at the segment boundaries
(thickness is the rib length in the uv parameterization). After
finding the appropriate library segments, we extend each segment
in both directions to overlap the nearby matched segments. In
Figure 6, the query stroke is matched to three exemplar segments.

5.2 As Rigid As Possible Deformation

To synthesize decorative patterns closely following the user’s in-
tent, we need to align the spines of the exemplar segments with
the input query spine. The warping method introduced by [Lu
et al. 2013] leads to noticeable texture distortion for the structured
exemplars (Figure 6a). We instead use As Rigid As Possible De-
formation ([Igarashi et al. 2005]) to reduce the distortions. The
query stroke’s spine samples (blue curve in Figure 6a) are fixed at
the input locations. The locations of the outline samples (green
curve in Figure 6b) are optimized to reflect the original shape of the

(a) (b) (c) (d)

Figure 6: Synthesis Pipeline. (a) The warping introduced by
[Lu et al. 2013] results in noticeable distortions. (b) We apply
As Rigid as Possible Deformation to recalculate the shape of the
query stroke. (c) We find the optimal cuts (red curves) within the
overlapped regions (outlined in yellow). (d) We apply hierarchical
texture synthesis to reduce the residual artifacts.

exemplar segments. The use of As Rigid As Possible Deformation
minimizes the amount of structural distortion and therefore leaves
an easier task for the texture synthesis step (Section 5.4) to remove
the residual warping artifacts. Note that though it is later changed,
the query stroke’s input outline (green curve in Figure 6a) is uti-
lized for the piecewise matching process in constructing the feature
vector. Thus, if thin query strokes are drawn with little pressure,
then thin exemplar segments are likely to be matched.

5.3 Graph cut

After the adjacent library segments are extended and deformed, we
detect the region where they overlap (outlined by yellow curves in
Figure 6c). We apply a 2-label planar graph cut algorithm [Schmidt
et al. 2009] to find the least cost cut that smoothly transitions from
one library segment to another. We define a graph on the overlap
region where each pixel is a node and each node has four edges
connecting the adjacent nodes. Each pixel (j, k) corresponds to
two stroke textures, L and R. Then the cost of each node Ec and
edge Ed is defined as:

Ec = wc(2− Lj,k −Rj,k) + C (1)

Ed =

(Lj,k −Rj,k+1)2 going up
(Lj,k −Rj,k−1)2 going down
(Lj,k −Rj+1,k)2 going right
(Lj,k −Rj−1,k)2 going left

(2)

Ec penalizes lengthy cuts and cuts that pass through black feature
lines on the exemplar, which might result in undesirable changes
in line thickness. Ed represents the difference in intensity of the
two adjacent pixels along the edge direction from the two library
segments respectively. We use C = 0.02 and wc = 0.01. Figure 6c
shows the result after applying graph cut, in comparison to that of
applying a naive cut along the stroke rib in the middle of the overlap
region in Figure 6b. The red curves indicate the cuts.

The output of the piecewise matching and the graph cut steps
include, for every query pixel, a local orientation ωq = (ωq

x, ω
q
y)

(Section 4.3) and a 3D texture coordinate µ = (i,x,y), where i
indicates the index of the exemplar from which this pixel originates.

5.4 Texture Synthesis

The graph cut step (Section 5.3) finds good transition boundaries
most of the time, but at times the results might contain undesirable
distortions and broken or jagged line structures (Figure 8a). We
therefore apply a fast hierarchical texture synthesis step to fix the
distortion and the broken structures, inspired by the approach pro-
posed by Lefebvre et al. [2005]. Their key idea is to initialize, syn-

(a) 1 orientation (b) 11 orientations

Figure 7: Searching over more orientations slightly improves the
synthesis results.

thesize and upsample the exemplar coordinates instead of the pixel
values. During the upsample step, the finer level pixels inherit and
offset the coordinates of the coarser level. Using coordinate inheri-
tance better preserves the sharp image features compared to apply-
ing bilinear interpolation on the pixel values. We follow their syn-
thesis pipeline, but modify the steps to suit our need. The synthesis
pipeline is initialized using the exemplar coordinates produced by
graph cut (Section 5.4.1). Then, we improve the image structures
by iteratively replacing the initialized exemplar coordinates with
the center coordinates of the appropriate exemplar neighborhoods
(Section 5.4.2). The synthesized exemplar coordinates are then up-
sampled to the next finer level (Section 5.4.3). We alternate the
correction and upsample steps until we reach the finest level and
skip the upsample step at the finest level. We found three synthesis
levels produce good results (Figure 6d).

5.4.1 Initialization

We initialize the texture synthesis pipeline by performing the graph
cut step with the exemplars at low resolution (usually 128x128).
The graph cut outputs an exemplar coordinate to initialize every
synthesis pixel.

5.4.2 Correction

The essential step that repairs the broken image structures is in-
spired by the correction step proposed by Lefebvre et al. [2005],
which we briefly review. During correction, the exemplar coordi-
nate of each query pixel is replaced by the center coordinate of an
exemplar neighborhood that is most similar to the query neighbor-
hood measured by L2 distance. The correction step also uses the
idea of coherent synthesis ([Ashikhmin 2001]), and considers the
3x3 immediate neighbors of the current query pixel. Correction can
be applied to non-adjacent pixels independently, which allows fast
parallel processing. Several iterations of this step for each pixel at
each synthesis level ensure that the synthesis result is locally similar
to the exemplars everywhere and therefore faithful to the style.

We adapt this step in several ways. We sample rotated query neigh-
borhoods with the up axis aligned with the per-pixel orientation, ωq

(calculated in the same way as in Section 5.3). Rotating both the
exemplar and the synthesis neighborhoods to align with the stroking
direction increases the chances of success for neighborhood match-
ing. In the overlap region of the adjacent exemplar segments (red
curves in Figure 6c), the image structures are the most challenging
to repair. We therefore apply approximate nearest neighbor search
[Muja and Lowe 2009] to find the most similar 5x5 exemplar neigh-
borhood among all exemplar strokes for each 5x5 query neighbor-
hood. For each query pixel, we additionally gather eight coherent
exemplar neighborhoods by applying an appropriate offset to the
coordinate of each pixel in the 8-connected neighborhood. We favor
choosing the closest coherent neighborhood unless the L2 distance
to this neighborhood is significantly larger (5 times or more) than
the L2 distance to the approximate nearest neighbor. We find the
use of strong coherence very important for fixing image structures
and maintaining clean feature lines. For the non-overlap region,
we find it satisfactory to only select the best one among the eight
coherent neighborhoods for faster synthesis performance. To better

(a) (b) (c) (d)
Figure 8: Synthesis refinement. (a) The graph-cut step sometimes
finds sub-optimal transition boundaries. (b) The texture synthesis
step reduces but cannot completely remove the artifacts. (c) Users
can apply refinement strokes (yellow indicates erasing and blue
indicates adding). The light blue regions indicate the masks inside
of which the synthesis pipeline modifies the exemplar coordinates.
(d) The final synthesis result. Notice that though the user’s scribbles
are noisy, the synthesis pipeline produces smoother curves.

tolerate the distortion introduced by the warping step (Section 5.2),
we can optionally sample a few query neighborhoods rotated at
several different angles around and including the stroking direction,
ωe. We perform the search for each rotated query neighborhood
and select the exemplar coordinate µ and the optimal query orien-
tation ωe that gives the lowest L2 neighborhood distance. Figure 7
demonstrates slight quality improvement when orienting the query
neighborhoods at 11 different orientations around the stroking an-
gle. Due to the diminishing return of searching over different ori-
entations, all results of the paper are generated searching only one
orientation exactly aligned with the stroking orientation.

5.4.3 Upsample

To initialize the synthesis field of the next finer level, we inherit the
exemplar coordinates obtained by the correction step. To turn one
center pixel into four surrounding pixels of the finer level, we use
the optimal orientation ωe to calculate the four offsets to be applied
to the inherited exemplar coordinates. Specifically, each child pixel
of the finer level l inherits the parent coordinate of level l− 1 in the
following way: Sl[p + ∆] := Sl−1[p] + JT

e (p)Jq(p)∆, ∆ =

(+−1/2 +− 1/2)T , where Jq(p) =

(
ωq
x ωq

y

ωq
y −ωq

x

)
and Je(p) =(

ωe
x ωe

y

ωe
y −ωe

x

)
denotes the Jacobian matrices for the query and the

exemplar neighborhoods respectively.

5.5 User-guided Refinement

Often the result of texture synthesis is satisfactory. However, in
some cases, the graph cut step finds a sub-optimal cut due to
the dissimilarity between the nearby segments (Figure 8a), which
poses a challenging problem for texture synthesis. On top of
the synthesized result (Figure 8b), users can optionally refine
the design or fix the remaining artifacts by scribbling refinement
strokes. The refinement strokes are drawn as black or white discrete
pixels (visualized as blue or yellow pixels in Figure 8c) at the
highest synthesis level, which facilitate adding or removing features
respectively. To improve upon user’s imprecise refinement strokes
and obtain clean feature curves, we apply a slightly modified texture
synthesis pipeline. We first dilate the refined pixels to obtain a
binary mask M (visualized as light blue region in Figure 8c), which
indicates the region of pixels to be changed. We downsample the
refinement strokes and the binary mask for two levels until the

(a) Graph-cut (b) Final result (c) Low resolution
Figure 9: Texture synthesis improves on graph-cuts, if performed
at sufficient resolution. (a) Graph-cut gives good initialization at
the cost of small artifacts. (b) Texture synthesis removes the local
artifacts and connects broken lines. (c) Using exemplars at lower
resolution of 256× 256 cannot preserve thin line structures in the
synthesis results compared to using 512× 512.

coarsest synthesis level and seed the synthesis pipeline. At the
coarsest level, we disable the coherence search for the user refined
pixels, since there are no corresponding exemplar coordinates at
these locations. We find the corresponding exemplar coordinates by
searching for nearest exemplar neighborhood. We then upsample
the updated exemplar coordinates to the next level and continue
the usual synthesis pipeline (Section 5.4). At each synthesis level,
the pixels outside the mask are locked and remain unchanged.
At the coarsest level, the pixels inside the mask are updated to
reflect the user’s refinement constraints, and at other levels they
are unconstrained. The hierarchical synthesis pipeline effectively
smooths user’s refinement strokes by matching to the exemplar. The
synthesized curves are smoother than the initial refinement strokes,
which is useful for novices who have difficulty drawing clean lines.
All results of the paper, except the capital letters and Figure 8 are
generated without synthesis refinement.

6 Results

he results in the paper are all synthesized with exem-
plars of a maximum resolution of 512 × 512 for per-
formance and memory considerations. Figure 9 shows
that for datasets which contain very thin lines, using
resolution higher than 256 × 256 is crucial for main-

taining thin line structures. On the other hand, for the exemplars
in Figure 2b, 2e and 2f, we find the resolution of 256 × 256 is
enough for synthesizing reasonable structures. The whole synthesis
pipeline takes about 1-2 seconds to synthesize a stroke similar to
the one in Figure 6. At 512 × 512, the synthesis is about 5 times
slower. On average, each stroke in the paper takes about 8 seconds
to finish. We did our performance measurement with the following

(a) 64× 64 (b) 128× 128

Figure 10: Tradeoff of starting the texture synthesis from different
resolutions. Starting the synthesis with exemplars at lower reso-
lution improves the smoothness of the curves, but aggravates the
problem of incorrectly connecting nearby sub-structures.

(a) (b) (c)
Figure 11: Synthesis limitations: Even though graph-cut results in
separate structures (a), synthesis sometimes falsely connects them
together (b). Details can appear in inappropriate places, like the
partial flower in the middle of the stroke (c).

(a) (b) (c) (d)

Figure 12: Natural media synthesis. (a) Dry watercolor exemplars.
(b) RealBrush with alpha blending. (c) DecoBrush using same
exemplars. (d) DecoBrush using pastel exemplars.

hardware, Intel Core i7 2.3 GHz CPU. We believe the performance
can be improved to real-time by implementing the synthesis correc-
tion step on GPU ([Lefebvre and Hoppe 2005]).

The synthesis starting level can be determined by the user based
on the quality of the graph cut result. For minor texture distortion
(uneven and jagged curves), starting the synthesis using the exem-
plar resolution of 256× 256 can sufficiently smooth out the feature
curves. With more severe texture distortion or broken lines, synthe-
sizing three hierarchy levels starting from 128× 128 improves the
results. Starting from even lower resolution presents a trade-off in
the result quality. With the exemplar resolution of 64 × 64, close-
by features are sometimes merged together undesirably (magenta
arrows in Figure 10a), while on the other hand, the synthesized
curves are usually smoother (magenta arrow in Figure 10b). This
reveals a limitation (Figure 11a,b) of our approach. Curves that are
near each other might be represented by only a few pixels at the
coarse levels and are sometimes integrated into a single component
through the synthesis correction steps.

We tested the robustness of our system by sketching strokes of dif-
ferent lengths and shapes synthesized with eight different exemplar
libraries (see supplementary materials). We also made simple draw-
ings and decorative designs shown in Figure 1e, 3, 20 and 19. Each
of the designs was created by novice with less than 20 strokes in
total. The blue input query paths are shown inset. The resulting
drawings contain complex structures in the styles of the exemplars.
We vectorized our drawing results using Adobe Illustrator.

If gray-scale image exemplars are used, our approach is also able
to synthesize structured natural media exemplars with improved

Figure 13: Color synthesis. With simple extension to the synthesis
pipeline, DecoBrush can also synthesize colored strokes.

(a) DecoBrush (b) RB (alpha) (c) RB (synth)
Figure 14: Comparison with RealBrush [Lu et al. 2013], using
exemplars in Figure 2h and 2d. (a) DecoBrush. (b) RealBrush
using alpha blending. (c) RealBrush using texture synthesis.

(a) DecoBrush (b) [Lukáč et al. 2013]
Figure 15: Comparison with the Painting By Feature method of
Lukáč et al. [2013]. (a) DecoBrush, using exemplar library in
Figure 2b. (b) Method of Lukáč et al., using single exemplar shown
in the upper right corner (note blending artifacts).

(a) DecoBrush (b) [Zhou et al. 2013]
Figure 16: Comparison with the work of Zhou et al. [2013]. The
two strokes are synthesized with the exemplars in Figure 2c and 2e.
(b) shows jagged spine and feature cutoff at the end.

quality. Figure 12 demonstrates that compared to RealBrush,
our synthesis results are free of blending artifacts and contain
realistic variations in the stroke thickness. Figure 13 shows that our
system also addresses colored exemplars. We convert the colored
exemplars to grayscale image and synthesize them using the regular
pipeline. Since the main synthesis component works by referencing
texture coordinates, we obtain the synthesized colors by directly
reading them from the exemplars.

In Figures 14, 15 and 16, we compare with RealBrush [Lu et al.
2013], Painting by Feature [Lukáč et al. 2013] and the work of Zhou
et al. [2013]. In Figure 14, the RealBrush alpha blending result
introduces noticeable distortions, and the texture synthesis module
removes delicate line structures, since it was designed for highly
textured media such as sponge or glitter. In Figure 15, Painting by
Feature introduces ghosting artifacts and does not handle the stroke
ends differently from the middle. Figure 16 shows that the method
of Zhou et al. chops the exemplars into smaller pieces, cuts off
the exemplar features at the end of the query stroke, and generates
jagged spines that do not closely follow the user’s input path.

(a) (b) (c) (d)
Figure 17: Stroke Intersection and branching. (a-b) demonstrate
the self-intersecting strokes. (d) shows the result of branching two
strokes from the main spine in (c). (a) is synthesized with “doodle”
in Figure 2b. (b-d) are synthesized with “palm” in Figure 2f,

Figure 18: The word “Thank” is synthesized using the exemplars
in Figure 2b demonstrating intersection and branching appearance.

7 Limitations and Future Work

ecoBrush is the first system that can synthesize by
example structural patterns like those shown in this
paper along user-specified paths. Nevertheless there
are a number of limitations to our system, and many
of these suggest opportunities for future work.

Global structure limitations. The texture synthesis pipeline can
only remove small local artifacts, but cannot fix artifacts on a more
global scale, for example curvature discontinuities at a transition
boundary that can lead to wobbling in the output that is not
characteristic of the exemplars or the query curve. A more global
strategy for synthesis could potentially address these artifacts, but
we find that the most straightforward approach of deepening the
synthesis hierarchy is not effective.

Variation in output. Because the initialization to our texture syn-
thesis process comes from piecewise-matching portions of exem-
plars to the query path, the statistics of the resulting texture can
be skewed by the shape of the query. For example, a near perfect
circular query may cause a single, similar-curvature portion of an
exemplar to match repeatedly along the query, leading to repetition.
Lukáč et al. [2013] introduced an efficient algorithm for matching
the statistics of an exemplar set when selecting them for a linear
sequence. It may be possible to adapt their algorithm for our setting
where we need to take special care at the endpoints of curves and
also match the rough shape of the query. More broadly, our system
currently has no random component, so the same input always pro-
duces the same output. It would be nice to offer a mode suitable
for ideation where several different variations are presented and the
designer chooses among them.

Parameterization challenges. There are other general-purpose
parameterization techniques ([Sun et al. 2013] and [Schmidt
2013]), that are more complex than the one introduced in Sec-
tion 4.2. Additional parameterization challenges exist for our
particular problem. For example, when drawing a curve around a
sharp corner, branches that extend towards the curve can intersect
in the corner. We believe that a more sophisticated parameterization
of the path could ameliorate these artifacts. Moreover, our current
framework cannot handle some forms of decorative art – those with
very large features relative to the size of the strokes, or which do
not have an obvious directionality. To extend the kinds of artwork

Figure 19: The decorative frame is synthesized with Figure 2d. The
“wine glass” inside is synthesized with Figure 2c. c©Jingwan Lu

that could be handled well, it would be desirable to be able to
express secondary branches off the main spine. During sketching
this could provide additional control over where such features
appear. In addition it would be ideal if there is some mechanism
whereby a user could indicate regions of the exemplars that should
remain intact (such as the head of the flower in the “rose” dataset),
so that artifacts shown in Figure 11c can be avoided.

Vectorization from SDF. As discussed in Section 4, many of our
example styles work best when we synthesize a signed distance
field (SDF) rather than binary image as output. In such cases, our
current approach is to use Adobe Illustrator to vectorize from a
level set in the SDF. However, the synthesized SDF contains much
more data (highly redundant) than simply the values neighboring
the level set, and this information might be used to address small
topological problems that are difficult to repair directly from the
level set. One strategy might be to use the gradient and SDF
values sampled at many patches in the neighborhood of the level
set to generate point and normal samples at the boundary, and
then reconstruct a boundary from this (noisy) data using Poisson
reconstruction [Kazhdan et al. 2006].

Stroke Intersection and Branching. When a long stroke in-
tersects itself, the newly drawn part overwrites the previously
drawn parts. The texture synthesis pipeline refines all pixels in
the query stroke in the same way, including the overlap region.
We can synthesize meaningful intersections for datasets that con-
tain intersection-like structures, like “doodle” and “palm” (Fig-
ure 17a,b). In addition, we can emulate branching by starting a new
stroke from the main branch of a previously synthesized stroke. The
texture synthesis step merges the new structures with the existing
structures, creating a branching appearance. Figure 17c shows a
synthesized stroke before branching. Figure 17d demonstrates the
effect of adding two branches. Figure 18 and the other decorative
capital letters also demonstrate branching: the T, D, h, k, etc., are
generated with two strokes, where the beginnings of the second
strokes overlap the first strokes. To better handle intersections and
branching for more complex datasets such as “floral” and “wings”,
one should design explicit synthesis procedures for the overlap re-
gions based on exemplars that contain proper crossing and branch-
ing structures. Figure 20a shows that the current synthesis pipeline
does not synthesize optimal structure in the overlap region between
the two strokes of the digit “4”. Figure 20b shows the first stroke
before intersecting with the second stroke.

Figure 20: Stroke Crossing. Left: the number “2014” is synthe-
sized with the “wings” exemplars in Figure 2h. The digit “4”
is drawn with two crossing strokes. Our current pipeline cannot
synthesize proper crossing appearance due to the lack of crossing
structures in the exemplars. Right: the first stroke of the digit “4”.

Acknowledgements
We thank the reviewers for helpful feedback, and Daichi Ito who
provided the “wings” dataset. This research was sponsored in part
by generous gifts from Adobe and Google.

References

ALMERAJ, Z., KAPLAN, C. S., AND ASENTE, P. 2013. Patch-
based geometric texture synthesis. In Proceedings of the Sympo-
sium on Computational Aesthetics, ACM, CAE ’13.

ANDERSON, D., AND WOOD, Z. 2008. User driven two-
dimensional computer-generated ornamentation. In Proc. Inter-
national Symposium on Advances in Visual Computing.

ANDO, R., AND TSURUNO, R. 2010. Segmental brush synthesis
with stroke images. In Proc. Eurographics – Short papers.

ASHIKHMIN, M. 2001. Synthesizing natural textures. In
Proceedings of Symposium on Interactive 3D Graphics, ACM.

BARLA, P., BRESLAV, S., THOLLOT, J., SILLION, F., AND
MARKOSIAN, L. 2006. Stroke pattern analysis and synthesis.
In Computer Graphics Forum (Proc. of Eurographics 2006).

CHEN, Y.-S., SHIE, J., AND CHEN, L.-H. 2012. A npr system
for generating floral patterns based on l-system. Bulletin of
Networking, Computing, Systems, and Software 1, 1.

EFROS, A. A., AND LEUNG, T. K. 1999. Texture synthesis by
non-parametric sampling. In IEEE International Conference on
Computer Vision, 1033–1038.

HERTZMANN, A., OLIVER, N., CURLESS, B., AND SEITZ, S. M.
2002. Curve analogies. In Rendering Techniques, 233–246.

HSU, S. C., LEE, I. H. H., AND WISEMAN, N. E. 1993. Skeletal
strokes. In Proceedings of the 6th Annual ACM Symposium on
User Interface Software and Technology, ACM, 197–206.

HURTUT, T., LANDES, P.-E., THOLLOT, J., GOUSSEAU, Y.,
DROUILLHET, R., AND COEURJOLLY, J.-F. 2009. Appearance-
guided synthesis of element arrangements by example. In Proc.
of Non-Photorealistic Animation and Rendering, ACM.

IGARASHI, T., MOSCOVICH, T., AND HUGHES, J. F. 2005. As-
rigid-as-possible shape manipulation. In Proc. of SIGGRAPH.

IJIRI, T., MĚCH, R., IGARASHI, T., AND MILLER, G. S. P. 2008.
An example-based procedural system for element arrangement.
Comput. Graph. Forum 27, 2, 429–436.

KANG, H., LEE, S., AND CHUI, C. K. 2007. Coherent
line drawing. In Proc. of Non-photorealistic Animation and
Rendering, ACM.

KAZHDAN, M., BOLITHO, M., AND HOPPE, H. 2006. Poisson
surface reconstruction. In Proceedings of the fourth Eurograph-

ics symposium on Geometry processing.

KAZI, R. H., IGARASHI, T., ZHAO, S., AND DAVIS, R. 2012. Vi-
gnette: interactive texture design and manipulation with freeform
gestures for pen-and-ink illustration. In Proceedings of the 2012
ACM annual conference on Human Factors in Computing Sys-
tems, ACM, 1727–1736.

KIM, M., AND SHIN, H. J. 2010. An example-based approach
to synthesize artistic strokes using graphs. Computer Graphics
Forum 29, 7, 2145–2152.

LANDES, P.-E., GALERNE, B., AND HURTUT, T. 2013. A
shape-aware model for discrete texture synthesis. In Computer
Graphics Forum, vol. 32, Wiley Online Library, 67–76.

LEFEBVRE, S., AND HOPPE, H. 2005. Parallel controllable texture
synthesis. ACM Trans. Graph. 24, 3 (July), 777–786.

LEFEBVRE, S., AND HOPPE, H. 2006. Appearance-space texture
synthesis. In Proc. of SIGGRAPH, ACM, 541–548.

LEYMARIE, F., AND LEVINE, M. 1992. Fast raster scan distance
propagation on the discrete rectangular lattice. CVGIP: Image
Understanding 55, 1, 84 – 94.

LU, J., YU, F., FINKELSTEIN, A., AND DIVERDI, S. 2012.
Helpinghand: Example-based stroke stylization. ACM Trans.
Graph. 31, 4 (July), 46:1–46:10.

LU, J., BARNES, C., DIVERDI, S., AND FINKELSTEIN, A. 2013.
Realbrush: Painting with examples of physical media. ACM
Trans. Graph. 32, 4 (July), 117:1–117:12.

LUKÁČ, M., FIŠER, J., BAZIN, J.-C., JAMRIŠKA, O., SORKINE-
HORNUNG, A., AND SÝKORA, D. 2013. Painting by feature:
Texture boundaries for example-based image creation. ACM
Trans. Graph. 32, 4 (July), 116:1–116:8.

MA, C., WEI, L.-Y., AND TONG, X. 2011. Discrete element
textures. In ACM Transactions on Graphics (TOG), vol. 30,
ACM, 62.

MĚCH, R., AND MILLER, G. 2012. The Deco framework for
interactive procedural modeling. Journal of Computer Graphics
Techniques (JCGT) 1, 1 (Dec), 43–99.

MUJA, M., AND LOWE, D. G. 2009. Fast approximate nearest
neighbors with automatic algorithm configuration. In VISAPP
(1), 331–340.

RISSER, E., HAN, C., DAHYOT, R., AND GRINSPUN, E. 2010.
Synthesizing structured image hybrids. In Proc. of SIGGRAPH,
ACM, 85:1–85:6.

SCHMIDT, F. R., TOPPE, E., AND CREMERS, D. 2009. Efficient
planar graph cuts with applications in computer vision. In IEEE
Conf. Computer Vision and Pattern Recognition, IEEE, 351–356.

SCHMIDT, R. 2013. Stroke parameterization. In Computer
Graphics Forum, vol. 32, Wiley Online Library, 255–263.

SUN, Q., ZHANG, L., ZHANG, M., YING, X., XIN, S.-Q., XIA,
J., AND HE, Y. 2013. Texture brush: an interactive surface
texturing interface. In Proceedings of the ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games, ACM, 153–
160.

WONG, M. T., ZONGKER, D. E., AND SALESIN, D. H. 1998.
Computer-generated floral ornament. In Proc. of SIGGRAPH,
ACM, New York, NY, USA, SIGGRAPH ’98, 423–434.

ZHOU, S., LASRAM, A., AND LEFEBVRE, S. 2013. By-example
synthesis of curvilinear structured patterns. Computer Graphics
Forum 32, 2.

