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Abstract
The physiology of human visual perception helps ex-

plain different uses for color and luminance in visual arts.
When visual fields are isoluminant, they look the same
to our luminance processing pathway, while potentially
looking quite different to the color processing path. This
creates a perceptual tension exploited by skilled artists.
In this paper, we show how reproducing a target color
using a set of isoluminant yet distinct colors can both
improve existing NPR image filters and help create new
ones. A straight-forward, geometric technique for iso-
luminant color picking is presented, and then applied in
an improved pointillist filter, a new Chuck Close inspired
filter, and a novel type of image mosaic filter.

Key words: Nonphotorealistic rendering, color halfton-
ing, artistic dithering.

1 Introduction

In her bookVision and Art: The Biology of Seeing, Mar-
garet Livingstone writes

The elements of art have long been held to
be color, shape, texture, and line. But an even
more fundamental distinction is between color
and luminance. Color (in addition to repro-
ducing objects’ surface properties) can convey
emotion and symbolism, but luminance (what
you see in a black and white photograph) alone
defines shape, texture, and line. [18]

Physiologically, humans see the world in two different
ways. Initially, color and luminance are processed sepa-
rately by our visual system, and then this information is
integrated to give us our perceived final image.[6] When
two fields are isoluminant (i.e. possessing the same lu-
minance values), they look the same to our luminance
processing pathway, while potentially looking quite dif-
ferent to the color processing path. This creates a percep-
tual tension that skilled artists can exploit for quite aston-
ishing effects. For example, the sun in Monet’s painting
Impression Sunriseis often perceived by viewers to pulse
or shimmer because the sun’s luminance is the same as
that of the surrounding clouds even though the sun’s hue
is quite different! [18] (See figure 1 a and b)

(a) (b)

(c) (d)

Figure 1: Skilled artists can use isoluminant colors to
produce perceptual tension between the luminance and
color processing pathways of the human visual system.
In the sky of Impression Sunrise, Claude Monet selects
colors with radically different hues(a) but near constant
luminance(b). The result is a sun that appears to shim-
mer in the morning mist. [18] In (c), one region of Le
Cirque, Georges Seurat uses isoluminant blue and yellow
strokes(d) to both achieve the desired average color and
to convey changes in surface orientation along the belly
of a horse.

Skilled artists aside, most people find it difficult to
detect or choose isoluminant colors with differing hues,
probably due to the complexity of separating out lumi-
nance differences from those of hue and saturation.[13]
However, computers can both detect and choose isolum-
inant colors quite easily. Therefore it is surprising that
more work on incorporating isoluminance into computer
graphics, and more specifically non-photorealistic ren-
dering (NPR), has not been done. Often, the color pick-
ing in many NPR filters is just point or area sampling



with some random perturbation. No specific measures
are taken for maintaining input luminance values. Con-
versely, more general color picking algorithms in com-
puter graphics usually try to maximize color fidelity to
an input image given a fixed number of inks. Input lumi-
nance is maintained as a byproduct of color fidelity. Yet
strict color fidelity is often not desired in NPR filters.

In this paper, we show how isoluminant color picking
can be utilized to both improve existing NPR image fil-
ters and to create new ones. A straight-forward, geomet-
ric technique for isoluminant color picking in linear color
spaces is presented and then applied in a pointillist filter,
a new Chuck Close inspired filter, and a novel type of
image mosaic filter.

Specifically, contributions of this paper include:

• A discussion of how isoluminant color picking can
be used to improve NPR filters

• A method for isoluminant color picking

• An improved pointillist filter

• A new NPR filter modeled after a particular style of
paintings by the artist Chuck Close

• A new filter for stylized image mosaics.

The remainder of this paper is organized as follows.
In section 2, we discuss previous research. Section 3
presents our basic technique for picking isoluminant col-
ors, and then demonstrates how this technique can be
used to improve an existing pointillist filter. In sections
4 and 5, we apply isoluminant color picking to create a
Chuck Close inspired filter and a new type of image mo-
saic filter, respectively. Finally, section 6 presents con-
clusions and possible areas for future work.

2 Related Work

This paper explores the role of color reproduction based
on fixing luminance while allowing hue and saturation
to vary. The primary applications presented here are in
NPR. However, because we exploit the eye’s tendency to
integrate color over small spatial regions, our work also
relates to multi-color halftoning and artistic screening –
topics mainly studied in the context of offset printing.

Most painterly NPR image or video filters (e.g. [8, 10,
11, 17, 26]) focus on algorithms for producing realistic
brush strokes or paint textures, choosing colors for these
strokes by sampling the underlying image and then some-
times adding small, random perturbations to these sam-
pled values. Automatic NPR renderings of 3D models
(e.g. [4, 14, 19]) usually follow the same strategy, re-
lying on the underlying material properties and stylized
transformations of traditional analytic shading models to
dictate color.

One exception is the work of [7, 9]. The authors de-
velop a shading model for technical illustration based
on the artistic concepts oftoneand temperature, noting
that artists often use gradients in tone (i.e. variations
in hue but not luminance) to indicate changes in surface
orientation under a limited luminance range. Their ap-
proach, however, does not provide a fully general, auto-
matic method for selecting a finite set of isoluminant col-
ors, but instead focuses more specifically on continuous
tone variation. Artistic and art-historical literature[1, 18]
more directly discuss the importance of a color’s lumi-
nance and the role it plays in an artist’s ability to convey
“shape, texture and line,” offering evidence of the benefits
an automatic isoluminant color picking algorithm could
provide NPR applications.

The work of Sloanet al.[28] focuses on developing
a shading model based on a particular artist or artis-
tic genre, and therefore relates to our Chuck Close and
pointillist filters. However, [28] focuses on providing a
convenient interface for specifying non-realistic shading
models without directly addressing the benefit of constant
luminance color selection.

Like previous work in print reproduction of color
images[3, 21, 23, 29], this paper exploits the eye’s ability
to spatially integrate a multi-colored region. Our criteria
for color selection, however, is different. With color pick-
ing for offset printing, the goal is often to select a small
set of colors which can be combined to reproduce the en-
tire image, and with the objective of minimizing visual
artifacts in the final printed output. In our case, we select
colors locally (i.e. within image regions) to intentionally
produce visual artifacts at close range while converging
to the desired image when viewed from a distance.

Two example filters in this paper (sections 4 and 5) are
related to previous work in artistic screening[2, 21, 31]
because we also use images or texture maps to control the
spatial distribution of color within atomic image regions
and we seek to combine traditional halftoning techniques
with more aesthetic or expressive goals. However, our
work differs in that we select colors in each distinct cell
to intentionally disrupt the near visual field. Moreover,
we select colors locally and independently for each re-
gion. In contrast, with multi-color halftoning and artistic
screening, the fixed palette of colors is chosen such that
both the local and global color matching is as close as
possible to the original image.

The work of [24, 25] is an exception. They also present
geometric color picking algorithms (based on pairs of
colors) for linear color spaces. However, they inten-
tionally avoid isoluminance for aesthetics in achromatic
regions and for legibility in watermarking applications.
Additionally, instead of maximizing color differences for



aesthetic effect as we do, [24, 25] try to make these dif-
ferences as uniform as possible across the entire image in
order to achieve uniform readability. Consistent distance
isoluminant pairs are an interesting area for future work
with our technique.

Finally, a third category of related work is that of im-
age mosaics[5, 15, 27] in which a target image is repli-
cated by judiciously selecting from a library of images or
textures based on shape attributes. These previous works
also use color proximity as a selection criteria, and seek
to minimize any modifications to the library images. This
contrasts with our approach wherein we explicitly modu-
late our textures with colors that are chosen to be far from
those of the target.

3 Isoluminant Color Picking and Pointillism

In this section, we present a formal analysis of isolum-
inant color selection in the context of pointillism. A
general, target-driven method for choosing isoluminant
colors is presented and then applied to improve existing
pointillist filters.

Additive color theory was a primary motivation for
pointillist (and also divisionist) artists. The pointillists
believed that the “optical mixing” achieved by placing
small points of color with strong, differing hues near
each other resulted in brighter, more lively paintings than
could be obtained through physical pigment mixing, a
subtractive color process. [1, 16] In addition, the colors
chosen not only averaged to the desired targetcolor, but
also often had the crucial property of all being close to the
targetluminance.[18] We can see an example of this tech-
nique by looking closely at the horse’s belly in Georges
Seurat’s famous paintingLe Cirque.(See figure 1 c & d)

Our technique is based on this pointillist approach of
choosing a set of isoluminant yet visually distinct colors
to reproduce a desired color. Given a target colorC in a
linear color space and a set of weights{w1,w2, . . . ,wn}
that sum to 1, we wish to find some set of colors
{C1,C2, . . . ,Cn} such that

C =
n

∑
i=1

wiCi (1)

where∀i,Lum(Ci) = Lum(C). Geometrically, the above
equation means that for a given target colorC, we find
ann-gon on the same luminance plane asC such that the
barycentric coordinates ofC with respect to thisn-gon
match the weights{wi}.

For any set of vertices that satisfies the above con-
straints, uniformly scaling or rotating the polygon within
the luminance plane aroundC will result in a new poly-
gon whose vertices also satisfy these constraints. (Care
must be taken to guarantee these new vertices stay within

the region of visible light.) Restated, this isoluminant
condition alone yields a problem that is underconstrained
– there is, in general, no single solution for the set{Ci}.
A particular application might impose additional con-
straints or adopt a stochastic approach for generating sets
of isoluminant colors.

This discussion naturally leads to a novel isolumin-
ant pointillist filter where instead of performing point
sampling in the input image and perturbing the colors
randomly[10], one can generate clusters of points that av-
erage to the target while still maintaining isoluminance.
In a prototype filter, we chose to use euclidean distance in
the RGB cube as a reasonable approximation of percep-
tual distance – that is, we assume the size of the polygon
with vertices{Ci} will correlate with how much the col-
ors differ both from each other and from the target color.
We could have used other linear color spaces such as YIQ
or LEF [20] that may have allowed for a more efficient
implementation or better correlation with perceptual dis-
tance, but we leave such evaluation to future work.

For any source imageS, we first divide it into a reg-
ular grid of small cells. For each cell, we calculate its
average color,C, and its luminance,Lum(C). We pick
n colors with corresponding weights to approximate this
cell’s target color. For the pointillist filter, we choose
four colors, each with equal weight (1/4). In the RGB
cube, this corresponds to an isoluminant square centered
atC. The first color is chosen by picking a point isolum-
inant withC and at a some user-defined distanced from
C. Given this initial starting point, the remaining three
vertices of the square are fixed and can be calculated di-
rectly. We then uniformly scale this square, until any ver-
tex reaches a boundary of the RGB cube. In most cases,
this scale operation will increase the square’s area, and
thereby provide more color variation in the resulting ver-
tices. However, for target colors near the boundary of the
RGB cube, the initial square may need to be compressed
to accomodate the limited range of isoluminant colors.

The initial starting point can either be chosen in a ran-
dom direction, or it can be chosen at a fixed angle relative
to C. We used the latter as this tended to produce the ap-
pearance of a fixed palette of colors within fields of near
constant hue, and is therefore more similar to what artists
usually do. (As an example, see Seurat’s use of only two
colors for the horse’s belly in figure 1.)

For the pointillist images presented in this paper, the
input images were divided into cells of four-by-four pix-
els. The initial distanced was

√
2, and we used points

that were 5 pixels wide. When drawing our dots, we en-
sure there is neither significant overlap nor gaps in order
to match our weight choices. Our implementation of the
filter takes about one second to process the input image.



(a) Perturbed Sampling (b) Isoluminant Color Picking

Figure 2: Pointillist filter comparison. Here we show (a) the perturbed sampling approach based on [10] and (b) our
isoluminant technique described in section 3. Observe that in our approach, individual points are distinctly colored
(top right), yet the isoluminance criteria are still met (bottom right). The latter is not true for the perturbed sampling
approach. (Readers of the pdf are encouraged to zoom in on both images.)

Some results can be seen in figure 2.
We can make some initial observations. Haeberli’s

algorithm[10] does not adhere to luminance constraints
nor does it focus on choosing colors that are far from in-
dividual point samples while still blending to give the de-
sired colors.1 In figure 2, we can observe that without
local luminance control, the resulting imagery possesses
a “grainy” quality. In contrast, because our technique tar-
gets both local luminance fidelity and strong color varia-
tion, it is closer to the pointillist approach. In most areas
of the image, we achieve both nice color variation and lu-
minance fidelity. However, in areas where the target color
is close to the RGB cube boundary, our technique only
maintains the luminance constraint, yielding dot colors
that are very near the target. In these areas, performing
a linear interpolation between two colors or relaxing the
luminance constraint would produce larger color varia-
tion. We notice, though, that the pointillists sometimes
chose lower color variation in highly saturated areas, so
our current approach may be consistent with original art.

Related to the ideas of [25], controlling thed parame-
ter directly could be useful for specifying the visual diver-
gence of isoluminant color sets at near viewing distances.
Also, the algorithm will work with greater or fewer colors
and varying weights.

1The Adobe Photoshop pointillist filter suffers from these same
drawbacks. It is our belief that the Adobe Photoshop pointillist filter
is an implementation of [10], though we cannot be positive since it is
proprietary.

4 Chuck Close

In this section, we extend the isoluminant color picking
algorithm from the previous section to create a novel im-
age filter that renders portraits in the “blobby” style of
Chuck Close.

Close’s portraits are created by photographing the sub-
ject, subdividing both the source photograph and the des-
tination canvas into diamond-shaped grid cells, and then
reproducing each cell in the source photograph as a col-
lection of colored, concentric blobs. The canvases are
quite large (e.g. 8.5 feet high by 7 feet wide). When
viewed from far away, they resemble the original photo
due to spatial integration of color and the perceptual ten-
dency to concentrate on the larger shape of the face, not
the smaller shapes of the individual blobs.[22] However,
when viewed from a near distance, Close’s use of color,
isoluminance, and texture clutter the visual field [18],
invoking “a competition between the face and its con-
stituent blocks to engage our perception of shape from
shading.”[22]

Part of the magic in Close’s work is the knowledge that
these paintings are created by hand, with no aids other
than Close’s creativity and talent. A Chuck Close orig-
inal will always be unique and valuable. However, the
creation of an automatic filter for this style allows us to
both better understand Close’s work and to produce our
own portraits, which is appealing given that most of us
will never be the subject of an original Close painting.



If we had a library of source-destination pairs, we
could use a machine learning technique such as [12] to
produce such a filter. However, [12] has difficulty repli-
cating large scale structures like those found in Close’s
grid cells, particularly joined cells. In addition, a library
of source-destination image pairs is not readily avail-
able.

We begin by identifying some conventions in Close’s
work:2

1. Each target cell contains one or two nested quads
and then three to ten nested blobs.

2. Close often starts by filling the grid cell (the first
quad) with an arbitrary color, and then successively
adding layers to move closer to the target color.[30]
These nested quads and blobs often alternate in lu-
minance and/or color, having fewer luminance lev-
els than color levels, typically only two or three.

3. If there is no strong edge in a source cell, the tar-
get cell usually contains round blobs. Otherwise,
the target cell holds elongated vertical, horizontal, or
diagonal blobs depending upon the underlying edge
information in the source.

4. Diagonal blobs in adjoining cells that have simi-
lar average colors may merge across the shared flat
edge. In general, two to three cells at a time may
be joined this way, forming a single, larger diagonal
blob, or, occasionally, a “vee.” Vertical and horizon-
tal blobs are never joined.

5. Within large areas of little or no edge information
(such as the portrait background), Close often joins
diagonal cells in the above manner to eliminate uni-
formity in the visual field.

We approximate these properties using steps described
in the next two subsections, with the complete algorithm
described in section 4.3.

4.1 Joins and Shape Assignment
We begin by filtering the image with a Canny edge detec-
tor. We then compare each cell’s average edge magnitude
with a fixed threshold to decide if the cell has a strong
enough edge in order to address rules 3 and 4. We also
randomly sample cells to see if they are in large, flat ar-
eas, and thus should be joined according to rule 5.

Using this edge information, we assign five layers
(rule 1) of the appropriate shapes (rule 3) to each cell.
The first two layers are quads and the 3 remaining lay-
ers are nested blobs, rendered as alpha-blended texture-
mapped quads (see figure 3). At run time, each quad will

2In order to respect copyrights, we are unable to reproduce any
Chuck Close imagery in this paper. Readers are encouraged to view
theLyle portrait or other portraits in [30] in order to verify these rules
for themselves.

Example Round and Elongated “Blob” Masks

Figure 3: To capture the stroke style of Chuck Close we
modulate scaled and rotated texture masks with different
colors in each diamond cell. Elongated blobs can be used
for rendering joined cells.

be modulated with the appropriate layer colors and ren-
dered from outermost to innermost.

4.2 Calculating Layer Colors
For each cell, we choose the five layers colors such that
layers 1 and 3 are isoluminant, as are layers 2 and 4
(rule 2). Because the layers vary in size, we calculate
their relative areas in each cell as follows: For each layer
L in a given cell, we render it modulated with white, while
rendering all the other layers in black. Then, we sum up
the intensities of all pixels in this cell. The percent of
the cell covered byL is simply the current summed inten-
sity divided by the cell’s total area in pixels. This percent
coverage isL’s weight in the color picking algorithm.

Using these layer weights, we can compute the layer
colors in the following manner: given a target colorC
and a set of five weights{wi}, we determine two colors
C1 andC2 that satisfy the following:

C = w0L0 +(w1 +w3)C1 +(w2 +w4)C2,

whereL0 is the randomly chosen color for the cell’s out-
ermost layer (rule 2).

Then we modify the technique from section 3 to gen-
erate isoluminant pairs for unequal weights. Specifically,
for colorsC1 andC2, we wish to generate layer colors
{Li} such that:

C1 = (w1L1 +w3L3)/(w1 +w3)
C2 = (w2L2 +w4L4)/(w2 +w4)

Lum(L1) = Lum(L3)
Lum(L2) = Lum(L4),

where the distance between the isoluminant pairs is maxi-
mized. The implementation is to randomly chooseL0 and
test if a solution exists by checking if(C−w0L0)(1−w0)

http://www.boiseartmuseum.org/images/Close-Lyle.jpg


is a valid color. If the test fails, then a newL0 is ran-
domly chosen. Similarly, we randomly choose a newC1

and then test ifC−w0L0−(w1+w3)C1 is inside the RGB
cube. For eachC1, we iterate over all possibleL1’s. Each
L1 uniquely determines anL3, and we choose the max-
imally distant isoluminant pair that is still valid. Since
eachC1 uniquely determinesC2, we can proceed simi-
larly to determine the remaining colors. We continue it-
erating over choices forC1 until we find a valid set of
colors. It is also possible to maximize overall color pair
distances, but in practice we found the results to be vi-
sually similar with the drawback of significantly longer
computation times.

4.3 Algorithm
We can now put all of the above pieces together to state
the final algorithm:

1. Grid off the source image.

2. For each grid cell, calculate its average color, and
dominant edge orientation.

3. Join grid cells with a shared edge if they have the
same diagonal edge direction and similar average
colors. Also, randomly join cells in large, edge-
less areas. (For all remaining steps of the algorithm,
joined cells will be treated as a single cell.)

4. For each cell:

(a) Assign a set of nested blob textures of the ap-
propriate shape.

(b) Calculate the relative weight of each layer tex-
ture as in subsection 4.2.

(c) Given the relative layer weights and the cell’s
average color, calculate the layer colors as de-
scribed in subsection 4.2.

(d) Render the cell with each layer texture modu-
lated by its corresponding layer color.

For the images presented in the paper, our grids are
24 by 29 cells (chosen based on Close’s own numbers),
and we use input images cropped to have the same as-
pect ratios as original paintings. The number of grid cells
is a parameter that can be changed by the user, as is the
threshold for determining edges in rule 3 above. In prac-
tice, this entire computation is fast, taking less than 2 sec-
onds for the images presented in this paper.

Figure 4 shows some of our results. Note that our ap-
proach does not do anything special to match blob shapes
with features, as Close often does around the eyes or nos-
trils. Also, since we do not restrict our color palette at all,
we sometimes get colors (such as lime green) that do not
seem to be used by Close. A machine learning technique
could help ameliorate this. Nevertheless, we believe our

results support our hypotheses from the beginning of sec-
tion 4 and are a nice approximation to the real thing. In
addition, now that we have distilled some rules about this
style, we can apply them to a new hybrid style, presented
in the next section.

5 A Novel Image Mosaic Filter

We finish by presenting a novel type of image mosaic that
combines ideas from photomosaics[27] and our Chuck
Close filter. Specifically, we categorize small images
by shape (as in rule 3 of section 4), and then coarsely
segment these images to create cell layers. (See figure
4.) Each layer receives a color based on its relative area
within the cell. The colors chosen can either all be iso-
luminant or can have a smaller number of luminance lev-
els than colors, as in the previous section. In the images
shown, we used the latter approach, effectively applying
the color picking algorithm from section 4 to the seg-
mented image layers. Results can be seen in figure 4.

Because a large library of source imagery is not re-
quired for our technique, this is an easy-to-use method
for generating complex image mosaics. Both tile selec-
tion and color picking are fast, so image generation gen-
erally takes less than 2 seconds. Moreover, we believe
the results are visually intriguing and fun.

6 Conclusions and Future Work

We have shown how isoluminant color picking can be
used to both improve existing NPR image filters and to
create new ones. We present a fast, geometric tech-
nique for isoluminant color picking in additive linear
color spaces, and then apply this technique to an im-
proved pointillist filter, a new NPR filter in the style of
Chuck Close, and a novel stylized image mosaic filter.

Because restricting a set of colors to the same lumi-
nance plane does not itself constrain the process of color
selection, we believe there are many future directions of
work that investigate additional constraints (e.g. incor-
porating a particular artist’s palette) and novel algorithms
for estimating a “desirable” set of isoluminant colors.

Thus far, we have primarily explored isoluminance as
a tool for creating “layered” imagery, i.e. imagery which
has visual interest or meaning at various viewing dis-
tances. For future work, isoluminant color picking could
help augment previous techniques in painterly rendering.
Instead of simply sampling the underlying image, col-
ors in neighboring strokes or image segments could be
specifically chosen to have more or less isoluminance, di-
recting the reader’s attention towards or away from cer-
tain features, much as Monet did. Such techniques would
also be useful for applications outside of NPR, such as in-



creasing or decreasing the perceived delineation between
text and its background.

In addition, because luminance helps convey the sur-
face orientations of 3D objects, this suggests a mech-
anism for deliberately exaggerating or minimizing the
sensation of depth in both NPR and photoreal imagery.
Our visual processing mechanisms expect the scene data
given by the chrominance and luminance channels to be
generated by the same underlying physical scene. By de-
liberately decoupling these signals, we can achieve new
visual styles and effects.
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