
A Framework for Geometric Warps and Deformations

TIM MILLIRON, ROBERT J. JENSEN, and RONEN BARZEL
Pixar Animation Studios
and
ADAM FINKELSTEIN
Princeton University

We present a framework for geometric warps and deformations. The framework provides a conceptual and mathematical foun-
dation for analyzing known warps and for developing new warps, and serves as a common base for many warps and deforma-
tions. Our framework is composed of two components: a generic modular algorithm for warps and deformations; and a concise,
geometrically meaningful formula that describes how warps are evaluated. Together, these two elements comprise a complete
framework useful for analyzing, evaluating, designing, and implementing deformation algorithms. While the framework is inde-
pendent of user-interfaces and geometric model representations and is formally capable of describing any warping algorithm, its
design is geared toward the most prevalent class of user-controlled deformations: those computed using geometric operations. To
demonstrate the expressive power of the framework, we cast several well-known warps in terms of the framework. To illustrate
the framework’s usefulness for analyzing and modifying existing warps, we present variations of these warps that provide addi-
tional functionality or improved behavior. To show the utility of the framework for developing new warps, we design a novel 3-D
warping algorithm: a mesh warp—useful as a modeling and animation tool—that allows users to deform a detailed surface by
manipulating a low-resolution mesh of similar shape. Finally, to demonstrate the mathematical utility of the framework, we use
the framework to develop guarantees of several mathematical properties such as commutativity and continuity for large classes
of deformations.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture/Image Generation

General Terms: Algorithms

Additional Key Words and Phrases: Deformation, warp

1. INTRODUCTION

Warps and deformations have found a wide variety of applications in modeling, animation, and special
effects.1 Driven by a spectrum of applications, a host of warps have been been described in the literature,
each posing a seemingly separate set of problems and solutions. In this article, we cast many of these
warps into a single common framework, giving us a unifying base to facilitate the analysis, design,

1The words “warp” and “deformation” appear in various forms in the literature to describe parameterized reshaping of objects
or images. In this article, as in much of the literature, we will use the terms interchangeably.

This work was supported by NSF CAREER award 98-75562 and Pixar.
Authors’ addresses: T. Milliron, R. Jensen, and R. Barzel, Pixar Animation Studios, 1200 Park Ave., Emeryville, CA 94608,
e-mails: {tm, rj}@pixar.com; ronen@barzel.org; A. Finkelstein, Computer Science Department, Princeton University, 35 Olden
Street, Princeton, NJ 08544-2087, e-mail: af@cs.princeton.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or direct commercial advantage and that copies show this notice on the first page
or initial screen of a display along with the full citation. Copyrights for components of this worked owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists,
or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2002 ACM 0730-0301/02/0100-0020 $5.00

ACM Transactions on Graphics, Vol. 21, No. 1, January 2002, Pages 20–51.

A Framework for Geometric Warps and Deformations • 21

Fig. 1. A generic “black box” view of user-controlled deformations. Given user controls to define the warp, the deformation
computes a point-to-point warp mapping from model points to deformed model points.

and implementation of warping algorithms. Within the framework, it is easy to see ways to extend and
fine-tune a specific warp by understanding the mathematical expression of the warp and how similar
problems have been addressed in other contexts. The framework also makes it easier to design new
warps, either by using the framework itself as a design context, or by mixing and matching components
from existing warps. Furthermore, the framework is amenable to mathematical analysis and serves as
a tool for proving mathematical properties for large classes of deformations. Finally, there are several
implementation advantages, such as an elegant software architecture in which it is easy to try out
ideas for new warps or to make application-specific warps, and in which code can be reused for many
deformation algorithms.

The framework is composed of two parts: first, a concise set of geometrically meaningful equations
that define how warps are computed; and second, a generic modular algorithm structure into which
individual deformations “plug in” specialized components. These two elements work in concert to form
a complete picture of how warps are constructed and evaluated, and to provide a geometric, conceptual,
and mathematical base on which to examine and design warping algorithms. We are most interested
in interactive applications, such as modeling and animation systems, in which a user deforms an object
or image. To this end, we focus on user-controlled warps; while the framework is capable of describing
other types of warps, these will be largely neglected here.

To build an interactive application supporting deformations, one must address questions of model
representation, user interface, and efficient sampling of the resulting warped model—issues that lie
beyond the scope of this article. Here, we focus on the core of the deformation: a “black box” that takes
a model and user-controlled values to define the warp, and produces a deformed model via a point-
to-point mapping from undeformed points to deformed points (see Figure 1). The framework provides
an inner structure for that box specific enough to provide a powerful tool for analysis and design, yet
general enough to accommodate any model representation or user-control paradigm, and to describe
most warping algorithms concisely and elegantly.

The remainder of this article is organized as follows: Section 2 provides an overview of previous
frameworks and a more in-depth background of warps and deformations, placing the framework in the
context of the literature. In Section 3, we develop our framework using feature-based warps, leading
to a description of the complete framework. In Sections 4, 5, and 6, we illustrate the descriptive power
of the framework by expressing four well-known warps in terms of the framework, show the analytical
and conceptual advantages of the framework by extending three of these warps to achieve greater
flexibility and improved behavior, and demonstrate the ease with which warps can be designed in the

ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

22 • T. Milliron et al.

framework by developing a completely novel mesh warp. Section 7 exercises the mathematical utility
of the framework by developing conditions for several important mathematical properties for warps
expressed in the framework. Finally, Section 8 closes with a broader discussion of the framework and
areas for future research.

2. RELATED WORK

2.1 Previous Frameworks

To our knowledge, only two previous frameworks exist. Barr [1984] describes a framework in which
warps take the form of geometric transformations—rotations, translations, and shears—parameterized
by some function of the points to be deformed. This framework is not general enough to describe many
user-controlled warps; in particular, the large class of deformations defined by geometric features. The
second framework, proposed by Bechmann [1994], expresses deformations defined by feature points
along with weights defining the influence of each point on the resulting deformation. This framework
generalizes freeform deformations and other point-based warps, but does not provide support for more
complex features. Moreover, Bechmann’s framework relies on discrete matrix equations, which are of
limited use for mathematical analysis.

2.2 Warps and Deformations

The schematic in Figure 1 suggests a taxonomy of warps based on the structure of their two inputs:
model representation and user controls. Here, we classify warps in the literature by these two areas.

Model Representation. One way to classify warps and deformations is by examining the model rep-
resentation for which they are designed and the dimensionality (2-D or 3-D) of that representation.
One model representation is a 2-D image—a uniform grid of pixels in the plane. An image warp maps
pixel coordinates to new locations, carrying the color value at each pixel to its new location. Such
warps include Beier and Neely’s [1992] feature-based warp, Lee et al.’s [1995] snakes and freeform
deformations, spline and polynomial basis function deformations [Wolberg 1990], and Litwinowicz and
William’s [1994] energy-minimization method. Voxel-based volumes extend the uniform 2-D pixel grid
to 3-D, where a uniform 3-D grid of scalar values defines the volume of an object. Warps on volumes
include Barr’s [1984] solid deformations, freeform deformations (FFDs) [Coquillart 1990; Greissmair
and Purgathofer 1989; Hsu et al. 1992; MacCracken and Joy 1996; Sederberg and Parry 1986], Lerios
et al.’s [1995] extension of Beier and Neely image warping, and Cohen-Or’s [1998] distance-field meta-
morphosis. Finally, warps employed in computer animation tend to act on surfaces in 3-D including
polygonal meshes, Bezier or B-spline patches, NURBS, and subdivision surfaces. Each of these repre-
sentations encodes a 2-D manifold in 3-D as a polygonal mesh with vertices and faces. Examples of
surface warps include curve-feature warps [Corrêa et al. 1998; Lazarus et al. 1994; Singh and Fiume
1998], mesh-based warps [van Overveld and Stalpers 1997], and Decaudin’s [1996] warps based on
simple convex shapes. Our framework is independent of model representation, since it considers all
warps as point-to-point mappings in either 2-D or 3-D.

User Controls. Warps may also be classified by the type of interface they provide to the user. In some
warps, the user manipulates values that are used directly in numerical, nongeometric expressions to
compute the deformed model. For example, some warps rely on the specification of coefficients of poly-
nomial basis functions: points are considered as combinations of these basis functions, and the warp
changes the position of points based on specified coefficients [Wolberg 1990]. Other warps allow the
user to specify values that have geometric meaning. For example, the user of a Barr taper deformation
ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

A Framework for Geometric Warps and Deformations • 23

[Barr 1984] specifies an axis along which the taper will occur as well as a function whose value repre-
sents the amount of taper at a position along the axis (see Figure 12). Warp interfaces based on radial
basis functions [Cohen-Or et al. 1998; Wolberg 1990] generally provide geometric control, as well. Most
warps, however, are feature-based—defined by a set of geometric (source, target) feature-pairs, such as
points and curves. For example, FFDs [Coquillart 1990; Greissmair and Purgathofer 1989; Hsu et al.
1992; MacCracken and Joy 1996; Sederberg and Parry 1986] Bechmann’s [1994] warping framework
and others [Borrel and Rappoport 1994; Cohen-Or et al. 1998] all use feature points to define the de-
formation. Beier and Neely [1992], Lee et al. [1995], and Lerios et al. [1995] use line-segment features.
Curve features have been used by Corrêa et al. [1998], Lazarus et al. [1994], Singh and Fiume [1998],
and Litwinowicz and Williams [1994]. Recent work has focused on using skeletal meshes [van Overveld
and Stalpers 1997] and other geometric models [Decaudin 1996] as features. Our framework is inde-
pendent of the type of user-controls used in a warp, but is designed with feature-based deformations in
mind, and expresses these warps most elegantly.

3. THE FRAMEWORK

This section presents our framework for warps and deformations. We will develop the framework by
considering increasingly complex feature-based warps, generalize this development to other warps, and
conclude with a discussion of the complete structure of the framework.

3.1 Preliminaries

Before developing the framework, it will be helpful to define some concepts, terminology, and notation.
First, recall from Section 1 that every deformation is a mapping from points to points. Also, every
geometric model is “point-valued,” in the sense that deformations operate on model points. A convenient
way of formalizing this concept is to consider a geometric model to be a point-valued2 function M (u)
defined on some domain U :

M (u) = model point, for u ∈ U.

The specifics of the model representation depend on the type of model being warped. For concreteness,
two common model representations are:

Vertex Mesh. U is the set of n vertex indices {1, . . . , n}, and M (u) is the vertex indexed by u ∈ U . The
warp will move the vertices to new positions in space.3 The mesh may represent a polygonal model or
the control vertices of a smooth surface. Note that the connectivity of the mesh is maintained through
the warp: only points are moved.

Image. U is the 2-D plane, and M (u) = u is defined at every point u in the plane. The warp will create
a mapping between pixel coordinates in the original and deformed images, for subsequent sampling of
the image data.

For brevity, we will often refer to the model function M (u) simply as M .
We express the output of a warp as a deforming function D(u, M), which is a function defined on the

domain U, taking a value u ∈ U and the model M as input, and yielding a transformation as output.
To compute the warped model M̃ (u), which is a point-valued function defined on the domain U just

2In general, we denote all points and point-valued functions by capital letters, as with the model M (u). See Table I for a complete
listing of notation used in this paper.
3We generally sample the deformation only at vertices. In principle, however, every point in the continuous surface could be
warped, whether the mesh represents a polygonal mesh or the control points of a smooth surface.

ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

24 • T. Milliron et al.

Table I. Table of Notation
Description Denotation Examples

scalars & scalar-valued functions a si(v, u, M) wi(v, u, M)
points, tuples, domains &

like-valued functions A U M (u) M̃ (u) Fi Vi

transformations &
transformation-valued functions A D(u, M) T (v)

transformation application 〈A〉 Ti(v)〈M (u)〉 D(u, M)〈M (u)〉
sets Ā F̄ = {Fi} s̄ = {si} w̄ = {wi}

matrices A T I
source-target feature pairs a, a? Li , L?i

as M (u) is, the deforming function is evaluated at u and applied to the point given by evaluating the
model at u:

M̃ (u) = D(u, M)〈M (u)〉.
Here, and in the rest of this article, transformations and transformation-valued functions are denoted
by calligraphic font—as in D(u, M)—and the application of a transformation T to a point P is denoted
by T 〈P〉 (see Table I). We sometimes denote the deforming function D(u, M) by the shorthand D, and
denote the application of a deforming function D to a model M by D〈M 〉.

As discussed in Section 2.2, one important class of warps are those defined by geometric (source,
target) feature pairs: such warps are called feature-based warps. Since the framework is designed with
feature-based warps in mind, it is helpful to develop a specialized terminology and notation for the
defining inputs of these warps. To represent the source/target feature mappings that define a feature-
based warp, we use a collection of feature specifications: tuples of values that include a source feature, the
corresponding target feature, and related parameters to control the deformation. For example, in a warp
with point features, if Pi is the position of a source feature-point and P ?

i is its target position, we would
have a feature specification Fi = (Pi, P ?

i). Likewise, for a warp that uses curves Ci(v) as source features
and two parameters to control the warp, we would have a feature specification Fi = (Ci, C?

i , αi, βi). Here,
and in the rest of this article, we denote the target feature corresponding to source feature f by f ? (see
Table I).

3.2 Simplest Case: Point Features

To begin developing the framework, we start with a simplistic example: a feature-based warp defined
by a single feature point. In this warp, P is the source position of the feature-point and P ? is the target
position, giving us the feature specification:

F = (P, P ?).

The most obvious deforming function that moves P to P ? is a constant translation4 T = P ? − P (see
Figure 2). Thus,

D(u, M) = T . (1)

A natural way of extending the translation to yield a more useful deformation is to vary the effect of
the translation across the model. To do this, we introduce a strength field s(u, M), that indicates how
“strongly” the translation will be applied to the point M (u). That is, s(u, M) for u ∈ U is a scalar-valued

4That is, T is a transformation that adds the vector P ?− P to every point. Here and elsewhere in this article, the notation
T = P?− P serves as a convenient shorthand.

ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

A Framework for Geometric Warps and Deformations • 25

Fig. 2. A very simple feature-point warp. Left: Undeformed model, with source (orange) and target (blue) feature points. Right:
Deformed model, translated so that the source point moves to the target (blue).

Fig. 3. A feature-point warp with a strength field. Left: Undeformed model, with strength field (purple). Right: Deformed model.
The translation is scaled by the strength field.

function5 taking on values in the range [0, 1]. A value of 1 for s(u, M) indicates the translation is applied
with full effect, while a value of 0 indicates the translation has no effect. We use the value of s(u, M)
to multiply the translation T . It will be convenient to denote the multiplication of a translation T by a
scalar s by s · T . Thus, modifying Eq. (1) to include the strength field, we have:

D(u, M) = s(u, M) · T . (2)

Figure 3 shows a warp where s(u, M) is 1 at the point P and falls off with distance from P .
Now, suppose there are n point-features with feature specifications Fi = (Pi, P ?

i), 1 ≤ i ≤ n. Each
feature specification is accompanied by a strength field si(u, M) and can be described by a translation
Ti = P ?

i − Pi. We would like to combine the effects of these translations at any given model point. To
this end, we introduce a scalar-valued weighting field wi(u, M) for each feature specification Fi. All
values wi(u, M) are positive, and higher values indicate that Ti has greater influence in the warp at
M (u). We compute the deforming function at each model-domain point u ∈ U as a weighted average of

5In general, scalar values and scalar-valued functions will be denoted in lowercase, as indicated in Table I.

ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

26 • T. Milliron et al.

Fig. 4. A feature-point warp with weighting fields. Left: Undeformed model with two weighting fields (purple and red). Right:
Deformed model, using a weighted combination of translations scaled by their strength fields.

translations scaled by their associated strength fields:

D(u, M) =
n∑

i=1

{ŵi(u, M) · (si(u, M) · Ti)} (3)

using normalized weights:6

ŵi(u, M) = wi(u, M)∑n
j=1 wj (u, M)

.

Figure 4 shows a warp where wi(u, M) is 1 at Pi and falls off radially (at a different rate than
si(u, M)).

Both strength fields and weighting fields define the “region of influence” of the feature specifications
Fi (and their associated translations Ti) in different ways. The relationship between the two types of
fields can be subtle. By providing separate fields, we decouple how much a given feature deforms the
model (strength field) from its influence relative to other features (weighting field). Many warps in
the literature combine these effects, or ignore one or the other of them entirely, but we have found the
decoupling of these distinct concepts to be beneficial.

Notice that since weighting fields are normalized, they do not scale the overall effect of each trans-
lation as strength fields do. Rather, they alter the influence of translations relative to each other. For
example, “Wires” (Section 4.4) uses weighting fields to establish a correspondence between each point
on the model and a point on each source curve-feature, and strength fields to attenuate the deformation
away from the curve.

In many cases, it is desirable for a uniform translation of all Ti to result in a rigid transformation
of the model. To achieve this property, the strength fields can be set to 1 uniformly. We will see this in
several of the warps discussed in this paper, such as Beier and Neely’s [1992] image warp (Sections 4.2
and 5.2) and our new mesh warp (Section 6).

Notice that—evan at this early stage in our development of the framework—this formulation already
has many desirable properties. It is geometrically based and independent of model representation,
since it allows any model expressed as a point-valued function M (u). In addition, Eq. (3) is amenable

6In practice, sometimes no feature has influence on the model at a particular point, in which case w j (u, M) = 0 ∀ j ∈ {1, . . . , n};
in this case we use ŵi(u, M) = 0.

ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

A Framework for Geometric Warps and Deformations • 27

Fig. 5. A coordinate-frame based warp. Left: Undeformed model, with source (orange) and target (blue) coordinate frames. Right:
Deformed model. Source coordinate frames map to targets (blue).

to mathematical analysis. However, it is built on very primitive elements (simple translations) and
fails to concisely express many geometrically based warps. Despite its limitations, this formulation is
powerful enough to express Bechmann’s “space deformations” framework [Bechmann 1994], Borrel and
Rapport’s [1994] “constrained deformations,” deformations based on radial basis functions (e.g., Arad
et al. [1994]), and freeform deformations [Sederberg and Parry 1986] and their variants [Coquillart
1990; Greissmair and Purgathofer 1989; Hsu et al. 1992; Lee et al. 1995; MacCracken and Joy 1996].
In Section 4.1, we express freeform deformations in the framework.

3.3 More Complex Features

Continuing the development of the framework, we introduce the ability to build warps from primitives
that are more complex than simple translations. The most obvious way to extend the framework in this
way is to generalize translations to be general geometric transformations—compositions of translations,
rotations, scales, and shears. Toward this end, consider a warp whose features are oriented points: that
is, points with local coordinate frames (see Figure 5). If fi and f ?i are the source and target coordinate
frames, we have feature specifications:

Fi = (fi, f ?i).

Each feature specification Fi defines a transformation Ti that maps the source frame fi to the target
frame f ?i . Usually (as in this case), a transformation is described directly by how it maps a source frame
origin and basis vectors to a target. For some warps, however, the transformation is best described as
an ordered composition of translate, rotate, scale, and shear components.

As in the last section, we have a strength field si(u, M) that modulates the deformation of feature
specification Fi over the model. In the last section, we computed this modulation by scaling the trans-
lation Ti by si(u, M). Here, we would like to scale the effect of a more general transformation. In
general, one can define the multiplication s · T of a transformation T by a scalar s in many ways—we
describe two:

Displacement Method. Linearly interpolate between the identity transformation I and the transfor-
mation T . That is, s · T = sT+ (1− s)I, where I and T are the matrix representations of the transforma-
tions I and T , respectively. Using this method, the effect of applying s · T to a point P is to multiply
the displacement caused by T by the scalar s, so that (s · T)〈P〉= P + s(T 〈P〉− P).

ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

28 • T. Milliron et al.

Composition Method. For a transformation defined as a composition of rotate, translate, scale, and
shear components, multiply the parameters of each component of T by s and then re-compose them to
produce a new transformation T ′.

The warps we review here (and all the warps we have found in the literature) use one of these two
scaling methods. When we discuss a warp, we will note the method it uses.

As in Section 3.2, we would like to combine the effects of multiple feature specifications at each model
point by computing a weighted average of the transformations they imply. To compute this weighted
average for our more general transformations, we must not only define the result of the multiplication
s · T , but also the result of the addition of transformations. Just as there are many ways of defining the
multiplication of a transformation by a scalar, there are many ways to define this addition. Fortunately,
only one is necessary to cover all the warps we have found in the literature:

Matrix Addition. Add the matrix representations of the transformations. If the displacement method
is used to compute the product of weights and transformations, the computed weighted average is
equivalent to a weighted average of the displacements caused by the transformations.

In every warp we have found in the literature, the weighted average of transformations is computed as
the weighted average of the displacements caused by the transformations. In terms of the concepts out-
lined above, the product of normalized weights ŵi(u, M) and transformations (si(u, M) ·Ti) is computed
using the displacement method (regardless of the method used to compute the product si(u, M) · Ti),
and matrix addition is used to compute the sum of transformations. We will assume this method for
computing weighted averages of transformations in the remainder of this article.

Equation (3) still defines the deforming function for this new formulation, but now we interpret Ti
as an arbitrary transformation,

(
si(u, M) · Ti

)
as using one of our more general methods for multiplying

a transformation by a scalar, and the weighted average of transformations as the weighted average
of displacements caused by those transformations, as outlined above. This second formulation is the
natural extension of the weighted average of scaled translations in Section 3.2, and allows us to describe
a much broader range of warps, including van Overveld and Stalper’s [1997] deformations with a
polygonal skeleton mesh, vortex warps [Wolberg 1990] (illustrated near the spout of the teapot in
Figure 5), Beier and Neely’s [1992] image warp, and Lerios et al.’s [1995] volume warp. In Section 4.2,
we express the latter two warps in the framework.

3.4 Continuous Features

In this section, we extend the formulation in Section 3.3 to include continuous features such as curves
and surfaces. Without loss of generality, we assume that each such feature is parameterized on some
continuous domain Vi. For concreteness, we consider an example warp that uses curve features (see
Figure 6). Let Ci(v) be a source curve and C?

i (v) be the corresponding target curve, both parameterized
on a domain Vi = [0, 1]. We then have feature specifications:

Fi = (Ci(v ∈ Vi), C?
i (v ∈ Vi)).

Now, the feature specification Fi refers to continuous quantities parameterized on the domain Vi. To
reflect this, we extend the transformation expressed by Fi to be a parameterized transformation Ti(v),
defined on the same domain Vi. In other words, Ti(v) is a function that returns a transformation when
evaluated for any given v∈Vi. In Figure 6, the parameterized transformation for the curve-feature is
given by the equation in Section 4.4.

The strength fields si(u, M) and weighting fields wi(u, M) should now be parameterized on Vi, as
well, yielding si(v, u, M) and wi(v, u, M) for v ∈ Vi and u ∈ U . The deforming function is computed as
ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

A Framework for Geometric Warps and Deformations • 29

Fig. 6. A continuous curve-feature warp. Left: Undeformed model, with source (orange) and target (blue) curves. Right: Deformed
model. Source curve is mapped to the target (blue).

before: as a weighted average of a (now infinite) set of scaled transformations. With a collection of n
transformation continuums (one transformation continuum Ti(v) ∀v ∈ Vi for each feature specification
Fi, 1 ≤ i ≤ n), the weighted average from Eq. (3) becomes a summation of integrals:

D(u, M) =
n∑

i=1

∫
v∈Vi

(ŵi(v, u, M) · (si(v, u, M) · Ti(v))) dv (4)

with normalized weights ŵi(v, u, M) also given by integrating7:

ŵi(v, u, M) = wi(v, u, M)∑n
j=1

∫
x∈Vj

wj (x, u, M) dx
.

In practice, Vi may not be a continuous domain; it could be a discrete collection (for example, a
collection of indices), in which case the integral becomes a summation and Eq. (4) becomes a double
summation. In the limiting case, when Vi is the null domain ∅ for all 1≤ i≤n, Eq. (4) reduces to Eq. (3).

This final formulation of the framework provides the sophistication to compute very complicated
warps, including Barr’s [1984] deformation framework, and many recent warps in the literature such as
Decaudin’s [1996] deformations using convex shapes as features, Corrêa et al.’s [1998] depth-preserving
curve-based warp, Lazarus et al.’s [1994] “axial deformations,” and Singh and Fiume’s [1998] “Wires.”
In Section 4.3, and 4.4, we cast Barr deformations and “Wires,” respectively, in terms of the framework.

3.5 The Complete Framework

The preceding sections develop mathematical formulations for computing warps as weighted averages
of collections of transformations constructed from feature pairs. In this section, we generalize these
formulations to deformations that are not feature based, and present the complete framework, including
a generic modular algorithm structure in which warps are constructed and evaluated.

Throughout the development of the framework thus far, we have used feature-based warps for con-
creteness and because the framework is designed to facilitate the design and analysis of feature-based
warps in particular. But, feature-based warps—and the feature specifications used to define them—are
simply one style of warp user control (see Section 2.2). As we noted in Section 1, a more general warp

7As before, if all weighting field values are zero, ŵi(v, u, M) is taken to be zero.

ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

30 • T. Milliron et al.

Fig. 7. An idealized schematic for warps in the framework. The warp’s construction function generates continuous parameterized
transformations, strength fields, and weighting fields that are used to evaluate the deforming function directly using Eq. (4).

structure simply takes “user-controlled values” as input: feature specifications are simply one type of
such “values.” More generally, a warp takes a parameter set P as input to define the deforming function.
Armed with this generalization, we are ready to state the complete framework.

Figure 7 shows schematically the components of the most straightforward warp structure within
the framework. To design a particular warping algorithm, the warp designer creates specialized com-
ponents to fill that structure. The warp designer chooses the model representation and the form of
the parameter set P , and defines a customized construction function C : P→ (T̄ , s̄, w̄) whose input
is the set of parameters P and whose outputs are the set8 of parameterized transformations T̄ ={Ti(v)},
the set of corresponding strength fields s̄ = {si(v, u, M)}, and the set of corresponding weighting fields
w̄ = {wi(v, u, M)}. These can then be used to compute the warp using Eq. (4). Note that in the feature-
based case, the warp designer chooses a feature specification representation, and defines a construction
function C : F̄ → (T̄ , s̄, w̄), where F̄ = {Fi} is the set of all feature specifications.

Although the integral in Eq. (4) could be numerically evaluated directly, in practice it is not. In-
stead, if any of the parameterized transformation domains Vi are continuous (caused, for example, by
continuous features in a feature-based warp), the warp designer also creates a sampling algorithm to
discretize the continuous quantities in Eq. (4). This is illustrated in Figure 8. The discretizing algorithm
is defined by a sampling function S : (M , T̄ , s̄, w̄)→ (¯̇T , ¯̇s, ¯̇w) whose inputs are the model, parameter-
ized transformations, strength fields, and weighting fields and whose outputs are a set9 ¯̇T = {Ṫ j }, and
new strength fields ¯̇s = {ṡj (u, M)} and weighting fields ¯̇w = {ẇj (u, M)} which are defined only on the
domain U . These discrete quantities are then used in Eq. (3) to compute the warp. Programmatically,
it is typically most convenient to merge the construction function and sampling function into a single
construction function whose outputs are always discrete, as illustrated in Figure 9.

The formulation of a construction function has several advantages. First of all, in feature-based
warps, it is often important for the warp designer to consider global deformation effects implied by all
features, rather than simply considering local effects caused by individual features. The formulation of
a construction function considers this need well. The construction function need not handle each feature

8Here, we denote the set comprised of a collection of indexed elements by an overbar, as in s̄ = {si(v, u, M)}.
9Discretized quantities are denoted with a dot, as in ṡj (u, M).

ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

A Framework for Geometric Warps and Deformations • 31

Fig. 8. A more realistic schematic for warps in the framework. The warp’s construction function generates continuous param-
eterized transformations, strength fields, and weighting fields that are sampled by the warp’s sampling function and evaluated
using Eq. (3).

Fig. 9. A schematic view of how warps are actually expressed in the framework. The warp’s construction function and sampling
function are wrapped into a single function whose outputs are always discrete.

ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

32 • T. Milliron et al.

independently, but may take into account the interaction of features in producing the final transforma-
tions and fields. Since most features leave some elements of a transformation unconstrained (as we will
see in Section 5.2), the warp designer can take advantage of his knowledge of all features to produce
individual transformations that both match the local target features and consider the effects of nearby
features. Second, by having an explicit construction step (embodied by the construction function) that
separates the warp’s parameters from the values it produces to compute the deforming function using
Eq. (3), the user interface to the warp is decoupled from the warp’s underlying implementation. This
may allow the warp designer to create an intuitive interface while relying on less intuitive mathemat-
ics to guarantee certain properties. We will see this technique in the “direct manipulation” variant of
freeform deformations [Hsu et al. 1992] (see Section 4.1) and Litwinowicz’s [1994] energy-minimizing
warp method.

3.6 Summary

Our framework consists of two key components. First, the framework relies on a concise geometrically
meaningful equation to evaluate deformations, encapsulated in Eqs. (3) and (4). Second, the modular
algorithm structure described in Section 3.5 and depicted in Figures 7, 8, and 9 provides a general
method for constructing specific warps by defining specialized components to “plug in” to the generic
structure. Together, these two elements form the complete framework, providing a conceptual and
mathematical basis for describing warps.

Our framework is formally capable of trivially describing any warping algorithm, by encoding the
deformation as a displacement look-up buried in the deforming functionD(u, M). However, it expresses
most warps in a form more amenable to analysis, evaluation, and conceptual simplicity. In particular,
because it relies on geometric transformations and operations as its building blocks, the framework
concisely and elegantly describes geometrically implemented warps and deformations.

For warps implemented using geometric concepts and operations, the framework offers many ben-
efits. By focusing on the core implementation of deformation algorithms, the framework spans user
control paradigms and model representations, allowing the warp designer to consider each of these
components independently and to select the best user controls, model representation, and implement-
ing construction function for the application at hand. Moreover, by providing a generic algorithm struc-
ture, the framework helps to organize the warp designer’s thoughts as he creates new deformation
algorithms. This generic structure also facilitates the comparison and evaluation of existing warping al-
gorithms, and encourages reuse of components from various deformations. Finally, since the framework
describes how warps are evaluated in a concise mathematical form, it is a valuable tool for mathematical
analysis.

4. EXISTING WARPS EXPRESSED IN THE FRAMEWORK

In this section, we demonstrate the framework’s ability to describe a variety of warps by considering
four examples from the warping literature and showing how they can be expressed in terms of the
framework. We present three feature-based warps and one parameter-based warp. To best illustrate the
framework’s flexibility, the selected deformations represent warps designed for a variety of applications
and model representations: Sederberg and Parry’s [1986] freeform deformation for solid modeling,
Beier and Neely’s [1992] line-segment based warp for image warping and metamorphosis, Barr’s [1984]
parameter-based deformations for solid modeling, and Singh and Fiume’s [1998] curve-based “Wires”
deformations for surface modeling and animation.
ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

A Framework for Geometric Warps and Deformations • 33

Fig. 10. A freeform deformation, with source and target feature-point lattices. Left: Undeformed model, source feature-point
lattice (orange), and target feature-point lattice (blue). Right: Deformed model and target feature-point lattice (blue).

4.1 Freeform Deformation

Freeform deformation (FFD) [Sederberg and Parry 1986] is a feature-based warping algorithm designed
for solid modeling. FFD is defined by uniformly spaced feature points in a parallelepiped lattice (see
Figure 10). The user controls the deformation by moving points in the lattice: the original point positions
constitute the source features, while the new point positions are the target features. The warp deforms
objects embedded in the lattice in a way that approximates (but does not interpolate) the movement
of the feature points from their source positions to their target positions (see Section 7.2 for further
discussion of interpolation and approximation).

The model M (u) in FFD is any point-valued function. That is, the parameters u ∈ U and M passed to
the deforming function D(u, M) are used only to compute the point position M (u), so any point-valued
model can be used. Because of this, FFD is a spatial warp: it relies only on the spatial location of the
undeformed points. The features are a 3-D grid of (l + 1)× (m+ 1)× (n+ 1) control points located in a
local coordinate system imposed on a parallelepiped region. The local coordinate system has origin O
and three basis vectors Ex, Ey , and Ez. The location of the ijkth control point Pijk in the undeformed lattice
is given by O + i

l Ex + j
m Ey + k

n Ez for 0 ≤ i ≤ l , 0 ≤ j ≤ m, 0 ≤ k ≤ n. The strength fields are always 1, and
the weighting fields are generated using Bernstein polynomials 10 Bd

i (t). Thus:11

Fijk = (Pijk, P ?
ijk)

Tijk = P ?
ijk − Pijk

sijk(u, M) = 1
wijk(u, M) = Bl

i (Mx(u))Bm
j (My (u))Bn

k (Mz (u)),

where Mx(u), My (u), and Mz (u) are the coordinates of M (u) in the local coordinate system (O, Ex, Ey , Ez).
In this case, since the transformations Ti are translations, the composition method for multiplying
transformations by scalars is identical to the displacement method.

Several authors have proposed variations on the original FFD algorithm. These can be expressed
in the framework as slight modifications of the original formulation. For example, Greissmair and

10The Bernstein polynomial Bd
i (t) is defined as Bd

i (t) = (d
i)td−i(1− t)i .

11For convenience, we index the terms by trivariate ijk indices, even though the framework indexes them only by univariate
indices. It is trivial to map the triple index ijk to a single index.

ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

34 • T. Milliron et al.

Fig. 11. A Beier & Neely image warp, with source and target line-segment features. Left: Undeformed model, source line-segment
features (orange), and target line-segment features (blue). Right: Deformed model and target line-segment features (blue).

Purgathofer [1989] use trivariate b-spline polynomials for wijk(u, M) instead of trivariate Bernstein
polynomials: this yields a freeform deformation with local control. Various authors [Lee et al. 1995,
1996a, 1996b] have suggested layered application of successively higher-resolution lattices. Coquillart
[1990] allows manipulation of the lattice prior to deformation, at the cost of increased complexity in
computing the local coordinates Mx(u), My (u), and Mz (u) used in wijk(u, M). MacCracken and Joy [1996]
allow lattices of arbitrary topology, further complicating the computation of Mx(u), My (u), and Mz (u)
in order to gain greater flexibility in the structure of the lattice. Finally, Hsu et al. [1992] present the
user with a direct manipulation user interface (“place this point on the model there”) and solve for an
FFD target lattice satisfying the user-defined point constraints. Within the framework, this algorithm
is most naturally understood as using feature specifications defined by direct manipulation constraints,
and mapping those feature specifications to FFD control-point translations by way of a more complex
construction function.

4.2 Beier and Neely’s Image Warp

Beier and Neely [1992] describe a feature-based warp that operates in 2-D image space and whose
features are directed line segments (see Figure 11). The warp is used as part of an image metamorphosis
algorithm to align two images before a cross-dissolve between pixel colors completes the morph. The
user controls the deformation by positioning source and target line segments and tuning parameters
that define the weighting fields of the features.

This warp uses inverse mapping, meaning that the position of each pixel in the destination image
is warped to a position in the source image to determine which source-image pixels should contribute
to the color of the destination pixel (see Section 8.3 for further discussion of inverse mapping). As in
FFD, the warp is defined spatially: any 2-D point-valued model can be deformed. In practice, the model
is sampled at the (x, y) pixel coordinates of the destination image. Each feature specification Fi is
described by a pair of line segments Li and L?i , having endpoints (Pi, Qi) (in the destination image,
because of inverse mapping) and (P ?

i , Q?
i) (in the source image), along with scalar parameters ai, bi,

and pi whose use is explained later. The transformation corresponding to each feature specification is
selected to take the source line segment Li to the target line segment L?i :

Fi = (Li, L?i , ai, bi, pi)
Ti = map from fi → f ?i ,

ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

A Framework for Geometric Warps and Deformations • 35

Fig. 12. A Barr taper deformation, with deformation axis and scalar-valued taper function. Left: Undeformed model, deformation
axis (orange, shown overlaid on the model), and user-defined taper function (orange, shown below the model). Right: Deformed
model and deformation axis (blue, shown overlaid on the model).

where fi is a 2-D coordinate frame with origin Pi, x-basis equal to Qi − Pi, and y-basis equal to the
normalized vector perpendicular to Qi−Pi, and similarly for f ?i . The effect of a transformation is scaled
using the displacement method.

To ensure that a rotation or scale of a single line segment produces the corresponding rotation or
scale of the image, the strength fields are always 1 (see Section 3.2). The weighting fields fall off with
distance, and give longer line segments greater influence:

si(u, M)= 1

wi(u, M)=
(

lengthpi
i

ai + disti

)bi

,

where lengthi =‖Qi − Pi‖ is the length of line Li and disti is the minimum distance from the pixel
coordinate M (u) to the line Li.

Lerios et al. [1995] extend Beier and Neely’s [1992] 2-D technique to the 3-D volume-warping domain.
In this extension, the user manipulates point, line-segment, rectangle, and box features to control the
warp. In the framework, these become feature specifications that constrain zero, one, two, or three basis
vectors of the source and target coordinate frames in 3-D. As in the original Beier and Neely warp, the
unconstrained basis vectors are chosen to be perpendicular to the constrained basis vectors and to each
other. This leaves the model undeformed in the direction of these automatically chosen vectors. While
this choice is reasonable, it can lead to undesirable effects in certain cases, as we will see in Section 5.2.

4.3 Barr Deformations

Barr [1984] describes a family of parameter-based warps whose parameters are geometric quantities
allowing intuitive user control. All of his deformations fit neatly within the context of the framework:
this section focuses on one—taper deformations—and also examines a warping framework comprised of
generalized Barr deformations. Barr deformations do not depend on a particular model representation.
Like FFD and Beier and Neely’s warp, they are spatially defined.

4.3.1 Taper Deformation. The taper deformation imparts a global taper to an object along a particu-
lar axis (see Figure 12). Essentially, a taper is a scaling transformation whose effect is varied smoothly

ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

36 • T. Milliron et al.

along a chosen axis. To be faithful to Barr’s original publication [Barr 1984], we will only express tapers
along the unit z-axis Ez = (0, 0, 1). This formulation can be easily extended to other axes.

The parameter set for a taper deformation contains a single element: a user-defined function from
scalar values to scalar values. The user controls the deformation by manipulating this function. The
function is interpreted geometrically: its input is a value along Ez and its output is the amount by which
the deforming function will scale the model in directions orthogonal to Ez. This parameter set maps to
a single parameterized transformation whose input is a scalar value, and whose output is the scaling
transformation:

P = { f (t)}
T1(v) = scale by (f (v), f (v), 1),

where f (t) : t ∈V1⊂ IR→ IR is the forementioned user-defined function, and v∈V1⊂ IR. Either the
displacement method or the composition method can be used to scale the effect of transformations.12

The single strength field in a taper deformation is set to 1 uniformly, creating a deformation that
scales the model exactly as specified by the function f (t). The weighting field is selected so that the
only transformation that affects a model point M (u) is the transformation corresponding to M (u)’s
projection onto Ez. Formally:

s1(v, u, M)= 1

w1(v, u, M)=
{

1 if M (u) · Ez = v
0 otherwise.

This expression of Barr’s taper deformation mirrors Barr’s original formulation, where a separate
transformation is constructed for each point to be warped, based on its projection onto the deformation
axis. In fact, the formulation in the framework, with its weighting field singularities, suggests per-point
sampling of the parameterized transformations,13 which Barr makes explicit.

4.3.2 Generalized Barr Deformations. A straightforward generalization of Barr’s original deforma-
tions forms a simple framework for warps and deformations. In this framework, deformations are
defined by geometric parameters—such as the user-defined taper function in Section 4.3.1—that define
a single parameterized transformation. Generally, these geometric parameters, and the parameter-
ized transformations they define, vary in a geometrically meaningful way, such as along an axis. For
each model point, a single transformation is selected from the parameterized transformation’s contin-
uous spectrum of transformations, and this transformation is applied to the model point. In the taper
deformation, for example, the transformation is selected by the axis location onto which the model
point projects.

4.4 “Wires”

Singh and Fiume [1998] present a feature-based deformation called “Wires” that uses 3-D curve fea-
tures to manipulate smooth surfaces for modeling and animation (see Figure 6). The user controls the
deformation by first “binding” a curve to a surface and then editing the curve. The “bound” curve shape
is used as the source feature while the edited curve shape is used as the target feature. “Wires” provides
a large set of options to control the deformation. While the framework expresses all of these, for brevity
this section will cover only the basic functionality.

12In this case, the method used makes no difference, since (as we will see) the strength field is always 1.
13That is, each parameterized transformation is sampled once for each model point M (u), creating a distinct transformation for
each model point.

ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

A Framework for Geometric Warps and Deformations • 37

The model is a set of control points defining a smooth surface, such as the vertices of a NURBS mesh.
Thus, U is the set of indices {1, 2, . . . , l }, where l is the number of control points, and M (u) is the control
point with index u.

The features for the warp are source and target curves and a few related scalar parameters. Each
wire feature is represented by a feature specification:

Fi = (Ci(v ∈ Vi), C?
i (v ∈ Vi), fi(t ∈ IR), ri, xi, mi),

where Ci(v) is the source or “reference” curve, C?
i (v) is the target or “wire” curve, fi(t) is a fall-off

function,14 and ri, xi and mi are user-defined parameters whose use is described later. Without loss of
generality, the wire and reference curves are assumed to be parameterized on the domain Vi = [0, 1].

Each feature specification Fi maps to a parameterized transformation Ti(v), v ∈ Vi = [0, 1] such that
Ti(v) takes the point Ci(v) to C?

i (v). Ti(v) is given by a composition:

Ti(v)=X ◦R ◦ S,

where X is the translation C?
i (v) − Ci(v), R is the smallest rotation that takes the vector dCi(v)/dv to

dC?
i (v)/dv, and S is a uniform scale of magnitude xi centered at the point Ci(v). Transformations are

scaled using the composition method.
The most basic strength field in “Wires” for a given feature specification Fi decreases from 1 to 0

as the distance from M (u) to Ci(v) varies from 0 to ri. The rate of decrease is defined by the fall-off
function fi:

si(v, u, M)= fi

(‖M (u)− Ci(v)‖
ri

)
The weighting field for each feature specification is selected to warp each model point M (u) based

solely on the transformation value at the nearest location on the reference curve.15 In the most el-
ementary case, the nonzero value of the weighting field depends on how much the parameterized
transformation Ti(v) displaces the point M (u):

wi(v, u, M) =
{

0 if ∃ c < v such that ‖M (u)− Ci(c)‖ < ‖M (u)− Ci(v)‖
‖(si(v, u, M) · Ti(v))〈M (u)〉 − M (u)‖mi otherwise,

where mi determines the relative effect of wires that cause large versus small displacement.
Lazarus et al. [1994] also describe a class of feature-based deformations, termed “Axial

Deformations,” that use curves as warping features. The algorithm is similar to “Wires,” but uses
the displacement method for computing scaled transformations, and provides less exotic control of
strength fields and weighting fields. Corrêa et al. [1998] describe another curve-based warp for use in
cel animation. The framework expresses both of these warps in a straightforward manner.

5. VARIATIONS OF EXISTING WARPS DEVELOPED IN THE FRAMEWORK

By expressing warps within a modular algorithm structure, the framework isolates warp components.
This modular view helps to clarify the strengths and weaknesses of various approaches, making it easy
to see ways of improving components in particular deformation algorithms. Moreover, the framework
reveals the mathematical structure of warps in the concise mathematical equation used for evaluating

14 fi(t) : IR+→ [0, 1], is monotonically decreasing and at least C1-continuous, with fi(0)= 1, fi(t)= 0 ∀t ≥ 1, and f ′i (0)= f ′i (1)= 0.
15If two or more points on the curve Ci are equidistant from the model point M (u), the point with the smallest parameter value
is chosen.

ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

38 • T. Milliron et al.

Fig. 13. A freeform deformation unable to create a local rotational effect. Left: Moving the center point of the lattice. Right: The
deformed model; there is no way to create a local rotational effect.

them. By examining that mathematical structure, we can gain insight into how to refine and fine-tune
individual warps. In this section, we demonstrate these advantages by developing new variants of three
warps from Section 4.

5.1 Variant of Freeform Deformation

As described in Section 4.1, freeform deformation (FFD) is a feature-based warp defined by point fea-
tures in a uniform 3-D lattice imposed on a parallelepiped volume. While the structure of this interface
is important for the mathematical guarantees of FFDs, it is highly restrictive, and makes certain editing
operations difficult or impossible.

For instance, given a fixed-density control lattice, it is not possible to create a deformation with a
rotational effect centered around a single control point (see Figure 13). Some FFD variants provide
limited ways of dealing with this restriction. In particular, the user of multi-level FFDs [Lee et al. 1995,
1996a, 1996b] can approximate localized rotational deformations by editing finer resolutions of the
control lattice. However, this technique substantially increases the user intervention and computational
cost of the warp, and does not yield true rotational effects.

By casting FFDs in terms of the framework, a more elegant approach becomes obvious. In the context
of the framework, it is clear that the features of FFDs are particularly simple: source and target points
that map to simple translations. One obvious approach for obtaining more complicated effects is to
introduce more complex features. Instead of simple points, oriented points like those discussed in
Section 3.3 may be used. In this case, the user manipulates the deformation by adjusting a lattice
of local coordinate frames, each of which has an origin and basis vectors. Now, feature specifications
contain source and target coordinate frames instead of source and target points. Feature specifications
map to general transformations that take source frames to target frames. With this new warp, it
is possible to create a rotational effect centered at a particular control frame by rotating the frame’s
basis vectors (see Figure 14).

One of the advantages of the original FFD interface (uniformly spaced feature points in a paral-
lelepiped volume), is that it facilitates the derivation of mathematical continuity guarantees. Fortu-
nately, we can prove that our new warp has the same continuity guarantees by analyzing its mathe-
matical structure in the context of the framework (see Section 7.3).
ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

A Framework for Geometric Warps and Deformations • 39

Fig. 14. Our freeform deformation variant using coordinate frames as features. Left: Rotating the center frame of the lattice.
Right: The deformed model, with local rotational effect.

Fig. 15. A Beier and Neely warp variant that considers global effects. Left: Feature line segments. Center: Buckling artifacts
caused by competing features in standard Beier and Neely warping. Right: The new warp considers global effects, yielding a
shear.

5.2 Variant of Beier and Neely’s Image Warp

Recall from Section 4.2 that Beier and Neely’s image warp is defined by line-segment features. When
two line-segments “squeeze” the image, the resulting image can exhibit spatial buckling artifacts, where
the 2-D plane folds back on itself (see Figure 15).16 Just as a rotation of two line segments results in a
rotation of the image, we would like the warped image resulting from a shear of two line segments to
better approximate the shear.17

In the context of the framework, this buckling behavior is easily understood as a failure to consider
global deformation effects in the Beier and Neely construction function. Specifically, Beier and Neely
make the assumption that the transformation for a line segment feature should not deform the image
in the direction perpendicular to the line segment. For a single line segment, this assumption is reason-
able, and results in the expected rigid-body transformation. For multiple line segments, however, this
assumption can lead to nearby transformations that conflict dramatically enough in their “opinions” of
the shape of the deformation to cause the buckling artifacts we observe. To avoid these artifacts, global
deformation effects must be taken into consideration.

16For illustration, Figure 15 uses forward mapping to compute the warp. The artifacts we address occur with either forward
mapping or inverse mapping, but are more noticeable in the forward mapping case.
17Beier and Neely [1992] observe that their technique may suffer from “ghosting” artifacts. The variant we describe here addresses
only buckling, not ghosting.

ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

40 • T. Milliron et al.

When solving a similar problem in the domain of 3-D curve-based warping, Corrêa et al. [1998]
develop a technique in which they recognize that, when creating coordinate frames on source and
target features, the frame basis vector lying along the feature should transform in accordance with
the feature specification (a line segment in Beier and Neely warping), but the other basis vector need
not be constrained. Instead of applying a null transformation to the unconstrained basis vector, they
compute a target vector based on the effect of other transformations in the warp. We use a similar
approach here to compute target coordinate frames.

In the new warp, we map feature specifications to transformations as follows. The construction func-
tion input is the feature set F̄ ={Fi} where Fi = (Li, L?i , ai, bi, pi), as in Section 4.2. Note that Li and L?i
are directed line segments defined by their endpoints (Pi, Qi) and (P ?

i , Q?
i), respectively. We compute

the set of transformations T̄ ={Ti} by setting the transformation Ti for Fi to be the transformation that
maps the 2-D source coordinate frame fi to the 2-D target coordinate frame f ?i , where fi has origin Pi,
x-basis vector Qi − Pi, and y-basis equal to the normalized vector Ni perpendicular to Li, and f ?i has
origin P ?

i , x-basis Q?
i − P ?

i , and y-basis given by:∑
j

{(ŵij ·R j)〈Ni〉)}

where

wij =
(

lengthpj
j

(aj + distij)(aj + (Qi − Pi) · (Q j − Pj))

)bj

where length j is the length of line-segment L j , distij is the minimum distance between the
line-segments Li and L j , R j is the rotation that takes L j to L?j , and ŵij are normalized weights,
ŵij = wij/

∑n
j=1 wij. This corrects the transformation by setting the unconstrained target vector to be a

weighted average of the target vectors implied by all line-segments. The first term in the denominator
of wij gives preference to nearby line-segments, while the second term gives preference to line segments
that are initially perpendicular to Li, since their directions are closest to Ni.

Figure 15 shows the effect of the new warping algorithm. The local buckling artifact is removed,
resulting in a smoother warp that better considers the global shearing effect of the deformation. The
new warp is more expensive than the original Beier and Neely warp, requiring additional computation
for the transformations. This cost is O(n2), where n is the number of feature specifications. However,
since the number of pixels in the image is much greater than the number of line segment features, the
extra cost is negligible in comparison to warp computation on the image itself.

5.3 Variant of “Wires”

In certain cases, “Wires” deformations, introduced in Section 4.4, cause buckling and tearing artifacts.
This occurs when a given wire’s reference curve is shaped so that it is equidistant from a set of points
in the model, and different parts of the wire curve specify competing deformations on this “medial set”
(see Figure 16).

In the context of the framework, this artifact is easily understood. Recall that the weighting fields
for wires are discontinuous, containing singularities to ensure that only the nearest point on a curve
contributes to the deformation of each model point. Naturally, the resulting warp, which is a function
of these fields, will also contain discontinuities (see Section 7.3). If we remove discontinuities in the
weighting fields, we will succeed in removing discontinuities in the warp itself. Removing these discon-
tinuities is straightforward, but to ensure that the deformation of a model point is still dominated by
the section of the source curve nearest to it, we must also incoporate a distance-based fall-off similar
ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

A Framework for Geometric Warps and Deformations • 41

Fig. 16. A variant of “Wires” that removes discontinuities in the warp. Left: Curve features for the warp (closeup). Center:
Buckling artifacts caused by discontinuity in the warp. Right: The new warp, with discontinuities removed.

to that used for the strength fields:

wi(v, u, M) = fi

(‖M (u)− Ci(v)‖
ri

)
‖(si(v, u, M) · Ti(v))〈M (u)〉−M (u)‖mi ,

mi is a parameter described in Section 4.4. Figure 16 shows the result of our new algorithm. The warp
no longer contains a spatial discontinuity.

This simple change alters the “Wires” algorithm significantly. Most notably, for each model point, the
algorithm now approximates an integral taken along the curve, rather than considering only a single
sample on the curve. This incurs an added computational cost: every transformation sample along each
wire curve now contributes to the deformation of each model point. Thus, rather than sampling each
curve exactly once for every model point as in the original algorithm, we need to integrate along the
curve—or, in practice, approximate the integral by sampling. In Figure 16, we sample transformations
uniformly along the curve. Finally, the new warp no longer exactly maps source curves to target curves in
a strict mathematical sense. However, in practice it still approximately interpolates the feature curves,
which is ample for the animation applications toward which “Wires” is geared (for further discussion,
see Section 7.2).

6. A NEW WARP DESIGNED IN THE FRAMEWORK

In this section, we illustrate the design strengths of the framework by presenting a novel warping
algorithm: a mesh warp that uses vertices of a low-resolution mesh as features in an interpolating
feature-based warp. Users of this warp manipulate a coarse mesh to deform a detailed surface model.
The warp is designed with two target applications in mind:

Simulation Correction. In cloth dynamics simulation, unwanted object intersections sometimes occur
due to limitations and simplifications of the simulation technique. Often, instead of revisiting the
simulation, it is more convenient to perform a slight ad hoc deformation on the simulated cloth to
eliminate these intersections. To do so, we create a low-resolution mesh from a few vertices of the cloth,
and manipulate the vertices of this simple mesh to adjust the complex cloth mesh (see Figure 17).

Model Variation. It is often useful to create variations of a complex surface, while maintaining its
basic shape. While simple transformation mechanisms are useful for this sort of control, they often do
not provide the required level of flexibility. In these cases, we can use an approximate low-resolution
version of the high-resolution surface to deform the surface while maintaining its basic shape (see
Figure 18).

A number of technologies provide tools that might be useful for these applications, but none of them
is ideal. Multi-resolution surface editing schemes [Forsey and Bartels 1988; Kobbelt et al. 1998; Zorin

ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

42 • T. Milliron et al.

Fig. 17. Using the mesh warp for cloth simulation correction. Left to right: a cloth simulation gone awry—the shirt penetrates the
right collarbone; low-resolution mesh imposed on the simulated mesh; low-resolution mesh adjusted to remove the penetration;
the adjusted model.

Fig. 18. Using the mesh warp to vary the shape of a hand model. Left to right: the original surface; a low-resolution mesh
imposed on the surface; editing vertices in the deformation mesh; the deformed model.

et al. 1997] provide similar control, but generally restrict the relationship between the coarse mesh
and the fine surface mesh, in terms of topology or mesh connectivity. The mesh warp requires only
proximity—the coarse mesh should be near the surface. Coquillart [1990] and MacCracken and Joy
[1996] describe freeform deformations which relax the usual restrictions on the FFD control lattice,
creating deformations that use mesh vertices as features. Both of these warps, however, approximate
the movement of edited lattice points. In contrast, to provide intuitive direct manipulation for our target
applications, we want our mesh warp to interpolate the movement of edited points (see Section 7.2).
van Overveld and Stalpers [1997] describe deformations using a polygonal skeleton mesh within an
object. Our mesh warp provides greater flexibility, because the low-resolution mesh in our warp can be
located outside the surface and constructed simply by sampling the object surface.

To develop the mesh warp, we first take M (u) to be the set of control vertices defining the fine surface
model, indexed by u ∈ U = {1, . . . , l }. The features of the warp are the vertices of a coarse deformation
mesh, which is assumed to be in close proximity to the surface. Each feature specification encodes
a vertex point’s position and its incident edges. That is, for vertex i in the mesh, we have a feature
specification:

Fi = (Pi, Ei, P ?
i , E?

i),

where Pi and P ?
i are the source and target positions of vertex i, and Ei and E?

i are the sets of edges
incident on vertex i in the source and target meshes, respectively. Each edge EEij ∈ Ei is represented as
the vector from Pi to its adjacent vertex, and likewise for E?

i . Note that Ei has the same number of
elements k as E?

i , in the same order—the target mesh must have the same topology as the source.
We map each feature specification Fi to a single transformation composition:

Ti = A ◦ X ,

where X = P ?
i − Pi is the translation mapping the source vertex position to the target position, and A

maps the source edge set edge set Ei to the target edge set E?
i . In general, there are morethan three

ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

A Framework for Geometric Warps and Deformations • 43

edges incident on vertex i, so it is impossible to compute A such that it will map Ei to E?
i exactly. We

choose A to be the 3× 3 matrix that best maps Ei to E?
i in the least-squares sense. That is, if E is a

k × 3 matrix having the vectors of Ei as its rows, and E? a k × 3 matrix having the vectors of E?
i as its

rows, we compute:

A = E+E?,

where E+ is the pseudo-inverse of E and A is the matrix representation of the transformation A. We
use the displacement method to scale the effect of transformations.

It remains to choose the strength fields and weighting fields. To ensure that a rigid-body transfor-
mation applied to the entire coarse deformation mesh will result in the same transformation of the
surface, we set the strength field to be 1:

si(u, M) = 1.

Choosing the weighting fields is more complex. We would like wi(u, M) to have two properties. First of
all, the value of wi(u, M) should be relatively large near the point Pi. Second, we would like wi(u, M) to be
0 at the end of each edge EEij; otherwise, the transformation Ti will compete with another transformation
T j corresponding to the other vertex incident on EEij. To achieve these properties, we set wi(u, M) to:

wi(u, M) = fαβ

(‖M (u)− Pi‖
‖ EEim‖

)(∏
j

fγµ

(
(M (u)− Pi) · EEij

EEij · EEij

))
,

where fab(t) is a function that is 1 for t ≤ a, 0 for t ≥ b, and is an interpolating cubic in between. EEim
denotes the vector in Ēi of maximum length, and α, β, γ , and µ are scalar parameters that control the
size of the maximum-value and non-zero regions of wi(u, M), respectively. The first term here ensures
that the weighting field is large near Pi and falls off as the distance from M (u) to Pi increases, while
the second product term ensures that the weighting field is large at the beginning of each edge Eij and
falls to zero by the end of the edge. The combination of these two terms fulfills the requirements for the
weighting field outlined above.

Our mesh warp has several important properties. First of all, deformation meshes of arbitrary topol-
ogy and genus may be used. Secondly, unlike many previous methods that use meshes to control a
deformation [Coquillart 1990; MacCracken and Joy 1996; Sederberg and Parry 1986], the warp is
interpolating—a point located at a vertex position in the original mesh is deformed to the vertex po-
sition in the target mesh. Third, the warp is defined spatially, so that the only relationship required
between the low-resolution deformation mesh and the fine surface mesh is that the deformation mesh
be located near the surface mesh. This makes constructing a deformation mesh particularly easy: the
vertices of the deformation mesh can be any subset of the vertices of the original mesh, or some entirely
new enclosing mesh. Finally, since the weighting field for a mesh vertex falls to zero, moving a single
point in the deformation mesh has localized effect in the warp.

7. MATHEMATICAL PROPERTIES OF WARPS IN THE FRAMEWORK

One benefit of our framework is its amenability to mathematical analysis. Specifically, the framework—
as expressed in Eqs. (3) and (4)—helps us prove properties about a warp’s deforming function and the
deformed model it produces based on simpler properties of the more easily analyzed components of the
warp: parameterized transformations, strength fields, and weighting fields. In this section, we examine
four deformation properties and develop conditions relating these warp properties to similar properties

ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

44 • T. Milliron et al.

of more easily analyzed warp components. For brevity, we cover only the most interesting results, and
omit formal proofs; for a more formal and thorough description, see Milliron [1999].

7.1 Commutativity

In many warping applications, it is desirable for warps to commute: that is, for the order in which warps
are performed to be irrelevant to the final result. In interactive modeling and animation applications,
this guarantees that the order of operations does not matter, and provides for more predictable behavior.

Two warps A and B commute if evaluating and applying A then B to a model yields the same
deformation as evaluating and applying B then A. In the context of our framework, warps A and B
with deforming functionsDA andDB, respectively, commute if and only ifDB(u,DA〈M 〉)=DA(u,DB〈M 〉)
for all u ∈ U .

In the framework, we can guarantee this property if we guarantee two subconditions: first that
neither DA or DB is computed differently if DB or DA, respectively, is previously applied to the model
M ; second, that the order of application of DA and DB doesn’t affect the final result. Together, these
conditions provide a guarantee that the composition of the warps will not depend on the order of
application, because (by the first rule) each evaluates to the same transformation even if the other is
applied first, and (by the second rule) both application orders of the evaluated transformations yield the
same final result. We can meet the first condition by ensuring that the parameterized transformation,
strength field, and weighting field values of each warp do not change if the other warp is applied first.
We can meet the second condition by ensuring that all weighted averages of warp A’s transformations
commute with all weighted averages of warp B’s transformations. Finally, these restrictions may be
removed when the weighting fields evaluate to zero. This leads to the following conditions for warps A
and B to commute:

Warp Commutativity. Two warps A and B with deforming functionsDA andDB, strength fields sAi and
sBj , weighting fields wAi and wBj , and parameterized transformations TAi and TBj , with i ∈ {1, . . . , n}
and j ∈ {1, . . . , m}, respectively, commute if for every u ∈ U :

—wAi (v, u, M) = wAi (v, u,DB〈M 〉) ∀i ∈ {1, . . . , n}, v∈VAi ;
—wBj (v, u, M) = wBj (v, u,DA〈M 〉) ∀ j ∈ {1, . . . , m}, v∈VBj ;
—any weighted average of TAi (v), i ∈ {1, . . . , n}, v∈VAi commutes with any weighted average of TBj (x),

j ∈ {1, . . . , m}, x ∈VBj .
—if wAi (v, u, M) 6= 0 for some i ∈ {1, . . . , n} and v∈VAi , then it is also required that:

—sAi (v, u, M) = sAi (v, u,DB〈M 〉); and
—TAi (v) is not altered by first applying DB to M .

—if wBj (v, u, M) 6= 0 for some j ∈ {1, . . . , m} and v∈VBj , then it is also required that:
—sBj (v, u, M) = sBj (v, u,DA〈M 〉); and
—TBj (v) is not altered by first applying DA to M .

In practice, it may be difficult to arrange for the values of the strength fields and weighting fields to
remain unaltered after the application of another warp.18 Within the framework, a simple alternative is
available that provides commutativity between some warps without requiring transformation and field
values of one warp to be unchanged by the application of another. Instead of computing the strength
field and weighting field values on the warped model M̃ (which is eitherDA〈M 〉 orDB〈M 〉, depending on

18The reason for this is that many strength fields and weighting fields are defined spatially, so that if the point positions of the
model are altered by another deforming function, so are the field values.

ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

A Framework for Geometric Warps and Deformations • 45

which warp is applied first), we simply precompute the transformation and field values on the original
model M and use these to define the warp. In this case, the only requirement remaining is that the
parameterized transformation values commute. This can be formalized by the following more practical
condition:

Deforming Function Commutativity. If the deforming functions DA and DB for two warps A and
B (with parameterized transformations TAi and TBj , strength fields sAi and sBj , and weighting fields
wAi and wBj , with i ∈ {1, . . . , n} and j ∈ {1, . . . , m}, respectively) are computed on a model M : that
is, DA(u, M) and DB(u, M) are computed for all u∈U , then DA and DB commute if any weighted
average of TAi (v), i ∈ {1, . . . , n}, v∈VAi commutes with any weighted average of TBj (x), j ∈ {1, . . . , m},
x ∈VBj .

This single condition is easily met in at least one important case. A weighted average of translations
is a translation, and all translations commute; thus, if all transformation values in a set of warps are
translations, then their precomputed deforming functions commute. This provides commutativity for
large classes of warps, including all warps based on point features.

7.2 Interpolation and Approximation

In the case of feature-based warps, an important property is whether a warp is interpolating or approx-
imating. In the framework, two useful concepts dealing with interpolation can be defined: interpolation
and approximate interpolation.

An interpolating warp such as “Wires” [Singh and Fiume 1998] maps model points located on source
features to corresponding locations on target features (see Figure 6). Approximating warps such as
freeform deformation [Sederberg and Parry 1986], on the other hand, approximate the movement of
source features to their target positions in the deformation they apply to model points. Usually, ap-
proximating warps are smoother than interpolating warps, but interpolating warps can provide more
intuitive user control, since model points respond to feature manipulation as though the features are
part of the model.

As we noted in Section 3, feature-based warps map feature specifcations to parameterized transfor-
mations. We generally construct parameterized transformations so that each point on a source feature
corresponds to a single transformation value that maps the point on the source feature to a correspond-
ing point on the target feature. In this case, a few simple conditions for strength fields and weighting
fields guarantee that a feature-based warp is interpolating:

Interpolation of Feature-Based Warps. Suppose M (u), u ∈ U is a model point with the same position
as some point on a source feature, and that Ti(v), v ∈ Vi is the transformation value associated with
that point. Then, a feature-based warp is interpolating if, for all such points:

—Ti(v) takes the point on the source feature to its corresponding location on the target feature;
—si(v, u, M) = 1;
—wi(v, u, M) 6= 0;
—wi(x, u, M) = 0 ∀x ∈ Vi, x 6= v; and
—wj (y , u, M) = 0 ∀ j 6= i, y ∈Vj .

In practice, these conditions can be difficult to arrange, especially while maintaining desired smooth-
ness in the warp. However, we can obtain satisfactory results with a warp that is visually interpolating,
or approximately interpolating. To achieve this, a feature’s transformation must act with essentially
full strength and dominate the weight contribution of other transformations. Thus, the conditions for
approximate interpolation are:

ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

46 • T. Milliron et al.

Approximate Interpolation of Feature-Based Warps. Suppose M (u), u ∈ U is a model point that has
the same position as some point on a source feature, and that Ti(v), v ∈ Vi is the transformation value
associated with that point. Then, a feature-based warp is approximately interpolating if, for all such
points:

—Ti(v) takes the point on the source feature to its corresponding location on the target feature;
—si(v, u, M) ' 1;
—wi(v, u, M)À wi(x, u, M) ∀x ∈ Vi, x 6= v; and
—wi(v, u, M)À wj (y , u, M) ∀ j 6= i, y ∈Vj .

7.3 Continuity

One of the most important properties a warp can possess is a continuity guarantee. This is useful in
many applications to guarantee that the warp has a certain quantitatively defined smoothness. Within
the framework, it is possible to develop continuity guarantees for a warp’s deforming function D(u, M)
and for the warped model M̃ , obtained by applying the deforming function to the model M .

There are three continuity values that are of interest: first, the continuity of the deforming function
with respect to the space in which the model is embedded; second, the continuity of the warped model
M̃ with respect to space; and third, the continuity of the deforming function with respect to the model
itself (useful primarily to determine if applying the deforming function introduces discontinuities to the
model). In this section, we use the framework to develop relations between these continuities and the
continuities of strength fields and weighting fields. For brevity, we cover only the first two continuity
values; for a more complete discussion, see Milliron [1999].

We would like to derive a minimum continuity guarantee for a warp’s deforming function with respect
to the space in which the model M is defined. This is useful for several reasons. First of all, depending on
the warp, this may be completely independent of the particular model being warped. In particular, if the
warp is defined spatially, the continuity of the deforming function with respect to space is independent
of the continuity of the model with respect to space. This has the consequence that many models can
be passed through a single deforming function and similar continuity guarantees can be made about
each of the resulting warped models. Second, the most important continuity in an application is usually
the continuity of the resulting model M̃ with respect to space. As we will see, the continuity of the
deforming function D(u, M) is important for the continuity of M̃ .

Deforming Function Continuity with Respect to Space. Let IRn be the space in which the model M
is embedded (i.e., Range(M)⊂ IRn). Then, a warp’s deforming function D(u, M) is Ck continuous with
respect to IRn at a model point M (u), u ∈ U , where k satisfies:

k ≥MINi,v(CONTINIRn(wi(v, u, M)), CONTINIRn(si(v, u, M)))

where CONTIN f (g)= i if g is Ci continuous with respect to f and MINa,b(f , g)= j if the minimum
value of f and g over all values of a and b is j .

This continuity guarantee follows from the following two facts: first, all transformations are C∝ con-
tinuous functions; and second, the continuity of the weighted average D(u, M) is bounded by the con-
tinuities of the functions being averaged (the transformation values multiplied by the strength field
values: si(v, u, M) · Ti(v)) and the continuities of the weights themselves (the weighting field values:
wi(v, u, M)). Note that it is impossible to exactly compute the continuity of the deforming function in
this most general scheme: D(u, M) might have higher continuity, depending on specific relationships
between all weighting fields and strength fields.
ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

A Framework for Geometric Warps and Deformations • 47

Usually, the most important continuity quantity in an application is the continuity of the deformed
model itself. A method for computing this continuity gives the warp designer a valuable tool for ensuring
that the warped model is smooth in a strict mathematical sense. Within the framework, and given the
continuity guarantee above, we can develop an obvious minimum guarantee for the continuity of the
warped model:

Deformed Model Continuity with Respect to Space. Let IRn be the space in which the model M is
embedded (i.e., Range(M)⊂ IRn). Then, the warped model M̃ =D〈M 〉 is Ck continuous with respect to
IRn at a model point M̃ (u), u ∈ U , with k satisfying:

k ≥MIN(CONTINIRn(M), CONTINIRn(D))

=MIN(CONTINIRn(M), MINi,v(CONTINIRn(wi(v, u, M)), CONTINIRn(si(v, u, M)))),

where CONTIN f (g)= i if g is Ci continuous with respect to f , MIN(f , g)= j if the minimum value of
f and g is j , and MINa,b(f , g)= l if the minimum value of f and g over all values of a and b is l .

7.4 Invertability

In many cases, it is useful to find a warp’s inverse, or to determine if a warp is invertible at all.
Within the framework, we can compute the inverse of any warp that has one. To see how, note that
every deformation expressed in the framework produces a transformation-valued deforming function
D(u, M). To invert the deformation caused by this deforming function, we can simply apply the in-
verse transformation19 (D(u, M))−1. Formally, the inverse of the deforming function D(u, M) is given
by D−1(u, M) = (D(u, M))−1 ∀u ∈ U .

While this formulation provides a way to compute the inverse of any warp, it suffers from a serious
problem: it does not give us much information. A more useful way of computing the inverse would
compute the parameterized transformations, strength fields, and weighting fields for the inverse, rather
than just the final transformations. Unfortunately, computing these values is not generally possible;
however, we can consider a special case in which these values can be computed.

Within the framework, one obvious way to attempt to construct a warp’s inverse is by inverting its
parameterized transformations, and using these in the computation of a deforming function. It is easy
to see that this will correctly compute the inverse in the special case where the strength fields and
weighting fields evaluate identically on both the undeformed and deformed models.20 More formally:

Inverting a Warp by Inverting its Transformations. Given a warp with parameterized transformations
Ti(v), strength fields si(v, u, M), weighting fields wi(v, u, M), and deforming function D(u, M) (with
i ∈ {1, . . . , n}, v ∈ Vi), an inverse warp can be constructed by using parameterized transformations
T −1

i (v), strength fields si(v, u, M), and weighting fields wi(v, u, M) if the following conditions hold for
all u ∈ U :

—wi(v, u, M) = wi(v, u,D〈M 〉) ∀i ∈ {1, . . . , n}, v ∈ Vi;
—if wi(v, u, M) 6= 0 for some i ∈ {1, . . . , n}, v∈Vi, then it is also required that si(v, u, M) = si(v, u,D〈M 〉).

This form of warp inverse is particularly interesting for feature-based warps. To see why, consider
that the natural way to invert a feature-based warp is to swap source features for target features
and vice-versa and compute a new warp. Swapping the features has the effect of inverting the warp’s

19Of course,D(u, M) may not have an inverse, as in the case of a projection transformation, in which case the framework obviously
cannot help to compute one.
20Note that, as in Section 7.1, the condition can be lifted for transformations whose weighting fields evaluate to zero, since these
have no effect on the warp.

ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

48 • T. Milliron et al.

parameterized transformations. So, this feature-swapping approach will correctly compute the inverse
deformation if (by the conditions above) the strength fields and weighting fields evaluate the same on
both the undeformed and deformed models. This is very seldom the case, and is difficult to arrange
in many warps. Fortunately, this restriction can be removed with a technique similar to the one we
present in Section 7.1: here, we precompute field values on the undeformed model and use them later
to compute the inverse warp.

8. DISCUSSION

In this section, we discuss various implications and characteristics of the framework in greater depth,
provide an overview of implementation and efficiency, and describe a few areas of possible future
research.

8.1 Varying Warps Over Time

Controlling a warp’s evolution over time plays an important role in morphing and animation. The
framework provides several mechanisms for controlling this evolution.

In morphing, the user smoothly varies a deformation from zero effect to full effect, to create a smooth
interpolation from undeformed model to deformed model. Within the framework, there are four straight-
forward ways to achieve this goal. The first is to compute a deforming function D(u, M) that warps the
undeformed model M to the fully deformed model M̃ and then to interpolate between this deforming
function and the identity transformation. A second approach interpolates between the identity trans-
formation and the transformations Ti(v) for each i ∈ {1, . . . , n}, v ∈ Vi. In this case, each transformation
can be controlled independently for greater flexibility. Since each parameterized transformation typi-
cally relates to a specific part of the model, this technique can be used to schedule the morph so that
different parts of the model morph at different rates. A third approach in the same vein scales the
strength fields by animated morph parameters varying from zero (no deformation) to one (full defor-
mation). If the displacement method is used to multiply transformations by scalars, this is identical
to interpolating between Ti(v) and the identity transformation. For feature-based warps, a fourth way
to control the morph over time is to animate the target features themselves from source positions to
target positions.

In animation, deformations may be controlled over time to achieve a variety of other effects. In this
more general case, we change the deformation over time by varying parameterized transformations,
strength fields, or weighting fields. Most commonly, users vary parameterized transformations, or the
parameters or features that control them. This is especially true of feature-based warps, where parame-
terized transformations are determined by source and target features, and features serve as animation
controls. For example, this is the case in FFDs, Beier and Neely’s image warp, “Wires,” and our new
mesh warp (see Sections 4.1, 4.2, 4.4, and 6).

8.2 Other Types of Construction Functions

Because warps defined geometrically are the most popular class of deformations, and because our
framework is specifically designed to express these warps elegantly, we focus primarily on construc-
tion functions that compute parameterized transformations, strength fields, and weighting fields in a
geometric manner. However, other types of construction functions are appropriate for particular appli-
cations. Here, we examine two important cases.

Some warps use numerical methods to solve for deformations that satisfy certain mathematical
conditions. For instance, Litwinowicz and Williams [1994] define an image warp that minimizes an
energy function, Whereas Hsu et al. [1992] solve for an FFD that satisfies direct manipulation con-
straints. Within the framework, we can think of these techniques as construction functions that solve
ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

A Framework for Geometric Warps and Deformations • 49

for transformations and fields to satisfy constraints, rather than allowing direct user control of those
transformations and fields.

Physics-based deformations comprise another class of warps. A physical simulation computes the
warped model shape given the original model and a description of forces acting on it. Warps in this
category include clothing simulation and particle systems. In the framework, we can think of these
warps as having construction functions that implement physical simulation engines and output pa-
rameterized transformations and fields based on the output of the simulation. Our framework does
not describe such deformations well, since they typically act on each model point independently. One
possibility for physics-based deformations does present itself within the framework: a physics-based
deformation may be able to sample the model coarsely and use the strength field and weighting field
mechanisms to interpolate a few samples smoothly across the finely sampled model. This technique has
been explored in “Wires,” where a physical simulation performed on wire curves indirectly deforms a
smooth surface [Singh and Fiume 1998]. This approach greatly reduces the complexity of the physical
simulation.

8.3 Inverse Mapping

In the discussion so far, we have used “forward mapping” to deform a model. Often, for regularly
sampled models—such as images or voxel volumes—“inverse mapping” may be appropriate. In inverse
mapping, the destination model (i.e., the model that will comprise the deformed model) is sampled and
each model point warped to determine to which point of the source model it corresponds. In this case,
parameterized transformations are the inverse of the forward mapping ones, and we evaluate strength
fields and weighting fields on the destination model instead of on the source model.

8.4 Implementation and Efficiency

We created all examples in this paper using a single common warping library implemented in C++. A
central class serves as an engine that computes the discrete mathematical formulation of the framework,
given in Eq. (3). The warp designer derives subclasses from an abstract base class that represents a
construction function, implementing the appropriate methods.

Although we have shown how to express existing warps in our framework, we cannot claim that
the general framework implementation will be the most efficient. The utility of the framework is that
warps may be easily analyzed, compared, designed, and implemented. In a production system, optimized
implementations of particular warps may be appropriate.

8.5 Future Work

The framework we present in this article is useful both as a conceptual tool and for its practical imple-
mentation advantages. In addition, this research suggests a number of areas for future work:

Surface Region Warping. We are currently working on a new warp we call the surface region warp.
The warp deforms regions on one surface to align with regions on another. The application we have in
mind for this warp is deforming surfaces in contact during animation, in particular when one object is
rigid and another is deformable. The rigid surface might cause a dent in the other, or might stick to
it and stretch it out of shape. We can create the surface regions to define the warp by automatically
computing intersections when two surfaces come into contact.

Distance Metrics. Many warps incorporate a measure of distance in order to specify a smooth fall off
of strength fields and weighting fields. For many applications in image and volume warping, a simple
Cartesian measure for distance works well. However, for warps on surfaces, the fields might better fall

ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

50 • T. Milliron et al.

off according to distance along the surface. Research into efficient and effective distance metrics for
more complex cases such as surfaces should prove to be a valuable area of research.

Efficient Hierarchical Sampling. Recall that the framework as it is presented in Sections 3.4 and 3.5
suggests defining continuous parameterized transformations, strength fields, and weighting fields and
then sampling them to produce discrete quantities. Usually, however, warps compute and sample at
the same time. Sometimes, as in the case of image models, the sampling performed can be expensive.
We believe that research into general algorithms for efficient sampling using hierarchical methods is a
promising avenue for future research.

ACKNOWLEDGMENTS

We are grateful for the advice and support of Delia Markiewicz, Tom Porter, and Eugene Fiume, as well
as helpful suggestions from the anonymous reviewers.

REFERENCES

ARAD, N., DYN, N., REISFELD, D., AND YESHURUN, Y. 1994. Image warping by radial basis functions: Application to facial expres-
sions. CVGIP: Graphical Models and Image Processing 56, 2 (Mar.), 161–172.

BARR, A. H. 1984. Global and local deformations of solid primitives. In Computer Graphics (SIGGRAPH ’84 Proceedings)
Hank Christiansen, Ed. ACM, New York, pp. 21–30.

BECHMANN, D. 1994. Space deformation models survey. Comput. Graph. 18, 4, 571–586.
BEIER, T. AND NEELY, S. 1992. Feature-based image metamorphosis. In Computer Graphics (SIGGRAPH ’92 Proceedings),

Edwin E. Catmull, Ed. ACM, New York, pp. 35–42.
BORREL, P. AND RAPPOPORT, A. 1994. Simple constrained deformations for geometric modeling and interactive design. ACM

Trans. Graph. 13, 2 (Apr.), 137–155.
COHEN-OR, D., SOLOMOVICI, A., AND LEVIN, D. 1998. Three-dimensional distance field metamorphosis. ACM Trans. Graph. 17,

2 (Apr.), 116–141.
COQUILLART, S. 1990. Extended free-form deformation: A sculpturing tool for 3D geometric modeling. In Computer Graphics

(SIGGRAPH ’90 Proceedings), Forest Baskett Ed. ACM, New York, pp. 187–196.
CORRÊA, W. T., JENSEN, R. J., THAYER, C. E., AND FINKELSTEIN, A. 1998. Texture mapping for cel animation. In SIGGRAPH 98

Conference Proceedings, Michael Cohen, Ed. ACM, New York, pp. 435–446.
DECAUDIN, P. 1996. Geometric deformation by merging a 3D-object with a simple shape. In Graphics Interface ’96, Wayne

A. Davis and Richard Bartels, Ed. Canadian Information Processing Society, Canadian Human-Computer Communications
Society, pp. 55–60.

FORSEY, D. AND BARTELS, R. 1998. Hierarchical B-spline refinement. Comput. Graph. 22, 4, 205–212.
GREISSMAIR, J. AND PURGATHOFER, W. 1989. Deformation of solids with trivariate B-Splines. In Eurographics ’89, W. Hansmann

F. R. A. Hopgoood, and W. Strasser, Eds. Eurographics, North Holland, Amsterdam, The Neterlands, pp. 137–148.
HSU, W. M., HUGHES, J. F., AND KAUFMAN, H. 1992. Direct manipulation of free-form deformations. In Computer Graphics

(SIGGRAPH ’92 Proceedings), Edwin E. Catmull, Ed. ACM, New York, pp. 177–184.
KOBBELT, L., CAMPAGNA, S., VORSATZ, J., AND SEIDEL, H.-P. 1998. Interactive multi-resolution modeling on arbitrary meshes. In

SIGGRAPH ’98 Conference Proceedings, Michael Cohen, Ed. ACM, New York, pp. 105–114.
LAZARUS, F., COQUILLART, S., AND JANCENE, P. 1994. Axial deformations: An intuitive deformation technique. Comput.-Aided Des.

26, 8 (Aug.), 607–613.
LEE, S.-Y., CHWA, K.-Y., HAHN, J., AND SHIN, S. Y. 1996a. Image morphing using deformation techniques. J. Visual. Comput.

Animat. 7, 1, 3–23.
LEE, S.-Y., CHWA, K.-Y., SHIN, S. Y., AND WOLBERG, G. 1995. Image metamorphosis using snakes and free-form deformations. In

SIGGRAPH 95 Conference Proceedings, Robert Cook, Ed. ACM, New York, pp. 439–448.
LEE, S-Y., WOLBERG, G., CHWA, K.-Y., AND SHIN, S. Y. 1996b. Image metamorphosis with scattered feature constraints. IEEE

Trans. Visual. Comput. Graph. 2, 4 (Dec.).
LERIOS, A., GARFINKLE, C. D., AND LEVOY, M. 1995. Feature-Based volume metamorphosis. In SIGGRAPH ’95 Conference

Proceedings, RobertCook, Ed. ACM, New York, pp. 449–456.
LITWINOWICZ, P. AND WILLIAMS, L. 1994. Animating images with drawings. In Proceedings of SIGGRAPH ’94, (Orlando, Fla.,

July 24–29). Andrew Glassner, Ed. ACM, New York, pp. 409–412.

ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

A Framework for Geometric Warps and Deformations • 51

MACCRACKEN, R. AND JOY, K. I. 1996. Free-Form deformations with lattices of arbitrary topology. In SIGGRAPH ’96 Conference
Proceedings, Holly Rushmeier, Ed. ACM, New York, pp. 181–188.

MILLIRON, T. S. 1999. A framework for geometric warps and deformations in computer graphics. B.S.E. Senior Thesis, Princeton
Univ., Princetion, N.J.

SEDERBERG, T. W. AND PARRY, S. R. 1986. Free-form deformation of solid geometric models. In Computer Graphics (SIGGRAPH
’86 Proceedings), David C. Evans and Russell J. Athay, Ed. ACM, New York, pp. 151–160.

SINGH, K. AND FIUME, E. 1998. Wires: A geometric deformation technique. In SIGGRAPH 98 Conference Proceedings. Michael
Cohen, Ed. ACM, New York, pp. 405–414.

VAN OVERVELD, C. W. A. M. AND STALPERS, M. G. J. R. 1997. Deforming geometric models based on a polygonal skeleton mesh.
J. Graph. Tools 2, 3.

WOLBERG, G. 1990. Digital Image Warping. IEEE Computer Society Press, Los Alamitos, Calif.
ZORIN, D., SCHRÖDER, P., AND SWELDENS, W. 1997. Interactive multiresolution mesh editing. In SIGGRAPH ’97 Conference

Proceedings, Turner Whitted, Ed. ACM, New York, pp. 259–268.

Received June 1999; revised September 2001; accepted November 2001

ACM Transactions on Graphics, Vol. 21, No. 1, January 2002.

