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Abstract

New acquisition and modeling tools make it easier to create
3D models, and affordable and powerful graphics hardware
makes it easier to use them. As a result, the number of
3D models available on the web is increasing rapidly. How-
ever, it is still not as easy to find 3D models as it is to find,
for example, text documents and images. What is needed
is a “3D model search engine,” a specialized search engine
that targets 3D models. We created a prototype 3D model
search engine to investigate the design and implementation
issues. Our search engine can be partitioned into three main
components: (1) acquisition: 3D models have to be collected
from the web, (2) analysis: they have to be analyzed for later
matching, and (3) query processing and matching: an online
system has to match user queries to the collected 3D mod-
els. Our site currently indexes over 36,000 models, of which
about 31,000 are freely available. In addition to a text search
interface, it offers several 3D and 2D shape-based query in-
terfaces. Since it went online one year ago (in November
2001), it has processed over 148,000 searches from 37,800
hosts in 103 different countries. Currently 20–25% of the
about 1,000 visitors per week are returning users. This pa-
per reports on our initial experiences designing, building,
and running the 3D model search engine.

CR Categories: H.3.5 [Online Information Services]:
Web-based Services; I.3.8 [Computer Graphics]: Applica-
tions

Keywords: Specialized search engine, 3D model database,
shape matching, shape query interfaces

1 Introduction

Pushed by the fast increase in the performance of affordable
graphics hardware, 3D graphics has found its way into many
mainstream applications. New powerful modeling software
and new acquisition techniques, such as 3D scanners, further
boost the number of available 3D models. Many of these
models are easily accessible on the web.

However, unlike text documents, 3D models are not easily
located. There is no search engine for 3D content, and the
few available repository sites each offer a limited number of
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Figure 1: A 3D Model Search Engine, with an example query
and some resulting 3D models

models, accessible only by browsing a directory structure or
running a text keyword search. Attempting to find a 3D
model using just text keywords suffers from the same prob-
lems as any text search: a text description may be too lim-
ited, incorrect, ambiguous, or in a different language. Fur-
thermore, 3D models contain shape and appearance infor-
mation, which is hard to query using just text.

We have developed a search engine for 3D models that
supports shape-based queries, as well as textual ones. In
many cases, a shape query is able to describe a property of
a 3D model that is hard to specify using just text. For ex-
ample, Figure 1 shows a combined text and 2D shape query,
in which the keyword “key” is used to select the class of
models we are interested in (keys), and a simple 2D outline
sketch is used to pinpoint the particular kind of key we want
(old-fashioned keys with an open handle and a simple bit).
Here the combination of a shape and text query results in
an effective search.

In this paper, we describe the design and implementation
choices made when building our search engine and report on
initial experiences running it. This hopefully will benefit fu-
ture developers of similar 3D search systems. We partitioned
the engine into three main components: (1) acquisition: 3D
models have to be collected from the web, (2) analysis: they
have to be analyzed for later matching, and (3) query pro-
cessing and matching: an online system has to match user
queries to the collected 3D models. We report results on the
performance of these three components, as well as site usage
statistics.

2 Previous Work

A search engine for 3D models belongs to the category of
specialized search engines. These engines collect a relatively
small subset of domain-specific data from the web, and make
it more accessible through a suitable user interface. Exam-
ples are CiteSeer, a search engine for scientific articles [Bol-
lacker et al. 1998], Deadliner, for conference and workshop
announcements [Kruger et al. 2000], and HomePageSearch,



for homepages of computer scientists [Hoff and Mundhenk
2001]. Because it is impractical to download every web-
page and determine for each whether it contains relevant
data, specialized search engines typically use some form of
focused crawling [Chakrabarti et al. 1999]. Focused crawlers
use heuristics to estimate if a link is likely to point to a
relevant page and follow them in likelihood order.

An important advantage of a specialized search engine is
that it can provide a domain-specific query interface. For
example, the web site of the State Hermitage Museum in
St. Petersburg uses the “Query By Image Content” method
to allow users to search paintings by drawing simple col-
ored sketches [Faloutsos et al. 1994]. Rowe et al. describe a
system where the user can draw a 2D outline of a ceramic
vessel as a shape query into a database of 3D models of such
vessels [Rowe et al. 2001].

Many web sites allow users to find 3D models, but they
typically provide only limited query options. Online reposi-
tories, such as [3D Café] and [Avalon], offer models for free,
while several companies sell 3D models through online cata-
logs (for example [Cacheforce] and [Viewpoint]). These sites
only provide a directory browser and sometimes a text search
option as a query interface. Other sites, such as [CADlib]
and [MeshNose], index multiple 3D model collections, but
they also just support directory browsing and text search in-
terfaces. The National Design Repository, an online reposi-
tory of CAD models, allows searches by text keyword, and by
file type and size, or by browsing through directories [Drexel
University].

Several other web sites allow searching based on 3D shape.
For example, at the “ShapeSifter” site of Heriot-Watt Uni-
versity, the user can select from a long list of shape fea-
tures, such as surface area, bounding box diagonal length,
and convex hull volume, and perform a search with condi-
tions on these features [Corney et al. 2002]. The search is in
a CAD test database with 102 L-shaped blocks and several
transformed versions of about 20 other models. In the on-
line demo of the commercial system “Alexandria,” the user
can set weights of individual model attributes (for exam-
ple “geometry”, “angular geometry”, “distributions”, and
“colour”) to be used in matching, and search in a database
of 4,500 commercial models [Paquet and Rioux 2000]. In
the experimental system “Ogden IV,” the user can pick the
matching method to be used for a shape search (matching
grid-based or rotation invariant feature descriptors at several
different grid resolutions) and search in a database of 1,500
VRML models, although they are not available for down-
load [Suzuki 2001]. At the experimental site “3D Shape Re-
trieval Engine” of Utrecht University, the user can also pick
one of three matching methods (Gaussian curvature, Nor-
mal variations, Midpoints) and one of three test databases:
(1) a database of 133 web models collected from the web
by Osada et al. [2001], (2) a database of 684 models (con-
taining 366 airplanes) the authors collected from the web,
and (3) the same database of 102 L-shaped blocks used in
the ShapeSifter site [Tangelder and Veltkamp 2003; Utrecht
University]. Elad et al. present a novel query method in
a system (which is not online) that matches a 3D model
to a database of 3D models using moments-based match-
ing. In a set of resulting closest matching models, the user
can mark specific models as “good” or “bad,” after which
weights in the matching function are adjusted appropriately
and the matching method is repeated [Elad et al. 2001]. A
“3D Object Retrieval System” from National Taiwan Uni-
versity supports a few query methods similar to ours: the
user can draw one or two 2D sketches, upload a 3D model

file (in the Wavefront OBJ format) for matching, or select
a result model from a previous search as a query [Chen and
Ouhyoung 2002]. Two databases (containing models man-
ually downloaded from the web) can be searched, one with
445 models using a matching method introduced by Hilaga
et al. [Hilaga et al. 2001], and one with 10,000 models using
a matching method based on matching projected 2D images
of a model.

Unfortunately, all the online sites are experimental in na-
ture, their query methods are usually not very user-friendly,
and most of the model databases are either inaccessible or
relatively small. When addressing these problems, several
questions arise: How do we efficiently find the 3D models
that are available on the web? Which query interfaces are
easy to use, yet are descriptive enough to find what you are
looking for? How do we efficiently and effectively match
these queries to a 3D model database?

We have developed an online 3D model search engine to
investigate these issues. To find the available 3D models on
the web we developed a focused crawler for 3D models. Our
system provides a wide variety of query interfaces based on
text, 3D shape, and 2D shape, which were designed to be
easy to use, and hide parameters of the underlying match-
ing methods. We use recently introduced 2D and 3D shape
matching methods which are both efficient and effective (as
demonstrated in [Funkhouser et al. 2003] and [Kazhdan et al.
2003]). The contribution of this paper is an investigation of
the design and implementation trade-offs in building such a
3D model search engine based on these methods.

3 System Design and Implementation

The search engine consists of three main components: (1)
acquisition, (2) analysis and indexing, and (3) query pro-
cessing and matching. Figure 2 shows a high-level schematic
overview of the system. The following subsections describe
each component in more detail.

3D Model
Database

Analysis and
Indexing

Indices and
Metadata

Query Interface

Query Processing
and Matching

Web

Acquisition Analysis

on−line

Crawler

Results

User

off−line

Matching

Figure 2: System Overview

3.1 Acquisition

The first task is to find the high-quality 3D models available
on the web. This problem is similar to that of other spe-
cialized search engines: finding domain specific data that is
contained in a small subset of the web.

One may think that simply searching for links pointing
to files with a 3D model file extension (e.g. .dxf) is suf-
ficient. This strategy works well when searching for files
with a unique extension, such as VRML files, which have



the extension .wrl or .wrl.gz. Also, being a file format de-
signed for the web, VRML files are usually linked to directly
rather than contained in compressed archive files. In a first
attempt at acquiring models, we only searched for VRML
models and used query results from sites that allow text
queries into link text only (i.e. the text in the A HREF tag).
For many other 3D model file types, this straightforward ap-
proach is unsuitable: for example, the extension .obj is both
used for Wavefront 3D model files as well as Windows object
files. Also, many model files are compressed into archives,
which have extensions such as .zip and .tar.gz. Searching
for and downloading all archives is impractical, as most of
them do not contain 3D models. As a result, a more general
searching strategy is required.

Other specialized search engines address the problem of
finding a very small subset of domain-specific data by focus-
ing their search (also called focused crawling) [Chakrabarti
et al. 1999]. A priority is assigned to links on each down-
loaded web page, and these links are followed in priority
order. So the problem becomes one of assigning priorities
to links such that the crawl is directed to sites with 3D
models. We cannot use a page-ranking method like the one
Google uses (where a page’s priority is determined by the
number of links pointing to it, and the priorities of these
referring pages [Brin and Page 1998]) because most models
are pointed to by a single link. Instead, we assign priorities
to web sites, not to individual pages, and determine a site’s
priority by the number of 3D models already found on that
site. As a result, our crawler concentrates on model “reposi-
tories” (sites containing large numbers of 3D models), rather
than sites that contain only a handful of models among many
other files. This is beneficial to users because models from
repositories are usually of consistently high quality and are
more likely to be accessible for longer periods of time. In
initial tests, we used the triangle count of a model to help
determine page priority, but this became a bottleneck in the
system because the models could not be converted and an-
alyzed fast enough to keep up with the crawler. Thus, we
settled on model frequency alone as a compromise between
focusing effectiveness and speed.
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Figure 3: Acquisition stage: the crawler

Our crawler uses this focusing method and works as fol-
lows (see Figure 3 for an overview). A “crawler server” is
seeded with the first 100 search results from four Google
text queries, each of the following form: <specific term>
AND <general term>. The <general term> was (model*
OR mesh* OR object*) AND (3-d OR 3d). The <specific
term> depended on the 3D file type, and was one of ("3d
studio" OR 3ds), (vrml OR wrl), (wavefront OR obj),

and (lightwave OR lwo OR lw). Although we do down-
load Autocad DXF files, we did not query for this format
because the Google results included too many 2D files. The
400 URLs returned from these queries were used as the start-
ing points for our crawler. To these, we added another 159
hand-picked URLs to model repository and other 3D graph-
ics related sites.

The crawler ranks each site with a priority from 0–5, with
0 being the highest priority, and maintains a separate queue
of pages to be downloaded from each site. Pages from higher
priority sites are retrieved first, with the limitation that only
one simultaneous connection can be open to a given site (to
limit the load on any particular server). The initial sites were
assigned a priority 1, since they were likely to be relevant.
Links to a new site are assigned the “parent” site priority
plus 1. If a link points to a model or archive, it goes to
the head of the site’s page queue, and the site’s priority
is temporarily set to the maximum priority. To find other
pages, the crawler server farms out web retrieval requests to
a number of clients. Once a client returns pages retrieved
from a particular site, the site’s priority is recomputed. The
new priority depends on the number of pages retrieved from
the site so far and what percentage of those were 3D models.
For example, a percentage larger than 10% will always put
a site in priority class 1.

Smaller percentages will put it in lower priority classes,
but only if enough pages have been downloaded from that
site. In other words, a site will not be demoted because of
a small percentage computed after only a few pages have
been downloaded. More formally, if for a site the number of
pages returned so far is p and the number of those that were
models m, then its priority class c will be:{ b− log(m

p
)c + 1 if m

p
> 10−4

5 if m
p
≤ 10−4

but only if d = log( p
k
) > c (i.e. if enough pages have been

downloaded), otherwise the priority remains unchanged.
The constant k determines the cutoff values for the num-
ber of downloaded pages. For example, assume k is set
to 5, and for a certain site p = 1, 000, and m = 25.
Then c = b− log( 25

1,000
)c + 1 = b−(−1.6)c + 1 = 2, and

d = log( 1,000
5

) = 2.3 > c, so the site’s priority class will be
set to 2. In our crawler we set k to 5, though we still need
to test how this constant impacts crawler performance.

3.2 Analysis and Matching

Our search engine supports queries based on text, 3D shape,
and 2D shape. For each of these input modes, the relevant
information is extracted from the 3D database models dur-
ing an offline stage, so that they can be efficiently compared
to online queries later. This means that relevant text associ-
ated with each 3D model has to be identified and that both
3D and 2D “shape descriptors” have to be computed. These
shape descriptors are designed such that they are a concise
representation of overall shape that can be indexed.

In addition, metadata such as polygon counts and thumb-
nail images are computed so we can produce more informa-
tive results pages. The full sequence of analysis operations
is shown in Figure 4, with each data type approximately in
its own quadrant.

3.2.1 Text

The most basic query interface we support uses text key-
words. These keywords are matched against a representa-
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Figure 4: Preprocessing: analysis stage

tive text file of each 3D model. The text in this file includes
the model filename, the anchor text, nearby text parsed
from the referring page, and ASCII labels parsed from in-
side the model file. The latter category includes part names
(e.g. “DEF” nodes in VRML), texture file names, and other
informational fields (e.g. the “WorldInfo” node in VRML).
We found that including comments is counter-productive,
as files often contain commented-out geometry, which floods
the documents with indiscriminating keywords.

Following common practices from the text retrieval lit-
erature, each text file is preprocessed by removing com-
mon words (stop words) that do not carry much dis-
criminating information, such as “and,” “or,” and “my.”
We use the SMART system’s stop list of 524 common
words [Salton 1971], as well as stop words specific to our
domain (e.g. “jpg,” “www,” “transform”). Next, synonyms
and hypernyms (category descriptors) are added to the docu-
ment using WordNet [Miller 1995]. This enables queries like
“vehicle” to return objects like trucks and cars, or “televi-
sion” to return a TV. Unfortunately, this last step increases
the number of bad matches. For example, WordNet returns
“domestic animal” as a hypernym for the word “head” (i.e. a
head of cattle), and as a result the text query “animal”
returns several models of heads. The resulting text file is
stemmed (normalized by removing inflectional changes) us-
ing the Porter stemmer: for example “wheels” is changed to
“wheel” [Porter 1980]. Figure 5 shows an example model (a
Ferrari car from a commercial model database [De Espona])
and part of its representative text file.

In order to match text documents to user-specified key-
words or to other documents, we use the TF-IDF/Rocchio
method, a popular weighting and classification scheme for
text documents [Joachims 1997; Rocchio 1971; Salton 1988].
This method assigns a vector of term weights to each doc-
ument based on a term’s frequency in the document (Term
Frequency (TF), higher is better), and its frequency over
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Figure 5: Example model of a Ferrari car and part of its
representative text file

all documents (Inverse Document Frequency (IDF), lower is
better). The similarity score between two vectors is simply
the cosine of the angle between them.

The stemming, indexing and matching is done using a
program called rainbow, which is part of the Bow toolkit, a
freely available C library for statistical text analysis [McCal-
lum 1996]. It allows the text matcher to run as a server with
the text index in memory, greatly accelerating the matching
process.

3.2.2 3D Shape

Our system provides three ways to specify a 3D shape query:
the user can (1) upload an existing 3D model file or (2) select
a 3D model on a results page (called a result model query).
We also allow the user to (3) create a 3D shape query from
scratch, using a simple 3D “sketching” tool. So far, we have
experimented with Teddy [Igarashi et al. 1999], a gesture-
based 3D sketching tool. We chose Teddy because it is the
simplest 3D modeling tool we could find: it is fairly easy to
learn, and allows one to create coarse shapes quickly, both
useful properties for our application.

Each of these query interfaces supplies a 3D model, whose
shape has to be compared to the shapes of the 3D models in
our database. We do this by converting them to 3D shape
descriptors and comparing those. The 3D shape descrip-
tor we use is described in [Funkhouser et al. 2003; Kazhdan
et al. 2003]. It is especially suitable for our application be-
cause of the following properties: it is robust under model
degeneracies, concise and efficient to compute (the compute
time is 2 seconds on average, on a 2.2 GHz Xeon CPU, for
a model with 3,500 triangles), and invariant to similarity
transformations (with normalization for scale and transla-
tion). Furthermore, matching two descriptors can be done
simply by computing the Euclidian distance between them,
and thus large databases of descriptors can be indexed effi-
ciently (matching a single descriptor to a database of about
36,000 descriptors takes less than 0.4 seconds). Finally,
the method outperforms other current 3D shape matching
methods in precision/recall tests on a large test database
(1890 models classified into 85 classes). For full details, see
[Funkhouser et al. 2003] and [Kazhdan et al. 2003].

3.2.3 2D Shape

To provide another, simpler shape query method, we also
support a 2D sketch interface. We found that a simple 3D
sketching tool like Teddy is still too hard to use for aver-
age users. The 2D interface is similar to the pen-drawing



interface in Paintbrush-style programs: pixels can be drawn
by dragging the mouse. Since this way of drawing is similar
to drawing using pencil and paper, it is more likely to be
familiar to the user.

The user is asked to draw up to three simple 2D outline
sketches: these sketches are matched to multiple outline im-
ages of the 3D models in the database as seen from different
directions. The matching method compares 2D descriptors
computed from the images, which are precomputed for the
outline images of the database models. These 2D image de-
scriptors are concise and efficient to compute, invariant to
similarity transformations (with normalization for scale and
translation) and reflections, and robust under small user in-
accuracies. Comparing and indexing the 2D descriptors is
done using methods similar to the ones used for the 3D de-
scriptors. For more details, see [Funkhouser et al. 2003; Min
et al. 2002].

The n (1 ≤ n ≤ 3) user sketches are matched to m outline
images of a database model by matching all combinations of
n out of m images, with the restriction that no two user
sketches can match a single database image. The matching
score of multiple user sketches is then the smallest sum of
the individual scores, for all combinations.

We chose to use a small number m = 7 of outline im-
ages for each 3D model for the following reasons. In a user
study, we found that people tend to prefer the simpler, or-
thogonal views (top, side and front views) over “diagonal”
views [Funkhouser et al. 2003]. Also, most 3D models in the
database appear to be axis-aligned. This implies we should
at least include the three axis-aligned views (looking from
the center of the sides of a cube towards the centroid). Our
matching method is invariant to reflection, so views from
the opposite sides are not needed. We added four views
(looking from the corners of a cube towards the centroid) to
cover non-orthogonal user input and models which are not
axis-aligned. Sampling from more directions increases the
likelihood that a certain user sketch matches a model out-
line more precisely, but also increases the number of false
positives.

3.2.4 Combined Queries

Text queries may be combined with 2D or 3D sketches. An
example “text & 2D sketch” query (for old-fashioned keys)
was shown in Figure 1 on the first page of this paper. Com-
bined queries can be more effective than text or shape queries
alone: shape properties of a model may be hard to describe
using text but relatively easy to sketch. For example, when
searching for tables with a single leg, one could submit a
text query “table” plus a simple 2D outline sketch of such
a table as seen from the side. This query and some results
are shown in Figure 6. A text query “table” by itself would
have returned many different tables, and the fact that a ta-
ble has a single leg is usually not described in its associated
text. Similarly, submitting just the sketch as a query adds
irrelevant results such as molecules and chairs.

To match a combined query, we simply perform both
queries separately, and combine their results by mean-
normalizing and averaging their matching scores.

3.2.5 Metadata

In order to create informative results pages, some extra infor-
mation has to be extracted from the 3D models. Specifically,
we create thumbnail images of the model as seen from three
directions and provide polygon counts.

Figure 6: Example combined “text & 2D sketch” query for
round tables with a single leg

The thumbnail images are created from VRML files us-
ing ParallelGraphics’ Cortona VRML plugin [ParallelGraph-
ics]. Non-VRML files are first converted to VRML 2.0 using
PolyTrans (a commercial 3D model converter) to simplify
the thumbnail generation stage and later conversions [Okino
Computer Graphics]. From the VRML 2.0 files eight thumb-
nail images are created. The first thumbnail shows the model
as seen from a camera viewing one of the largest two sides
of the model’s bounding box. A smaller version of the first
thumbnail is used on the main results page. The viewpoints
for the 2nd and 3rd thumbnails are another bounding box
side view, and a view orthogonal to the first two. If the
VRML file has at least one Viewpoint node, then the camera
of the first Viewpoint node is used for one of the thumbnails
(because this is the viewpoint that the model creator in-
tended to be the default). The remaining thumbnails show
the model in several different rendering styles (wireframe,
hidden-line) and in close-up.

Next, the VRML 2.0 files are triangulated and converted
to the PLY format using our own VRML reader and freeware
PLY software [PLY]. Since PLY is a simple, geometry only
format, this conversion simplifies the later 2D and 3D shape
analysis stages. During conversion, the number of triangles,
quads, and larger polygons is counted and stored, as well as
the number of triangles after triangulation (Note that, be-
cause our input models are VRML, the Box, Sphere, Cone,
Cylinder, Extrusion and ElevationGrid nodes are also tri-
angulated). Model files containing 3D text only (i.e. VRML
Text nodes, representing text displayed as 2D surfaces in 3D)
were ignored (this was the case for 0.5% of all downloaded
models).

3.3 Query Processing

This section describes the steps a query goes through as it
progresses through our system. The full process (with paths
for all possible queries) is shown in Figure 7. One path, for
a 3D sketch query, has been highlighted.

For each query interface, Table 1 lists the language it was
implemented in, and what data gets sent from the user to
the web server. A “browse results” request (i.e. requesting
a next or previous page with match results) fetches the next
or previous 16 results from a cached set of all results from a
query.

The web server is only responsible for data collection and
building a results page. We could have run the matching
process on the web server as well. However, since it is com-
putationally intensive, we implemented a matching server on
a separate PC designed to handle higher loads: it has two
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query type implemented as query data

2D sketch Java applet pixel coordinates of
“set” pixels

3D sketch Java applet Wavefront OBJ file
3D model file Javascript actual modelfile
result model HTML link unique model id
text keywords Java applet actual keywords

Table 1: Implementation method, and query data sent for
each query interface

1.5 GHz Xeon CPUs and 512 MB memory. The web server
sends matching requests via TCP to the matching server.
Query files such as 3D sketch object files are transferred via
NFS.

Matching of the incoming queries is handled as follows:

• Text queries are passed directly to the Bow toolkit clas-
sifier rainbow [McCallum 1996]

• 2D sketches, which initially are represented as a list
of foreground pixels, are saved as PGM files by the
web server (images with zero pixels are ignored). The
match server passes these to a separate 2D match server
which computes their 2D shape descriptors and does the
matching

• 3D sketches and uploaded 3D model files are first con-
verted to just geometry in the PLY format using an
in-house converter which reads VRML 2.0 (and a small
subset of the Wavefront OBJ, Autocad DXF, Persis-
tance of Vision POV, DEC OFF, and Unigrafix UG for-
mats). The PLY file is passed to a separate 3D match
server, which computes its 3D shape descriptor, and
matches it to the descriptors in the database

• For “result model” queries (queries where a model on
a results page is selected as a 3D shape query) only

a unique model id needs to be passed to the match-
ing server, which then retrieves its descriptor from the
database and matches it

• For combined (text & 2D/3D sketch) queries, the in-
dividual queries are performed separately, and their
matching results are combined by mean-normalizing
and averaging the scores

The 2D, 3D, and text matchers each run as server pro-
cesses that compare incoming descriptors/text against an
in-memory index and return model id’s and matching scores
to the matching server. This information is returned to the
calling script on the web server, which then builds the re-
sults web page and returns it to the user. Figure 8 shows
an example of a results page for a text query “dog.” Click-
ing on a “find similar shape” link below a thumbnail image
submits that particular model as a 3D shape query (i.e. a
“result model” query). Match results are cached to enable
fast browsing of multiple results pages using “Previous page”
/ “Next page” links at the top of the results page.

Figure 8: Example results page for a text query “dog”

3.4 Result Reporting

In deciding what to show the user on a results page, several
factors have to be considered. The user should have enough
information about each model to be able to determine if it
is interesting or not, without using too much bandwidth. A
single results page should show as many models as possible
without appearing cluttered. The most information would
be provided if each model were shown in its own small 3D
viewer (e.g. a VRML plugin), but this would require a high-
performance PC at the user’s end and a high bandwidth con-
nection (to transfer the potentially large model files). The
least possible amount of information is just each model’s
filename, which in most cases is insufficient.

We chose to provide model information at two levels of
detail: the first is a page with 16 results, shown as a 4 by 4
matrix of labeled thumbnail images (of 128×96 pixels each),
as shown in Figure 8. This results page occupies about
625×825 pixels of screen space (with the query interface the



total width is about 900 pixels). The next level of detail is
shown after the user clicks on a thumbnail image on a re-
sults page. This brings up a window with more information
about that model: eight 160×120 thumbnail images from
different viewpoints and in different rendering styles (which
can each be enlarged to 640×480), links to the model and
its referring page, polygon count information, and the text
associated with the model. Figure 9 shows an example of
such a window for a 3D model of a dog (result number 5 in
Figure 8).

Figure 9: Example information window for a model of a dog
(result number 5 in Figure 8)

4 Results

This section reports results for the acquisition, analysis, and
query processing stages.

4.1 Acquisition

We performed two crawls to test different acquisition strate-
gies. The first ran in October 2001 and targeted VRML
files only. This crawl began with the results of search engine
queries for web pages linking to VRML files and crawled
outward from these in a breadth-first fashion. The second
crawl ran in August 2002 and targeted five popular 3D file
formats, possibly contained in compressed archive files. It
used the focused crawling technique described in Section 3.1
to home in on relevant model files from a smaller set of start-
ing pages.

4.1.1 First Crawl

An initial crawl in October 2001 searched for VRML models
only. In this crawl, we simply used the results of the Al-
taVista and HotBot search engines to seed our search. These
sites allow the user to search in the URL text of links. VRML
model files have a unique extension and are usually linked to
directly rather than contained in compressed archives. For
these reasons, simply searching for wrl yielded a good set of
starting pages for our crawler.

The crawl ran for 48 hours and resulted in 22,243 VRML
files, retrieved from 2,185 different sites. VRML files can
include other VRML files (using Inline nodes for example,

file type number of linked to in compressed
models directly archive

VRML 15,167 (76%) 11,339 (95%) 3,828
3D Studio 2,483 (12%) 608 1,875
Lightwave 1,153 (5.7%) 14 1,139
Autocad 737 (3.7%) 0 737

Wavefront 544 (2.7%) 12 532
Total 20,084 11,973 8,111

Table 2: Number of 3D model files retrieved of each type in
the second crawl

similar to the C #include directive), which also were re-
trieved. This resulted in an additional 63,676 VRML files
(these files typically represent subparts of the larger main
model).

4.1.2 Second Crawl

A second crawl in August 2002 targeted VRML, 3D Studio,
Autocad, Wavefront, and Lightwave objects, both in plain
links as well as in compressed archive files. Unlike VRML,
the other formats were not designed to be used on the web
and often are contained within compressed archives, so they
typically cannot be located by the technique used in our first
crawler. Instead, the second crawler searched for them using
our focused crawling method, which favors repository sites.

The second crawl ran for 2 days and 16 hours on one
server and one client PC. This crawl took more time than
the first one (which took 2 days) because much more data
was downloaded (about 30 GB vs. 4.6 GB, mostly due to
the many large compressed archive files). The server sent
946,100 URL retrieval requests to the client (about 4.1 per
second on average). 804,413 (85%) were HTML files, 81,975
(8.7%) could not be retrieved because of network or server
errors, 13,217 (1.4%) were 3D model files (i.e. models linked
to directly, containing 1,244 duplicate links, leaving 11,973
unique model files), 5,539 (0.6%) were archive files contain-
ing 3D models, and 40,868 (4.3%) were archive files with no
3D model files in them. Of the archives containing 3D mod-
els, 79% had the extension .zip, 20% had .gz or .tar.gz,
and a handful had .lha, .tar, or .Z.

After decompression, there were 20,084 model files re-
trieved from 455 different sites. The file formats are dis-
tributed as shown in Table 2.

To investigate how the incoming model rate changed over
time during the second crawl, we plot the number of models
per 10,000 incoming URLs in Figure 10. The decay in the
“model yield” in this graph shows that, starting from this
set of 559 seed URLs, we retrieved most of the available
models after examining about 950,000 URLs, which is why
we stopped the crawling process at this point.

Comparing the results of both crawls we see that the sec-
ond crawl found many (mostly non-VRML) models inside
compressed archives that could not have been found using a
search method based on identifying file extensions in links.
Fewer VRML files were found in the second crawl because we
no longer took advantage of the AltaVista and HotBot in-
dices to find links to VRML files like we did in the first crawl.
The different crawling strategies are reflected in the fact that
the second crawl retrieved a similar number of models from
far fewer sites (455 compared to 2,185), and the relatively
small overlap between the two sets of models (19% of the
models from the second crawl were also found by the first).
Overall, the second crawl may be characterized as narrower
and deeper than the first.
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Figure 10: Number of incoming 3D models per 10,000 re-
trieved URLs in the second crawl

Surprisingly, the distributions of the number of triangles
per model of the first and the second crawl are nearly iden-
tical (see Figure 11 for a graph of both). We expected the
second crawl to retrieve more complex models than the first,
because it targeted repository sites. We are still investigat-
ing whether the similar distribution is caused by the fact
that the first crawl retrieved a relatively large number of
models from repository sites, or that repository sites do not
necessarily carry larger models than other model sites.
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Figure 11: Distribution of the number of triangles per model
for the first and the second crawl

4.2 Model Database Size

As of December 2002, our site indexes over 36,000 models.
Of the 42,000 models downloaded in the two crawls, about
31,000 remain after conversion and processing (as described
in the next section). An additional 5,000 commercial models
were provided by [Cacheforce; De Espona; Viewpoint].

4.3 Analysis

In this section we present statistics gathered during 3D
model file conversions, such as percentage of successful con-
versions, average polygon counts per model file type, and
timings of the various processing steps.

4.3.1 Model Conversion

Table 3 shows the number of successful conversions (using
Okino’s PolyTrans [Okino Computer Graphics]), and the av-

file type number of successfully average #
models converted triangles

VRML 15,167 14,782 3,182
3D Studio 2,483 2,473 10,860
Lightwave 1,153 1,141 10,717
Autocad 737 719 8,611

Wavefront 544 293 10,086
Total 20,084 19,408 5,691

Table 3: Number of successful conversions, and average num-
ber of triangles for each 3D model file type of the second
crawl

first crawl second crawl
1 model files 22,243 19,408
2 duplicates n/a 3,763 (19%)
3 no geometry 4,466 (20%) 2,397 (12%)
4 remaining models 17,777 (80%) 13,248 (68%)
Total number of indexed web models: 31,025

Table 4: The number of (1) VRML 2.0 model files acquired
and created in both crawls, (2) models found in the second
crawl that were also found by the first, (3) models lost be-
cause of conversion errors in our converter, and models with-
out geometry, and (4) remaining useable models. The last
line shows the total number of web models in our database.

erage number of triangles for the models retrieved in the sec-
ond crawl (not counting models with zero triangles). 12,082
of the VRML files were already in the 2.0 format. Assuming
that the number of triangles is an indication of the complex-
ity of a model, then these numbers show that VRML files are
on average much simpler than models in the other formats.

Table 4 shows for both crawls the initial number of VRML
2.0 files, and how many were unusable because of missing
geometry or conversion errors. The conversion errors were
caused both by errors in the model files as well as bugs and
missing features in our VRML parser. For the second crawl,
99.7% of the models lost in this stage were originally in the
VRML format.

4.3.2 Descriptors, Indices and Metadata

This section reports the time taken for the preprocessing
steps for the VRML model database acquired in the first
crawl. See Figure 4 in section 3.2 for an overview of these
steps. The model conversion to VRML was done on a 195
MHz MIPS R10000 CPU running Irix 6.5. All other pro-
cessing was done on Intel CPUs running Red Hat Linux 7.
The thumbnail generation ran on a 733 MHz Pentium III,
capturing the 2D outline images for the 2D descriptor index
on a 1.5 GHz Xeon, and the remaining processing steps on
a 2.2 GHz Xeon.

Table 5 lists the running times for each of the preprocess-
ing steps. Creating the actual indices from the extracted
text was done using the rainbow toolkit [McCallum 1996]
and took 11 seconds. The conversion to VRML 2.0 involved
the conversion of about 15,500 VRML 1.0 and Inventor files
(this includes files referenced using WWWInline). Triangle
counts were computed during the “conversion to PLY” step.

Average storage requirements for the VRML models from
the first crawl are 500 Kb for the model file itself (includ-
ing texture files), 27 Kb for the text data, 400 Kb for the
thumbnail images, 260 Kb for the PLY file, and 17 Kb for
the 2D and 3D shape signatures.



preprocessing step approx. time
(in hours:mins)

extract text 1:20
convert to VRML 2.0 3:20

create thumbnails 60:00
convert to PLY 6:00

compute 3D index 9:30
create 2D images 18:00
compute 2D index 1:40

Table 5: Time taken for the preprocessing steps of the 17,777
models acquired in the first crawl

query type processing and
matching time (in sec)

text 0.22
2D sketch 0.61

text & 2D sketch 0.59
3D sketch 3.2

text & 3D sketch 3.2
result model 0.36
file upload 5.0

Table 6: Average time for processing and matching for each
query type

4.4 Query Processing Performance

Here we report the response times of our site for the various
query types.

The response time a user experiences is the sum of the
time it takes for the following operations: (1) connecting to
our web server and sending query data, (2) executing a CGI
script on the web server (which connects to and has to wait
for the matching server), (3) processing and matching of the
query on the matching server, (4) returning the results to the
user, and (5) rendering the results web page on the user’s
machine. The time taken in steps (1) and (4) depends on
the available bandwidth between the user’s machine and our
web server, step (5) depends on the performance of the user’s
machine. Step (2) adds an estimated overhead of about 1–2
seconds. We can report accurate timings for step (3): pro-
cessing and matching of the query on the matching server.

Table 6 shows for each query type the average time used
for processing and matching on the matching server, aver-
aged over about 16,000 searches performed since our model
database was expanded to 36,000 models. These numbers
show that the response time is mostly determined by the
amount of query data that needs to be processed. Text
and “result model” queries take the least time, followed by
queries that involve 2D sketch(es) (for which 2D image(s)
are converted to image descriptors), and queries that require
the conversion of 3D models (3D sketch and file upload). In
the latter case, the 3D model file size dominates the total
processing time. The conversion times for a few example
model sizes are: 60 KB, 2,000 triangles: 4 seconds, 800 KB,
6,500 triangles: 6 seconds, 2 MB, 61,000 triangles: 13 sec-
onds (2 MB is currently the filesize limit on the “file upload”
feature).

The time between when a query arrives at the web server
and when its results are ready is about 0.4 seconds on av-
erage. To investigate how this average time increases under
increasing load, we ran two experiments in which we sent
queries to our web server at a higher rate. These queries
were taken from a set of 4,000 representative queries submit-

# searches % info % ref. % model

(%) window page download

text 99,949 (67) 31.8 9.6 12.2

result model 22,696 (15) 37.9 12.3 15.2

2D sketch 16,130 (10.8) 18.1 4.3 2.9

text & 2D sketch 7,764 (5.2) 25.8 7.2 7.7

3D sketch 1,559 (1.0) 19.2 3.3 3.5

text & 3D sketch 615 (0.4) 30.7 8.9 10.0

file upload 100 (0.06) 25.0 7.0 8.0

Table 7: Relative use of each query interface, and user in-
terest in the resulting models

ted to our search engine, logged during a one week period
in July 2002. In the first test we sent on average one query
every 4 seconds for a period of two hours from a single host.
In the second test we sent twice the number of queries from
4 different hosts (which is a more than 120 times higher rate
than the currently typical rate of about 400 queries per day).
The average processing time per query increased to 0.88 and
1.46 seconds per query, respectively (the maximum times
were 5 and 7 seconds), which shows that our current system
will be able to accomodate much higher loads without in-
curring a significant performance penalty (i.e. one where the
turnaround time becomes unacceptable for the user).

4.5 Site Usage Statistics

In this section we show how the site has been used since it
first came online in November 2001.

4.5.1 Queries

During a one year period starting on November 18, 2001,
158,159 queries have been processed. 148,974 of these re-
sulted in an actual search being performed (8,164 queries
were empty, i.e. searches with no text or shape input, and
1,021 file upload queries failed). 67% of these were text-only
searches, 33% were shape-based, possibly combined with
text. Table 7 shows the number of searches performed for
each query interface type, and what percentage of those re-
sulted in, at least once, (1) the opening of an information
window, (2) the visiting of a referring page, and (3) the
downloading of an actual 3D model.

The text-only query interface was the most popular. This
may be explained by the following reasons: (1) it is the
most familiar kind of interface on the web, (2) it is easy
to supply a text query, (3) the total time from specifying
the query to seeing the results is very short, and (4) users
are unfamiliar with shape queries. The 99,949 text queries
contained 18,941 unique queries. The 10 most popular text
queries were car (2,912), human (1,360), woman (1,065), tree
(1,003), house (918), cars (839), man (834), chair (773), ship
(629), and building (602). 8,469 text queries (or 8.5%) re-
sulted in zero matches: these included queries that were
mistyped or in a foreign language, but also queries for ob-
jects not in our database, e.g. “audi,” “cellphone,” and “spi-
derman.” These also included queries for objects that are
present in our database but are annotated incorrectly (for
example, the database contains buddha models but their
filename is misspelled). In these cases, a shape-based query
could have been more effective.

The relative number of times extra information is re-
quested about a model could be an indication of how in-
teresting the results are to the user. If this is true, then the
“result model” query yields the most relevant results: after



15.2% of the “result model” searches the user downloaded
at least one model, more than for any other query method.
This suggests that users are able to use the “result model”
query to home in on a desired model.

Few people used the other 3D shape-based interfaces.
About 1.4% of all the queries involved the 3D sketching inter-
face: to use it effectively, users have to take a small tutorial,
and have some 3D manipulation skills. We think this was
too much of a barrier for the average user. Even fewer people
used the “upload 3D model file” feature. Most of the time
it is misunderstood, and used to enter text keywords. This
could be because we provide insufficient information on the
site (e.g. we could have provided a short explanation about
3D models and modeling).

Overall, we think that ease of use and familiarity of a
query interface determine its popularity: text is most pop-
ular, followed by “result model” (less familiar, but intuitive
and easy to use), 2D sketch (familiar, but harder to use),
and finally the 3D shape based interfaces. In future work,
we hope to improve the user-friendliness of the 2D and 3D
sketch interfaces.

4.5.2 Visitors

To investigate whether people find the search engine useful,
we measured the number of unique hosts using our site per
week, and what percentage of them return after a first visit.
Figure 12 shows the number of unique hosts per week using
our site since the first hit arrived on November 18, 2001.
Note that hits from *.princeton.edu were not counted.
During each visit on average 3.2 searches were performed.
The sharp increase in the week starting on March 10th was
due to the improved ranking of the site at Yahoo and Google.
The sharp peak in the week of November 3 occurred because
our site was mentioned on Slashdot, a popular discussion
board for technical news. As a result, during the first six
hours after the post over 3,800 queries were processed.
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Figure 13 shows the percentage of returning hosts per
week. A visitor is counted as returning if a subsequent visit
occurred on a later date than a previous visit. It shows a
clear upward trend, and currently approaches 25%, suggest-
ing that an increasing number of people are using the site as
a useful resource.

We were also interested in how widespread the usage of
our search engine is. For this purpose we store the host-
name of each visitor’s PC and count the number of unique
hostnames from each top-level domain. We received queries
from 117 different top-level domains, 103 of which were from
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Figure 13: Percentage of returning hosts per week

domain hosts domain hosts

1 net 9,045 11 es (Spain) 592

2 com 6,899 12 br (Brazil) 506

3 fr (France) 1,666 13 jp (Japan) 364

4 edu 1,333 14 mx (Mexico) 301

5 ca (Canada) 830 15 be (Belgium) 301

6 ge (Germany) 818 16 pl (Poland) 259

7 au (Australia) 694 17 at (Austria) 258

8 it (Italy) 671 18 ch (Switzerland) 216

9 nl (Netherlands) 670 19 ar (Argentina) 207

10 uk (UK) 641 20 se (Sweden) 197

Table 8: Number of different hosts from the 20 most frequent
top-level domains

specific countries. Table 8 shows the number of unique hosts
visiting from the 20 most frequent top-level domains. Note
that these numbers only give a rough indication of the rel-
ative use of our site in each country: the .net and .com
domains are international, for 25% of the searches a host-
name lookup failed, and dynamic IP addresses may cause
the same host to be counted more than once. The numbers
do indicate that the usage of our site is widespread, and
highest among industrialized nations.

5 Limitations and Future Work

There are many avenues for future work.
First of all, it is not clear how many 3D models there are

on the web, which prevents us from accurately evaluating
the crawler’s performance. We intend to investigate methods
to compute a good estimate of the number of available 3D
models on the web, and their distribution by application
area (e.g. avatars, CAD, virtual environments, etcetera).

There are still ways to improve the query interfaces. The
“Teddy” 3D sketching tool we currently use for 3D shape
queries is hard to use for novice users. Restricting the free-
dom of user input can make it easier to build simple 3D ob-
jects. For example, by providing only a few basic shapes as
building blocks, that then can be connected to form a larger,
more complicated object. We are currently investigating a
similar 2D query interface in which the user can draw a 2D
shape as a collection of parts (e.g. ellipses). These parts will
still be matched to images of the 3D database models as
seen from different directions, but by also allowing for some
variation in the relative location of parts, we may be able to
match articulated models.

The focused crawler needs additional testing to evaluate
the effectiveness of the set of seed queries and the parame-



ter settings for the site priority assignment. Also, we have
not investigated other crawler issues such as recrawling the
database to keep it up-to-date (by removing “dead links,”
currently occupying about 12–16% of the database) and the
proper handling of duplicates. In the domain of 3D models,
a duplicate can mean anything from a byte-identical copy
of a model file, to one that has a very similar shape (e.g. a
lower triangle count version of the same model).

Finally, we would like to increase the site’s usefulness by
including more search options (i.e. an “advanced search”),
such as searching models of a specific filetype or with a min-
imum number of triangles.

6 Conclusions

Because of the fast growing number of 3D models that are
available on the web, there is a need for a search engine spe-
cific to 3D data. Several factors contribute to this increase:
new model acquisition methods and modeling software cre-
ate an increasing supply of 3D models, and fast and cheap
graphics hardware creates an increasing demand for them.

We built a prototype web-based 3D model search engine.
It functions as a framework to evaluate methods in focused
crawling for 3D data, shape matching methods, and shape
query interfaces.

In this paper we discuss system design and implementa-
tion issues, and report usage statistics and crawler and web
site performance. We find that there are enough 3D models
available on the web to justify building a 3D model search
engine. Judging from our usage statistics, it also appears
that there is a demand for such a search engine: in one year
we processed over 148,000 queries from 37,800 different hosts
in 103 countries, resulting in more than 26,000 model down-
loads. Furthermore, currently 20–25% of the about 1,000
visitors per week are returning users.

Try it out yourself at http://shape.cs.princeton.edu
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