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Lighting is a fundamental aspect of computer cinematography that involves the placement and configuration of lights to establish mood and enhance storytelling.
This process is labor intensive as artists repeatedly adjust the parameters of a large set of complex lights to achieve a desired effect. Typical lighting controls
affect the final image indirectly, requiring a large number of trials to obtain a suitable result.

We present an interactive system wherein an artist paints desired lighting effects directly into the scene, and the computer solves for parameters that achieve
the desired look. The artist can paint color, light shape, shadows, highlights, and reflections using a suite of tools designed for painting light. Our system matches
these effects using a nonlinear optimizer made robust by a combination of initial estimates, system design, and user-guided optimization. In contrast, previous
work on painting light has not permitted the lights to move, allowing for linear optimization but preventing its use in computer cinematography.

To demonstrate our approach we lit several scenes, mainly using a direct illumination renderer designed for computer animation, but also including two other
rendering styles. We show that painting interfaces can quickly produce high quality lighting setups, easing the lighting artist’s workflow.
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1. INTRODUCTION

Lighting plays a crucial role in computer cinematography where,
just as in live action film, it establishes mood, enhances storytelling,
and frames the key elements of a shot [Alton 1949; Lowell 1992].
To achieve high quality lighting, artists called lighters often place
tens or hundreds of carefully chosen lights, a very labor-intensive
process, characterized by repeated adjustment of the parameters
of each light in order to achieve the desired effect. The process is
complicated by the fact that in typical shots the relationship between
the parameters of the lights and the resulting visual effects is often
unintuitive even for trained artists. This challenge is exacerbated by
the increasing complexity of production shots as demonstrated by
the growing size of the lighting crews required for feature-length
computer animated movies.

To address this issue, we propose a workflow wherein the artist
can directly paint the desired effects of lights into the scene using an
interface similar to that of conventional painting programs such as
Adobe Photoshop, leaving the task of finding the best values for the
parameters of the given lighting model to the computer. As shown
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in the seminal text on cinematographic lighting, Painting with Light
[Alton 1949], painting is a natural metaphor for lighting composition
and such terms are used in practice to express desired lighting in
movie production. This process, illustrated in Figure 1, not only
allows for faster setup of lighting configurations, but often helps
artists, trained or not, to achieve higher quality results by letting
them work in a more familiar and intuitive interface.

To support this user interaction, our system casts the lighting prob-
lem as a high-dimensional nonlinear optimization whose goal is to
find the best settings for each light parameter to match the painted
input, the target image. The nonlinearity of the problem comes from
the nature of lighting, for example, in the behavior of shadows or the
responses of arbitrary surface shaders. To further complicate the
problem, lighting setups used in computer cinematography are char-
acterized by tens or hundreds of lights (each of which may have tens
of parameters), requiring the optimization to be performed in a high-
dimensional space.

One factor that largely alleviates these challenges stems from the
observation that there is a trade-off between the quality of the solu-
tion and the complexity of the resulting lighting setup. On the one
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(a) lighter paints in scene (b) computer places key light
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Fig. 1. Lighting by paint: (a, b) the lighter paints to guide the starting configuration of a key light; (c, d) the artist paints more subtle lighting and the computer
optimizes more lights to match.

hand, lighters are allowed to paint effects that cannot be achieved
by any reasonable lighting configuration. On the other hand, while
in most cases it would be possible to obtain a perfect match for the
painting by creating a light for each pixel, this is probably not the
intention of the artist but rather a result of inaccuracies (or abstrac-
tions) in the painted image. The workflow we propose allows the
lighter to strike a desired balance between quality and complexity
through several mechanisms. The lighter explicitly indicates to the
system whether to add a new light or modify existing ones in order
to match the painted image. After each optimization, if the desired
result is not met, the lighter can add additional paint to steer the
optimization in a given direction by modifying existing lights or to
create a new light that will help match the desired effect. One benefit
of this approach is that the lighter can retain control of the semantic
meaning of lights (e.g., key light on Alice). Furthermore, he can
focus on the desired goal (e.g., make this area more yellow) without
worrying about either the specific parameters necessary to achieve
that goal or the other side-effects of adjusting the parameters that
achieve it.

Even with this simplifying assumption, basing an interactive sys-
tem on high-dimensional nonlinear optimization may still seem like
a dubious proposition. The major drawback of known methods is
that they cannot guarantee finding global minima and tend to get
stuck in local minima. Indeed, we have found that without careful
treatment of the search problem, it is often the case that even so-
phisticated optimization algorithms will find local minima of very
poor quality when adding a new light to the scene. We avoid such
situations with a simple algorithm for estimating the initial config-
uration of the light that tends in practice to start near a good local
minimum, requiring the optimizer to only finetune the solution. Fur-
thermore, while we cannot guarantee a global minimum (as is the
nature of nonlinear optimization), it is not necessary in our frame-

work because the goal function is imprecise, and we are searching
for any solution that matches the lighter’s intuition in a way that is
satisfactory to him.

While a general nonlinear optimization has the said drawbacks,
it allows our framework to be applied in all lighting scenarios by
treating a renderer as a black box. Thus our technique subsumes
previous systems in which an artist can paint lighting effects. (No-
table is the work of Schoeneman et al. [1993] that inspired our own
by showing that painting is an effective way of specifying lighting.
Their assumption that light positions are fixed allows the problem
to be solved through linear optimization but prevents its use for
lighting in computer animation.) To test this generality, we applied
our technique to a direct illumination model used in computer an-
imation, a global illumination renderer, and two nonphotorealistic
styles. Within these renderers, the lighter was able to paint not only
the general color of a lit object, but also shadow positions, light
shape, and indirect lighting effects in mirrors and indirectly diffused
environments.

The technical contributions of this work include (1) a suite of
painting and compositing controls suitable for painting light into a
scene with known geometry and surface properties, (2) a painting
and optimization workflow suitable for lighting in CG production,
and (3) a careful parameterization of the search space as well as a set
of initial conditions that permits effective nonlinear optimization in
this setting. While our efforts have emphasized use of this system
in computer cinematography, some of these methods may transfer
to other domains where lighting design is also known to be-difficult
and important problem, for example, performance [Dorsey et al.
1991] or architecture [Schoeneman et al. 1993].

The remainder of the article is organized as follows. Section 2
places our method in the context of related work. Section 3 provides
an overview of the process. Section 4 describes how the lighter paints
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as a way of describing his goals. Section 5 describes the heart of our
system, the optimization method. Finally, Section 6 presents some
results, while Section 7 gives conclusions and future work.

2. RELATED WORK

The system we present shares common goals with a number of
previously described techniques. For example, one branch of the
computer vision literature addresses the problem of inferring light
configurations from shading and shadows in images, for example,
the work of Wang and Samaras [2002]. The method described in
Section 5 for finding a starting configuration for the optimization is
informed by this literature. However, we present a fundamentally
different approach to the problem based on user-guided optimiza-
tion for three reasons. First, the lighting models used in animation
typically have many more DOFs than just location and intensity,
which are the focus of the vision effort. Second, the lighter gen-
erally provides input that is at once incomplete and inconsistent
(imagine trying to paint accurate shadows coupled with consistent
shading, for multiple lights without looking at a reference scene),
whereas the vision research addresses a (certainly more difficult)
challenge, that is, lack of knowledge of the underlying geometry
and reflectance properties. Third, even an expert painter who could
accurately simulate realistic lighting would generally choose not to
do so for cinematic reasons [Barzel 1997], whereas computer vision
uses models of physical reality.

Researchers have proposed techniques for easing the burden of
lighting designers by giving them direct control of the effects of
lights in the scene, for example, shadows and highlights. Poulin and
Fournier [1992] presented a method wherein the designer manip-
ulates lights by specifying highlights and by transforming shadow
volumes in a wireframe view. A more recent technique developed
by Pellacini et al. [2002] allows a lighter to drag shadows directly
in an interactively rendered image and offers a constraint system
helpful in scenes with multiple shadows. While these methods pro-
vide a remarkably intuitive interface for controlling the parameters
that they affect (e.g., light position), they do not address the many
different DOFs that we would like to control and can be confusing
when adjusting the parameters of many lights.

Several researchers have investigated methods for optimizing
lighting-related parameters in order to achieve various goals in ren-
dered images. A survey of these methods, comparing their mathe-
matical formulation, is presented in Patow and Pueyo [2003]. Here
we review the methods more closely related to our work. The method
of Kawai et al. [1993] optimized over the intensities and directions of
a set of lights as well as surface reflectivities in order to best convey
the subjective impression of certain scene qualities (e.g., pleasant-
ness or privateness) expressed by users. Poulin and Fournier [1995]
described a way to solve for for more high-level surface parameters
(e.g., diffuse and specular reflection coefficients) for a given illu-
mination model, consistent with a set of user-colored disks placed
onto the model. Their work is orthogonal to ours but, at its heart,
is a very similar nonlinear optimization based on painted lighting:
they solve for surface properties where light parameters are known,
whereas we solve the opposite problem. Marks et al. [1997] pre-
sented design galleries, which use a kind of user interface that is
very different from the one we propose, in order to address a similar
goal, namely, assisting an animator (or lighter) in the exploration of a
very large parameter space to achieve a desired effect. Both Shacked
and Lischinski [2001] and Gumhold [2002] tackled nonlinear light-
ing optimization, albeit for a different application domain than that
addressed here: automatic lighting for novices based on perceptual
qualities. An interesting approach to specifying optimization con-

straints is presented in Costa et al. [1999] where users can express
arbitrary constraints for lights to be solved by the system. While
this work is interesting, it is orthogonal to our own in that we are
attempting to simplify the user interface as much as possible, while
their work concentrate on complex constraints specification.

Perhaps most similar to our work are previous efforts that pro-
vide painting interfaces for expressing how models respond to light.
Hanrahan and Haeberli [1990] first presented a WYSIWYG system
for painting surface characteristics (e.g., textures) directly onto the
model. Schoeneman et al. [1993] described a method where the
user paints on a scene to be lit with global illumination, and the sys-
tem solves for the intensities of a set of lights with known positions.
Anrys et al. [2004] and Mohan et al. [2005] use a similar approach
to relight real objects whose appearance is captured using image-
based lighting techniques. Poulin et al. [1997] presented a sketch-
ing interface whereby the user expresses constraints on highlights
and shadows (umbra and penumbra) for ellipsoid geometry, and the
system solves for the appropriate position for a point or area light.
Finally, Kalnins et al. [2002] presented a method for painting many
aspects of stylization for NPR scenes, including a specific kind of
hatching meant to suggest light or shadow.

Largely inspired by these techniques, the system we propose is
the first suitable for lighters to to be able to rig the complex con-
figuration of lights, each with many DOFs, that are coupled with a
complex model and arbitrary surface shaders in order to render a
typical production shot. Specifically, the painting tools we describe
in Section 4 are the first such tools appropriate for painting cine-
matic lighting over known geometry with known surface shaders.
We also introduce a workflow in Section 3.2 that allows lighters to
add lights one-by-one (giving him semantic control over each light)
or to choose a set of lights to optimize together to match a particular
effect. Finally, this article addresses a pair of challenges inherent
in lighting for computer cinematography: the need to manage the
many DOFs of cinematographic lights, and the nonlinear nature
of the search space. Except for Shacked and Lischinski [2001],
which targets a different application space, all previous light opti-
mization systems made simplifying assumptions, for instance, fixed
light positions, simple light models, or no shadows and reflections,
any of which make the solution easier but limit its application in
cinematography.

3. OVERVIEW

This section provides an overview of the workflow used by a lighter
to set up lights using our system, as well as a high-level view of the
algorithms working behind the scene.

3.1 Context

The role of the lighter is to make a visual composition: to frame
the essential elements while expressing a mood appropriate to the
shot using lighting that appears to be natural or consistent with
the scene (e.g., near a window with daylight spilling in). In typical
animations rendered with direct illumination, the lighter sets up
many lights per-shot (tens or hundreds), each light having many
degrees of freedom (DOFs). For example, a CG light designed to
mimic the behavior of a live action barn light might have DOFs for
position (3), orientation (2), color (3), distance cutoffs (4), distance
falloffs (2), barn shape (3), shadow density (1), as well as more
esoteric production-specific parameters [Barzel 1997]. (Our direct
illumination renderer described in Section 6 implements this set of
DOFs.)
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(a) dim ambient light (b) lighter paints target (c) importance map for (b)

(d) new light added (e) lighter refines (c) (f) further optimization

(g) lighter paints yellow (h) yellow light added (i) final image with additional lights

Fig. 2. More detailed process by which a lighter sets up the lights in a shot (same as in Figure 1, but with different lights).

In finding a solution satisfactory to himself or the director, the
lighter intuitively performs a high-dimensional search, for example,
by adjusting an intensity of one light, moving another, changing a
color on a third, then returning to the first to readjust it, and so forth.
The purpose of the system presented in this article is to provide
the lighter with more efficient tools for performing this search. The
lighter guides the system through the search space by painting, and
the computer peforms low-level optimization in response to the paint
strokes.

3.2 Workflow

The workflow in our system can be illustrated by the following high-
level example, shown in Figure 2. Note that some actions labeled
painting in images (b), (d), (f), and (h) may not look like paint-
ing because of the use of sophisticated brush controls described in
Section 4 and highlighted in Figure 3.

(a) The lighter first loads the scene, which is by default lit by a
dim ambient light so that the lighter can see the model.

(b) The lighter paints some light on the jug as well as a shadow on
the wall behind.

(c) Implicitly by painting in some areas, the lighter has set up an
importance map described in Section 4. This image tells the

optimizer how much relative weight to give to different areas
of the target image (black = important).

(d) The computer adds a new light and optimizes its parameters
with the goal of matching what the lighter has painted, empha-
sizing of course the important areas.

(e) The lighter decides to modify the shape of the newly added
light as well as the shape of the shadow of the jug. He paints
to refine the image from (d).

(f) The computer further optimizes the light parameters to better
match the lighter’s refined target image.

(g) The lighter paints new yellow light from the right.

(h) The computer adds a light and optimizes to match it.

(i) The lighter paints the effect of a blue light from the left.

(j) The computer optimizes to match it.

This process is designed to provide the lighter with controls that
correspond to a natural way to think about lighting, that of paint-
ing with light [Schoeneman et al. 1993] after [Alton 1949]. The
lighter thinks in terms of composition in the frame, and the com-
puter performs the messy part of the high-dimensional search that
would otherwise have to be performed by the lighter repeatedly
tweaking various parameters. Note, however, that the lighter has
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(a) γ = 0 τ  =  0 (b) γ = 1  τ  = 0 (c) γ = 0  τ = 1 (d) γ  = 1  τ  = 1 (e) add light (f) brighten

Fig. 3. Similar strokes drawn in various painting modes. Images (a–e) have the same color, brush size, and full opacity. Images (b, d, e) reveal a gradient.
Images (c–e) respect the model’s diffuse texture. The brush in (e) has the settings as in (d) except that it cannot darken in any channel. In (f), the brush brightens
the image.

explicit control of when new lights are added, for two reasons. First,
the computer does not have to perform a discrete optimization over
the number of lights in conjunction with what is already a difficult
continuous optimization over their parameters. Second, the result-
ing lighting rig corresponds to something that the lighter intended
(the lights have explicit meanings to the lighter, e.g., key light on
Alice or rim light on vase) and is therefore easier to understand and
manipulate later.

In addition to explicit control of when to add new lights, the lighter
also may choose which parameters of which lights are free to change
during optimization. The main reasoning behind this design decision
is that the lighter may be pleased with the current qualities of some
lights and should have the ability to lock them in place. However, it
also has two other benefits. First, the lighter may be attempting to
achieve a particular effect and has a good idea of what parameters
need to be adjusted to achieve it. Second, since the dimensionality
of the search affects time (and success) of convergence, the ability
to choose which parameters to optimize allows the lighter a way
to guide convergence. Finally, it is the lighter who decides when
the optimization has converged to satisfaction. As the optimizer
searches for a good lighting configuration, our application shows a
rendering of either the current trial or the best configuration found
so far (which we believe lighters would generally prefer to view).

To facilitate the workflow described in this section, two questions
must be addressed. First, how can the lighter paint images easily and
with sufficient accuracy to show the desired lighting effects? Second,
how can the computer find a sufficiently good match to the desired
lighting? These questions are addressed in Sections 4 and 5.

4. PAINTING

This section describes the painting interface by which the lighter
expresses how he would like to set up lights in the scene. When the
scene is first loaded, it is rendered with a dim, ambient light so that
the lighter can see the objects in the scene. To change the look of
the scene, the lighter paints directly in the image, and then starts
the optimizer which tries to match the painting. We have found
that attempting to express lighting in detailed scenes using only
traditional compositing brushes can be cumbersome. Therefore, we
have augmented traditional tools with a set of specialized brushes
that can leverage knowledge of the underlying geometry to help the
lighter easily and accurately paint light into a scene.

4.1 Brushes

Before painting a stroke, the lighter chooses five brush qualities:
color c, diameter d, opacity α, texture strength τ , and gradient γ .
Opacity has the usual meaning for compositing and is implicitly mul-
tiplied by a gaussian of width d pixels centered at the mouse position.
Texture strength provides control over how much the painted color
is modulated by the diffuse texture color of the objects being painted
(for example, the pattern on the vase in Figure 1). Varying this pa-
rameter allows for the painting of specular effects. Suppose pb is
the color of a pixel before painting and cd is the diffuse texture color
of the object at that pixel, then the painted color cp = (1 − τ )c +
τ (c · cd ). Colors have three color channels and the math may be
performed for each channel independently.

Rather than requiring the lighter to paint with a flat, constant
color, we also provide a gradient tool similar to the tools in Adobe
Photoshop or Gimp. In commercial painting programs such tools
can be used to fade strokes as though the paint runs out as the brush
is dragged along the canvas, allowing the painter to create smooth
color gradients on the painted object (Figure 3(b)). In our system, we
know the underlying geometry and have found that a useful model
is to record the surface normal n̂ peak at the start of a stroke, and
then modulate the painted color by how much the normal n̂ changes
during the stroke. cγ = cp((1 − γ ) + γ (n̂ · n̂ peak)). When γ is 0,
colors are left unaffected; when it is 1, then the effect is that of a
diffuse directional light pointing at -n̂ peak ; of course 0 < γ < 1
yields linear interpolation. With a modifier key the lighter can paint
several strokes using the same n̂ peak . Using another modifier key,
the lighter can also fade away from a specular peak (rather than
diffuse); we set n̂ peak to the view vector reflected about the normal.

The color after compositing is given by cc = (1 − α)pb + αcγ .
Obviously, if the lighter chooses to add a light to the scene without
modifying the existing lights, the new light can only brighten (not
darken) the image. For such cases, we provide a painting mode called
add light that prevents darkening by the painted color, whereupon
the pixel after painting p f = max(pb, cc).

4.2 Importance

The target image has a fourth channel called the importance map
(e.g., Figure 2(c)) that allows the lighter to express for the optimizer
the relative weights of different areas of the image. The optimization
must balance between competing goals (e.g., brighten the orange but
don’t change the table), and the importance map provides a control
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Fig. 4. Importance maps let the lighter to express the relative weights of different areas of the target image (white = 0; black = 1). Left: Fruit were painted
in the past. Middle: Jug painted now with low history weight δ. Right: Jug painted now with high history weight δ. Top: Background remains more important
given the large background weight ν. Bottom: Background remains less important given the small background weight ν.

whereby the lighter can express the relative importance of these
goals. The lighter can paint the importance map explicitly, but this
can be cumbersome. Therefore, we also provide a way to express it
implicitly by setting two controls and painting normally in the color
channels. The first control, ν (unpainted), says how much weight
to give to pixels that are left unpainted in the target image (and
should therefore change as little as possible during optimization).
The second control, δ (history), says how much weight to give to
whatever the lighter painted in the past. The effects of these two
parameters are demonstrated in Figure 4. Let I be the importance
map for the current target image and Ip be the importance map
from previous target image set initially to ν. We define the previous
target image as the image the user obtained after one optimization,
which might include multiple strokes. Pixels in I are 1 if the lighter
painted them in this target image. If not, I = (1 − δ)ν + δ Ip . The
benefit of this implicit specification is that the lighter can express
the importance map with two simple controls, both of which have
an intuitive meaning. However, in cases where the lighter wants
explicit control, he paints directly into the importance map using
the implicit version as a starting point.

The GUI also allows the lighter to pick a specific object on which
the paint strokes will be clipped (rather than falling on other items
across silhouettes). The system supports painting modes for bright-
ening, darkening, or for copying from an image that has been modi-
fied in an external program (allowing, e.g., histogram equalization,
posterizing, etc.) We also provide a shadow brush that can paint and
erase shadows when the lighter wishes to modify a light or set of
lights. The shadow brush and eraser work by copying pixels from a
pair of rendered images, one that contains the scene lit with all the
modifiable lights turned off and the other containing all the lights
turned on but the shadows turned off. Finally, there is also a paint
bucket brush. These tools may be used in combination, allowing
for example, for uniform brightening of a specific object with one
mouse click. See Figure 3 and for examples of various painting
effects.

4.3 Discussion

Since the goal of our interface is to reduce the complexity of the
lighting design task, it might appear that introducing multiple pa-
rameters and painting tools in our lighting interface could confuse
users. First, when comparing our tools with similar retouching tools
for digital imaging, our interface should feel at once familiar and
simpler in the number of parameters used since we designed our
tools to be the equivalent of the traditional ones when applied to
lighting design. Furthermore, the added controls for textures, impor-
tance, and gradient are only meant to reduce the number of strokes
lighters have to apply; it is possible to use our interface without ever
needing to specify any of those parameters. We have also observed
that it is typical not to modify those parameters often.

5. OPTIMIZATION

At the heart of our system is an optimization algorithm whose pur-
pose is to unburden the lighter from having to optimize the light
parameters manually. The goal function for the optimization is the
weighted average of the difference between pixels i in the target
image T and the rendered image R:

ε =
(∑

i
Ii · ||Ti − Ri ||2

)/(∑
i

Ii

)
,

where I is the importance map. Several factors make this a difficult
function to optimize. First, it is nonlinear in the parameters of the
lights. Second, to evaluate ε, we render Ri and subtract it from Ti ,
which can be expensive in the inner loop of an optimization. Third, if
we are optimizing many parameters or many lights, the search takes
place in high-dimension. Fourth, there is no general strategy (other
than sampling) to determine the local gradients of the goal function.
Fifth, our search space has large plateaus in which the optimizer
can get lost, for example, where a distant spotlight is pointing away
from the scene or where the light is behind or inside the objects in
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the scene. (In these situations, even a large change in the parameters
of the light may not have any impact on the rendered image.) Our
initial experiments with a simple hill-climbing strategy showed that
it is easy to become stuck in such plateaus whenever the starting
configuration was worse than the plateau. For example, if a distant
spotlight starts by illuminating the wrong side of a painted object,
the optimizer will quickly find that it can improve matters by shining
the light away from the scene entirely.

Our system is designed to work with any optimization algorithm,
but, as a practical matter, there are few optimizers appropriate for
the problem we have described Press et al. [1995]. For example,
a workhorse nonlinear optimizer like simulated annealing requires
many evaluations of the goal function while the annealing sched-
ule cools in order to converge on a good solution. Likewise, meth-
ods such as conjugate gradient would require us to compute partial
derivatives by sampling the goal function in each dimension for each
step of the optimization. Because evaluation of our goal function is
expensive, requiring a full rendering of the scene, we cannot af-
ford such methods for our interactive system. Finally, by exploiting
known linearities in some parameters of a specific lighting model,
it might be possible to use a combination of linear and nonlinear
optimization methods. However, this would require making assump-
tions about the lighting model, which we prefer in this initial project
to treat as a black box (allowing the use of alternate models as shown
in Figures 8 and 10).

In our experiments we found that the nonlinear simplex method
of Nelder and Mead [1965] and Press et al. [1995] works well pro-
vided that (1) the search space is parameterized well, and (2) it starts
with a decent configuration. (These caveats are addressed later.) For
a search in n dimensions, this method stores a set of n + 1 config-
urations representing a simplex in the search space. At every step,
the optimizer considers a set of possible configuration changes for
the worst vertex (the one with the worst value in the goal function),
such as reflecting the vertex through the opposite face in the simplex.
Each considered change requires one evaluation of the goal func-
tion. If no possible improvements are found, the simplex shrinks
by uniform scaling toward the best vertex. When the simplex has
collapsed to a very small size, it has found a local minimum. This
solution is typically good enough and the lighter halts the optimizer
there. However, we have observed that sometimes it helps to restart
the optimization from this local minimum to see if it can find a better
local minimum by growing the simplex to its original size and be-
ginning the search from there. Therefore, our application repeatedly
restarts the optimizer until the lighter chooses to halt it.

5.1 Parameterization and Constraints

We have found it beneficial to map all parameters’ canonical ranges
to [0,1] for the purposes of optimization. For example, angles, color
intensities, and shadow density all lie in this range. This way when
the optimizer takes a uniform small step in any dimension, we do
not get wildly different impact simply from the dimensions having
different scale. For some parameters, values outside this range are
meaningless to the renderer (e.g., a light with negative color intensity
or negative spotlight angle). Thus, in addition to the difference ε
between the target and rendered images, we add terms to the goal
function that impose (soft) constraints on the lights, ensuring that
the parameters remain in their meaningful range as follows. For a
parameter x that should be in the range [0,1], we add to ε the value
max(0, (2x −1)2 −1). This penalty function is zero when x is in the
valid range and climbs steeply outside this range. In principle, these
constraints might also be addressed using the constrained simplex

method (called COBYLA) of Powell [1994], although it is believed
to converge slowly for highly-nonlinear functions.

5.2 Starting Configuration

Key to finding a good solution during optimization is starting the
search from a good configuration. For example, if the light starts
below the floor on which it should cast light, it is possible for the
optimizer to get stuck and never figure out where it needs to move the
light to achieve the appropriate effect, especially if it is optimizing
over many parameters at once. When the lighter is not adding a
new light, we start with the current configuration of lights, based on
the rationale that the lighter is steering the optimization by painting
from the current state. On the other hand, a starting configuration for
a new light is computed based on the set of pixels i , where color ci is
painted over background bi by the lighter. Each pixel has associated
with it a point pi and normal n̂i in 3D as well as a diffuse color ki .
We begin by finding the hot spot, the center of illumination by the
light, taken to be the average pi of the pixels that were lightened
by painting. Next we find a direction for the light with the rationale
that it is known from computer vision that for nonlocal lighting
effects there is an ambiguity between the distance and intensity of a
light. Assuming Lambertian shading and light with intensity L and
direction d̂, the following property should hold:

ci − bi = ki L(n̂i · d̂).

In this equation, the only unknowns are L and d̂. Providing that
more than a few pixels are painted, this system of equations is over-
constrained. We find the least-squares best solution to this system
in each of the three color channels, yielding estimates for the inten-
sity in each channel as well as three directions. We clamp the color
in each channel and then take the light direction to be the average
direction, weighted by the intensity in each channel. (If the equa-
tions are ill-conditioned we simply use the average painted color
and average surface normal.) Finally, we set the light position to be
the model diameter away from the hot spot in the direction −d̂. If
the new light is a spotlight, we find the minimum angle that would
cover the bounding box of the painted pixels.

5.3 Multiresolution

In cases where there is an obvious way to trade off quality versus
time during rendering, it makes sense to run the optimization with
a fast, low-quality renderer at first and then rachet up to slow, high-
quality renderings near convergence. We have explored this method
with the GI renderer (Section 6.1), roughly halving the overall run-
ning time of the example shown in Figure 10. With the GI renderer,
it is easy to make the trade-off by simply starting with low resolution
(64 × 64), and then, when the optimizer converges to a local min-
imum, jump up to a higher resolution, and repeat (in this case, up
through 256 × 256). This example is discussed further in Section 6.

6. RESULTS

Figure 5 shows some example characters lit with our system. Each
example uses 6 or 7 lights and took between 45 and 90 minutes to
light by painting. The bulk of this time was spent experimenting
with various lighting effects (not waiting for optimization). When
adding or modifying lights, the rendering and optimization times
vary with the problem. Some tasks converge in a matter of just a
few seconds, while for others it might take tens of seconds.

Most of our efforts have focused on a hardware-based renderer
for realistic direct illumination by a cinematic light. The illumina-
tion model, which has the 18 DOFs mentioned in Section 3.1, is
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Fig. 5. Three example characters lit with our system. The third is shown with two differerent lighting rigs to suggest the dramatic range available through
lighting.

similar to the one described by Barzel [1997]. This model can be
implemented in Renderman or other conventional renderers used in
production settings. Such renderers generally are not optimized for
real-time rendering. However, with modern graphics hardware, it
is possible to implement an excellent approximation that achieves
many frames per-second [Gershbein and Hanrahan 2000; Pellacini
and Vidimce 2004; Pellacini et al. 2005]. For each pixel in the image,
our system caches all information about the visible point that are
required for relighting (i.e. position, normal, and material parame-

ters) in a deep framebuffer data structure. This gives it scalability
with geometric complexity in that the main camera visibility is re-
solved only once at startup. Shadows are computed using standard
shadow maps implemented in hardware. In CG animation, shadows
are often deliberately simplified through a simple trick: one light
can use the shadow map of another light. Therefore, while by de-
fault our renderer uses a separate shadow map for each light, we
have also implemented a mode in which the lighter may choose to
have all lights use the shadow map of a single key light. This effect
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Fig. 6. Convergence rates for the images in Figures 2(d) and 2(f), each requiring 85ms per-evaluation for a total time to convergence of about 13 and 25
seconds, respectively, while optimizing over 7 and 12 parameters. For some evaluations, ε can exceed 1.0 if the optimizer tests illegal configurations (e.g.,
negative colors).

Table I. Convergence Rate as the Number of
Varying DOFs Increases

lights DOFs evals time
1 5 100 8s
1 18 340 27s
2 30 630 63s
4 51 2,640 194s

is obvious in Figure 5(c). Finally, the image difference used for the
error function of the optimizer is also computed on the graphics
card, further accelerating the inner loop of optimization. While our
system is implemented using graphics hardware, the renderer and
optimization algorithm perform all computation in floating-point
and at no-point clamp their values in the [0, 1] range. This lets us
support realistic lighting, including shaded values greater than 1 and
arbitrary tone-mapping functions.

The direct illumination renderer runs at interactive frame rates
on a 3Ghz P4 CPU coupled with an nVidia 6800GT graphics card.
When shadows are rendered, typical frame rates are 10fps, whereas
without shadows, the system often runs above 40fps because all
of the geometry has been sampled per-pixel. Due to per-pixel point
sampling, even the David model shown in Figure 7, which has 250K
faces, renders at interactive rates, provided that shadows are not
enabled for the light rendered. Note though that rendering is in
the inner loop of an optimization process that may require many
iterations. Time to convergence during optimization depends heavily
on the particular problem because the the number of evaluations
will vary with the input and the number of DOFs that are allowed
to vary as well as the starting configuration. Typical convergence
times range from a few seconds to a minute for finding the color,
position, direction, and shape parameters (12 DOFs) for a new light.
Two examples of convergence are shown in Figure 6. These plots
are characteristic of optimizations for lights that have shape and
shadows. They tend to converge more slowly than the parameters
of plain point lights, both because rendering shadow maps slows
the renderer (making each iteration take more time) and because the
search space is more nonlinear, generally requiring more interations
of the optimizer.

Table I reports on a simple experiment providing a sense of how
quickly (iterations and time in seconds) the optimizer converges
as the number of DOFs increases. Starting with the lighting rig

shown in Figure 5(d), we randomly changed several of the light
parameters by between 10% and 50% of their useful range. Next
we measured the change ε to the resulting image. Using the original
image (Figure 5(d)) as a target and unlocking only the perturbed
DOFs, we ran the optimizer until the error fell to 0.05ε. (Note that the
error will never fall to zero due to numerical imprecision in rendering
and optimization.) An image with error 0.05ε is typically visually
indistinguishable from the target. This represents a conservative
measurement relative to use in practice wherein the target image is
crudely painted and therefore not achievable (nor desired).

6.1 Extensions

6.1.1 Light Removal. One possible application of the optimiza-
tion methods described here is targeted removal of specific lights
in a scene without removing the effects of the deleted lights. This
strategy could be used, for example, to reduce the complexity of a
lighting rig or to reduce rendering times (which tend to scale with
the number of lights). In Figure 7, (a) the model is shown lit with
seven lights (and no shadows) set up in our system, while image
(b) shows the effect of only the strongest of them, light #1. We re-
moved light #1 and asked the optimizer to attempt to match (a) with
the remaining six lights, varying positions, directions, and colors
(36 DOFs in total). After five minutes, the optimizer converged on
the configuration shown in image (c). Image (d) shows a 2D projec-
tion of the 3D locations of the lights relative to the head, suggesting
both that this procedure might be difficult to achieve by hand and
that the light locations in (a) were not obviously redundant. Note
that we deliberately chose the strongest light in this experiment
to avoid concerns that the effect of the removed light might have
been minimal. However, in so doing, we gave the optimization the
worst possible starting configuration for its search. More thorough
algorithms for automatic light removal would probably want to try
remove weaker lights to begin.

6.1.2 Nonphotorealistic Rendering. Our method also works
with more stylized renderers. We have implemented a few simple
hardware-based NPR shaders. One style implements ’toon shading
by thresholding the angle between the light and the surface nor-
mal. The other style shades a parameterized surface using hatching
strokes, based on the method of Praun et al. [2001]. Finally, in-
spired by the method of Raskar and Cohen [1999], we emphasize
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(c) remove #1 and optimize (d) light locations in (a) and (c)

Fig. 7. David’s head (a) with 7 lights; (b) effect of light #1 only; (c) with light #1 removed, the other 6 lights optimized to match (a); (d) light locations in
images (a red) and (c blue) with o = the model.

silhouettes by drawing in black a slightly inflated version of the
model, displaced slightly behind the true model.

The NPR examples shown in Figure 8 also show that this frame-
work can be used to set up lights with very different types of ren-
derers. These pixel-shader-based renderers run at interactive frame
rates for simple models. In the hatching example, we perform the
error calculation at a slightly blurred version of the target image
because in such style the goal is to make all the pixels either black
or white (whereas none of the pixels in the target may be those col-
ors). In the examples shown, we set up a single light to be consistent
with the aesthetic of those styles. In the case of the ’toon shader, the
optimizer also adjusts the color of the bright regions as well as the
modulation of the dark regions.

6.1.3 Global Illumination. Most CG animation is rendered us-
ing direct illumination. To achieve complex, naturalistic effects, the
lighter creates many lights that simulate the effect of secondary
bounces. A few studios are beginning to render animations using a
global illumination (GI) algorithms in order to attain subtle lighting
effects while reducing the number of lights.1 To demonstrate that
our method can work with GI, we have implemented a noninterac-

1Unfortunately, this strategy can hamper artistic control in two ways. First,
GI can increase the rendering cost (thereby reducing interactivity). Second,

tive version of our program based on a (relatively slow) publicly
available path tracer [Shirley and Morley 2003].

In the GI example shown in Figure 10, we painted out any impor-
tance from the ceiling in the importance map, in order to allow the
light to move. (It is not generally the case in computer animation
that a lighter would want to position a light that is actually seen
in the rendered image.) The light was constrained to move on the
ceiling, and we optimized over 4 parameters x, y, size, intensity. The
importance map used is shown in Figure 10(c). In this example, the
time to convergence for the multiresolution approach is 21 minutes
as opposed to 48 minutes for optimizing at the full resolution only.
For GI, the optimization time is dominated by rendering, and most
of the overall time is spent optimizing at the highest resolution. The
benefit of the multiresolution approach is that it gives the highest
resolution a good starting point, thereby accelerating time to con-
vergence. We considered using this multiresolution, approach for
the hardware renderer as well but found that our render time for

GI eliminates many of the DOFs used by the lighter to make the scene
look the way he likes. Often a lighting director will make a request like
“warm tones over here”, which can be difficult to achieve with traditional
GI, particularly because the adjustment of a light to achieve a specific local
effect may also impact other areas in the scene.
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Fig. 8. Two examples of nonphotorealistic rendering styles.

Fig. 9. Four frames from an animated shot. The lighter set up the lights by simultaneously optimizing painted effects in the middle two frames. The other
frames in the sequence were rendered using the same lighting setup.

hardware is not shading-rate bound so reducing resolution does not
help substantially. Nonetheless, other methods for trading quality
for performance might help the hardware renderers.

6.1.4 Animation. Our system can be used to light animated se-
quences following the established production workflow of lighting
different frames independently and interpolating the lighting setup
by keyframing. Our system can accommodate this by creating a
set of lights whose parameters are independently optimized for two
separate frames. Even for this case, it is important to build the light-
ing configuration one light at a time since this helps to make sure
that the interpolated resulting animation is what the user wants. We
suggest that the user add a new light and optimize its position in
all the keyframes before mocing to another one. If the interpolated
configuration is not what the user desires, the lighter can add more
keyframes to guide the interpolation of the configuration. This is the

same established workflow for keyframe-animated lighting anima-
tion that is followed when using traditional tools.

A more complex and less frequent example is if we want to il-
luminate our sequence with lights that have the same parameters
across multiple frames. Our system allows for these kinds of op-
timization by letting the lighter paint on multiple separate frames,
whose combined error is minimized. An example of this process is
illustrated in Figure 9 where the two internal frames were painted to
obtain the given sequence. Interestingly the same mechanism used
for animation can be used to light scenes that have to be viewed
from different points of views, guaranteeing that the scene will look
interesting from each. While we covered the most typical case and
its straightforward extension, we leave it for future work to estab-
lish whether this is the correct semantic for these kind of situa-
tions or whether the energy function formulation should be more
complex.
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Fig. 10. Global illumination. Starting with (a) the lighter painted on the image—even in the mirror—to make (b). The importance map (c) tells the optimizer
not to consider the upper part of the room during optimization, resulting in final rendered image (d).

6.2 Discussion

The experiments reported in this article were lit by novice lighters
(namely, the authors of the article), demonstrating that this kind
of interface makes it possible for nonexperts to achieve high qual-
ity lighting. None of these users would have been able to achieve
the same quality results using a standard interface in the same
timeframe.

While our experiments have focused on setting up lights solely
through a painting interface, there are surely some tasks that are
more easily performed with a more traditional direct manipulation
interface. We intend for the system we present to augment rather than
replace those tools, giving the lighter the option to use whichever
tools are most appropriate for the task.

With the exceptions of the experiments shown in Figures 7 and 10,
the lighter rarely waited for more than one minute for an optimiza-
tion. It seems that any optimization that might take longer than that
to converge on a local minimum wears out the patience of the lighter
who tends to stop the optimization and continue work from there.
In cases where the optimization simply won’t converge on anything
useful, it often turns out that, when the user thinks about what he has
painted in the painting window and the importance map, he realizes
that he has asked for something terribly inconsistent.

The main limitations of this framework stem from the two fun-
damental aspects of our system, namely, painting and optimization.

First, there is often no way to know what the lighter meant by paint-
ing something. The goal function ε does not capture the artist’s intent
nor does it consider many aspects of perception; all we know is that
when ε is low, then the rendered image visually matches the target
image. Unfortunately, if ε is not low, we do not know if the reason
is that the match is perceptually good but is not well captured by ε,
or if the optimizer did a bad job of finding a minimum, or if there is
no way to solve for what the lighter painted. Because the problem
is nonlinear, we can make no guarantee about finding a global mini-
mum during optimization. There is a subtle interconnection between
these statements because if we could guarantee a global minimum,
then we could know if what was painted was impossible to achieve
through optimization.

Thanks to the deep framebuffer formulation, our system scales
well with geometric complexity even in production environments
as shown in Pellacini et al. [2005]. If more complex scenes are
required, the addition of geometry LODs for shadows and more ef-
ficient culling will increase the performance significantly. We found
that increasing the number of degrees of freedom into the hundreds
will slow down the system significantly. This effect will be most
acute when each DOF needs to change significantly in order to ac-
commodate the required lighting change. An unfortunate scenario
would be setting up a scene with a large number of lights and then
repainting most of the scene. However, while possible, this does
not match the workflow in production environments. Instead, in the
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proposed lighting workflow described in Section 3.2, lighting rigs
are typically constructed one light at a time. When changes are re-
quired, only a small number of DOFs are allowed to change in order
for lighters to maintain the semantic essence of each light. In this
sense, the cases reported in Section 6 are designed to stress our
system, indicating that it remains a viable solution.

While we have only tested our system with nontrained users, we
hope that a future version of our tool will be able to simplify the
lighting process for trained artists. Our system only assumes that the
user has an understanding of lighting, a good aesthetic sense, and
that, to some extent, they know how to paint. These are all qualities
that a trained lighters would have. We hope that our system can
enhance the workflow of such artists by accelerating the lighting
process (and perhaps make it more enjoyable) as they will spend less
time worrying about how to achieve the effects they want and thereby
focus their time designing those effects. The main ideas in this
new workflow were suggested to us by professional lighting experts
working in production environments [Kalache 2004]. However, our
method has yet to be implemented in a production system, and as
such, it is not yet possible to measure its effectiveness in such real-
world situation.

7. CONCLUSIONS AND FUTURE WORK

This article presents a framework where light designers directly
paint the desired effect of lights in the environment, while the system
finds the best settings of the parameters of these lights required
to achieve the wanted look. Our system achieves these results by
casting the problem as a high-dimensional nonlinear optimization
that is solved by a nonlinear optimizer made robust by a combination
of initial estimates, system design, and user-guided optimization.
Using our framework, we lit various scenes and animations rendered
with different rendering styles (ranging from a direct illumination
model used in computer cinematography to global illumination to
nonphotorealistic styles) demonstrating that painting interfaces for
lighting design can be used to quickly produce high-quality lighting
setups, providing major benefits in an artists workflow.

This research suggests several areas for future work, including
the following.

Realistic Lighting Design. We would like to investigate the use
of such methods for architectural and lighting engineering appli-
cations. In these applications some DOFs of lights are more con-
strained (e.g., lights generally have to be attached to walls or ceil-
ings). Light types may have to be chosen by discrete optimization
from a set of known types, each of which would have many fewer
DOFs than the fancy all-in-one light type used in production. Fi-
nally, though architects may choose to establish “dramatic” lighting,
the rendering needs to be realistic rather than cinematic, favoring
GI methods. Thus we would like to further explore methods for ac-
celerating the rendering-optimization loop in this context, perhaps
exploiting the aforementioned constraints on light positions as well
as strong literature for fast GI.

New Interface Paradigms. It would be interesting to experiment
with additional interface paradigms, such as combining our painting
approach with sketching and gestural interfaces as well as direct
manipulation methods on the effects of lights. Also it would be
interesting to provide our painting metaphor to define surface and
light characteristics together while painting, for example, allowing
the degrees of freedom of the surface shaders to vary along with
those of the lights.

Reducing Number of Lights. Figure 7 shows an example where
the lighter removes a light while trying to preserve the effect of the
omitted light. As mentioned in the introduction, production lighting

rigs tend to have many lights. However, there are several poten-
tial benefits to reducing this number. First, it makes it easier for the
lighter to manage because sorting through tens or hundreds of lights,
trying to find an offending one can be a chore. Second, since render-
ing time scales with the number of lights this idea might be employed
as a batch postprocess to lighting for the purpose of accelerating of-
fline render times (which is often hours or even days per-frame). The
challenge for this kind of application is that it couples both discrete
and continuous optimization as ideally the computer would discover
which lights to remove while figuring out how to compensate.
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