
Eurographics Symposium on Geometry Processing (2005)
M. Desbrun, H. Pottmann (Editors)

Atomic Volumes for Mesh Completion

Joshua Podolak and Szymon Rusinkiewicz

Princeton University, Princeton NJ

Abstract

The increased use of scanned geometry for applications in computer graphics and 3D hardcopy output has high-
lighted the need for general, robust algorithms for reconstruction of watertight 3D models given partial polygonal
meshes as input. We present an algorithm for 3D hole filling based on a decomposition of space into atomic vol-
umes, which are each determined to be either completely inside or completely outside the model. By defining the
output model as the union of interior atomic volumes we guarantee that the resulting mesh is watertight. Individ-
ual volumes are labeled as “inside” or “outside” by computing a minimum-cost cut of a graph representation of
the atomic volume structure, patching all the holes simultaneously in a globally sensitive manner. User control
is provided to select between multiple topologically distinct, yet still valid, ways of filling holes. Finally, we use
an octree decomposition of space to provide output-sensitive computation time. We demonstrate the ability of our
algorithm to fill complex, non-planar holes in large meshes obtained from 3D scanning devices.

1. Introduction

Polygonal representations are widely used in computer sys-
tems and applications for modeling 3D geometry. One
method of creating a polygon-mesh representation of a 3D
object involves scanning the object from a number of differ-
ent viewpoints and constructing the mesh from a combina-
tion of surfaces obtained by those scans. During the recon-
struction process, however, there will usually exist a number
of areas for which no data was obtained. This occurs because
most of the 3D scanners obtain depths based on some form
of parallax. In order to obtain this parallax, two different, un-
obstructed lines of sight are necessary between the scanner
and the object. If this requirement is not met for some point
on the object’s surface, there will be no depth value at that
point. Other reasons for missing or unreliable data include
self occlusions, low reflectance coefficients of the surface,
or high grazing angles for one or both of the lines of sight.
While incomplete data may be sufficient for certain applica-
tions, many others require a watertight surface. Therefore, it
is useful to have a method for filling in the areas of missing
data.

Areas in a surface of scanned input that contain no data
result in holes in the mesh bounded by rings of half-edges,
mesh edges that are adjacent to only one triangle. In sim-
ple cases, it is sufficient to create a patch by triangulating

the half-edges around the holes. However, for general hole
topologies, simple triangulation is insufficient, and a more
flexible method must be considered. Another possible prob-
lem with triangulation is that the added patch might intersect
portions of the mesh away from the hole, creating an inter-
penetrating object. In order to ensure that the resulting mesh
is not inter-penetrating, a solution that takes into account the
entire mesh is necessary. For example, in Figure 1, a naive
triangulation of the half-edge rings (shown in red) will inter-
sect the cylinder running through the sphere. Instead, in or-
der to fill the hole in the sphere correctly, our algorithm con-
nects the half-edge rings on either side of the sphere. Note
that connecting the rings on the sphere to the rings on the
cylinder is not a valid solution as it will be inconsistent with
existing normals. Therefore, in a valid solution, the cylinder
must be filled.

Finally, because there potentially exist multiple desirable
solutions, the user must have the ability to influence the out-
put surface. In Figure 2 for example, the outer half-torus
shown on the left is filled by our algorithm in two topo-
logically dissimilar ways. The ability to choose the desired
topology of the filled mesh and to incorporate additional
constraints is important for versatile hole-filling.

Overall, robust hole-filling should satisfy the following
criteria:

c© The Eurographics Association 2005.



J. Podolak & S. Rusinkiewicz / Atomic Volumes for Mesh Completion

Figure 1: These images are a stylistic rendering of a result
produced by our algorithm. In the top image, the hole in
the sphere (the backfaces of the model are drawn in brown
and the boundary of the hole is red) cannot be triangulated
naively in a manner consistent with existing faces and nor-
mals without intersecting the surface of the cylinder run-
ning down its center. Instead, our algorithm, as shown in
the bottom image, correctly creates a patch connecting the
two rings.

1. Produce a non-self-intersecting watertight mesh;
2. Process arbitrary holes in complex meshes;
3. Avoid changing, approximating or re-sampling the origi-

nal data away from the holes;
4. Incorporate user-provided constraints to allow the selec-

tion of multiple topologically differing solutions;
5. Process large scanned meshes with a running time pro-

portional to the size of the holes, rather than that of the
input mesh;

We propose an approach that meets these criteria through
a two-step process. In the first step, a bounding cube of the
input mesh is partitioned into atomic volumes. A volume
is atomic if it cannot be intersected by the polygons of the
mesh. By this formulation, each atomic volume will be ei-
ther entirely inside the final output mesh (a inside volume)
or outside it (an outside volume). We define the output model
to be the union of the interior atomic volumes, thus implic-
itly identifying the output mesh as the boundary between the
inside volumes and the outside volumes. This implicit defini-
tion guarantees that the resulting object is watertight. Indeed,
once certain basic constraints are met, any classification of
atomic volumes into inside and outside regions will yield a
watertight surface. (Note that the solution might not be man-
ifold unless steps are taken to ensure that volumes with triv-
ial boundaries are not possible.) The use of atomic volumes
also guarantees that the surface approximated by the input
mesh is not changed.

We use an octree decomposition to simplify the partition
of space into atomic volumes. A full partition is only neces-
sary near the holes. This provides output sensitivity.

We create a graph representation in order to decide which
of the atomic volumes are inside and which are outside the
model. In this representation, each atomic volume is repre-
sented by a node, and weighted edges connect nodes that
correspond to neighboring volumes. The weight of an edge
is the cost of adding a face separating those two volumes.
This graph is separated using a min-cut algorithm into two
sub-graphs, one containing all the nodes representing inte-
rior volumes and the other containing all the exterior vol-
umes. The use of a min-cut algorithm ensures a global solu-
tion, while the edge-weights in the graph provide flexibility
in deciding the characteristics of the filling patch.

At the end of the first step, each atomic volume has been
labeled as inside or outside and the boundary between the
inside and the outside of the model is watertight. However,
the resulting surface can be faceted. In the second step of
the algorithm, we preform a smoothing pass to make the
underlying atomic volume structure less visible. By enforc-
ing the rule that the labeling of the atomic volumes can-
not be changed during the smoothing step, we ensure that
the correctness of the final model has not been compro-
mised. That is, unlike most traditional mesh filtering algo-
rithms, we guarantee that the smoothed mesh remains non-
self-intersecting.

2. Previous and Related Work

There exist several general methods for creating watertight
meshes from various types of initial data. Methods such as
Power Crust [ACK01], or Spectral Watertight Surface Re-
construction [Kol03] create meshes from point clouds and
can ensure watertight surfaces during reconstruction. These
methods may be thought of as performing hole filling, since
they reconstruct surfaces across areas of irregular, possibly
sparse samplings. Hole filling on a larger scale (from areas
with missing data) is interpreted as reconstruction of areas
with even lower sampling rates. While the surface generated
in these cases will be watertight, the topology of the mesh
may not be the topology of the original model, especially if
the holes are very large.

Other dedicated hole-filling methods assume that a partial
surface exists and the missing areas must be reconstructed
from an existing polygonal model. These methods can be
categorized into two types:

Geometric methods attempt to triangulate the closed
loops of half-edges on the boundary of a hole, but do
not necessarily enforce a non-inter-pentrating triangulation.
In [Lie03], for example, the triangulation is refined so that
the vertex density of the patch corresponds to the vertex den-
sity of the surrounding surface. Subsequent passes over the
filled areas can warp vertex positions to smooth the patch

c© The Eurographics Association 2005.



J. Podolak & S. Rusinkiewicz / Atomic Volumes for Mesh Completion

Figure 2: Complex holes can be filled in different manners.
In the example above, (Top) the hole in the torus is bounded
by two rings of edges (shown in red). (Middle) The hole is
filled using two using two patches with a disc topology. (Bot-
tom) The hole is filled using a patch with a ring topology.
The bottom two images are solutions produced by our hole-
filling algorithm, which is capable of handling any topology
and efficiently producing any desirable watertight solution.

or to introduce geometrical texture based on surrounding re-
gions.

Volumetric methods obtain the surface implicitly as the
boundary between volumetric regions that are labeled as in-
side and those labeled as outside the model, thus ensuring
that the resulting surface is manifold.

In [Ju04] meshes are repaired by contouring the half-edge
loops surrounding the holes, filling them based on local con-
straints. Using a volumetric data structure as the underlying
foundation, the resulting surface is guaranteed to be water-
tight, and the use of an octree data structure coupled with
local hole-filling ensures efficiency. The weakness of this
scheme is that the original surface is only approximated and
even the topology of the input surface may be changed. In
addition, defining a hole merely as a ring of half-edges re-
stricts the use of this method, since it would not be able to
fill holes such as the one in Figure 1.

Volumetric Diffusion [DMGL02] uses the zero set of a
signed distance function derived from the original mesh to
define the surface of a model. Initially, this function is only
defined where data exists. The holes are then filled by ex-
tending this function using a diffusion process until the zero
set is watertight. This method will work for models with an

arbitrary topology and allows use of data from other sources,
such as space carving, but does not retain the original sur-
face (since the model is approximated using a signed dis-
tance function). More importantly, the heat-diffusion equa-
tions limit the signed distance function to extend in straight
lines, and therefore might not yield solutions in cases where
the surfaces that must be connected are in non-converging
directions. [Mas04] presents a variation that can better han-
dle curvature, extending the surface using a quadric approx-
imation of the signed distance function. More generally, the
disadvantage of this approach is that a solution is obtained by
growing local patches from the boundaries of the holes until
they connect. In contrast to this method, the atomic volumes
algorithm solves a global optimization to directly determine
the shape of the added geometry, rather than relying on local
behavior governed by a differential equation. In addition, we
avoid resampling the original surface away from the hole.

[MF97] introduced a mesh repair process to fix errors
and inconsistencies in models. In this approach, a manifold
mesh is created from a polygon soup by splitting a bound-
ing volume of the model in a BSP tree. Nodes in the tree
are considered to be on opposite sides (i.e., inside or out-
side) of the mesh based on the percentage of area between
the nodes filled in by the input mesh. The repaired mesh is
created from a globally optimal solution calculated on the
tree. Our method incorporates the same insights of perform-
ing volumetric decomposition and globally solving for in-
side/outside, but specializes them to the hole-filling problem
while providing output-sensitive computation time, explicit
user control over topology, and guaranteed non-intersecting
smoothing.

Graph Cuts have long been widely used in both the
graphics and vision communities. Recent work with graph
cuts includes segmentation [SM00], image and video syn-
thesis [KSE∗03], and surface reconstruction from im-
ages [PSQ05]. In our method, the graph formulation comes
directly creates from the atomic volume structure used to de-
fine the object. We use the algorithm of [KS96] to segment
our graph.

3. Atomic Volume Creation

A natural way to divide all of space into atomic volumes
such that each will be either totally inside an object or to-
tally outside is to tetrahedralize a bounding volume of the
object. This tetrahedralization must be constrained, since
existing faces of the mesh must not intersect any tetrahe-
dra. Constrained 3D tetrahedralization is not a simple prob-
lem, and there are a number of algorithms that attempt to
triangulate 3D objects while minimizing various parame-
ters [MV92, She98]. A weakness of using such a method is
that a large number of tetrahedra will be generated in areas
that are not near a hole, and while it is clear that the patched
surface will never go near these volumes, they are included
as separate atomic volumes. Consequently, the graph-cut al-

c© The Eurographics Association 2005.



J. Podolak & S. Rusinkiewicz / Atomic Volumes for Mesh Completion

Figure 3: The cube containing the entire head of the bunny
may be represented by two atomic volumes. It makes no dif-
ference which regions of the cube are inside and which re-
gions are outside or how many connected components there
are in that cube, because the boundary between these halves
is completely defined by the input mesh. The octree needs
to be refined only in areas where the boundary is not fully
defined. This occurs only near the holes.

gorithm must consider them separately, considerably slow-
ing down the process.

3.1. Octree

We use an octree scheme to limit tetrahedralization to areas
near the holes. This retains the ability to efficiently fill holes
with highly irregular boundaries while at the same time al-
lowing the patch to span large holes. To create the octree, a
bounding volume of the mesh is adaptively split into cubes
until each cube contains a trivial (for hole-filling purposes)
portion of the mesh. Cubes that do not contain the boundary
of a hole generally need not be split any further, since either
these cubes do not contain any part of the initial mesh (in
which case in the final solution the atomic volumes within
such a cube can be either all labeled inside or all labeled
outside), or they have a number of faces in them that do
not bound the hole. In the latter case, the cube is partially
inside and partially outside the model. However, we make
the critical observation that the boundary between the inside
and outside atomic volumes in the cube is completely de-
fined by the input mesh. Any partitioning of such a cube into
atomic volumes is ineffectual, because any consistent label-
ing of atomic volumes in the cube will yield a boundary that
includes only the existing mesh triangles. In Figure 3, for
example, the cube containing the entire head of the bunny
does not need to be partitioned because the patch filling the
holes in the base of the bunny will never go near that cube. It
is critical to note that the number of connected components
in such a cube makes no difference. Because the surface di-
viding the inside parts from the outside parts is completely

(a) Consistent (b) Must be subdivided

Figure 4: (b) must be subdivided because the middle area is
on both sides of the input surface (the normals are pointing
outward).

Figure 5: A cross section of a spiral torus filled using our
method. Note that considering existing faces and normals,
the only correct way to fill this hole is with a patch that spi-
rals out along the surface.

defined, the algorithm need not consider that cube at all. It is
sufficient to define the cube as “partially inside and partially
outside the model” and to record that the boundary of the
model inside the cube is already known.

There are rare cases when the patch filling the holes must
pass through cubes not near the holes. For example, consider
the cross-section of the spiral torus shown in Figure 5. The
hole in that model can only be filled with a single patch that
spirals out along the input surface. In this example, octree
cubes containing more than one connected component of the
torus need to be partitioned because the patch will necessar-
ily pass through those cubes. More generally as shown in
Figure 4, any cube containing a volume that bounds both
the inside and the outside of the input surface must be parti-
tioned. These cases can be easily checked for at subdivision
time.

c© The Eurographics Association 2005.



J. Podolak & S. Rusinkiewicz / Atomic Volumes for Mesh Completion

Note that an underlying assumption of this method is that
the triangles of the input mesh have valid (i.e., globally-
consistent) normals. Applying this algorithm to a non-
orientable model (such as a Möbius strip) will cause con-
flicting constraints on some of the atomic volumes, and will
cause the process to fail. This is part of the requirement that
the input mesh be non-self-intersecting and orientable. This
is always the case for the output of range scan reconstruc-
tion approaches such as VRIP [CL96], which was used to
reconstruct the meshes for all the scanned examples in the
paper. Note that our algorithm currently operates on triangle
meshes, and does not take special advantage of the fact that
the mesh may have been obtained from a volume. If the volu-
metric data were used directly, then using an atomic volume
approach would be even simpler and would still produce a
global solution rather than relying on the local behavior of
the existing surface.

Our method of octree creation is based on a simplified ver-
sion of the octree used by [MV92, BDE92], since the only
faces that trigger subdivision are the ones surrounding holes.
The only criterion for stopping octree subdivision is the triv-
iality of the atomic volumes. Using such a simple criterion
may cause the octree to be of significant depth in order to
connect the patch with an initial mesh that has closely spaced
vertices, but this will only occur near the holes. As shown
by [MV92] cube size will be no smaller than one quarter the
distance between two vertices. Because the octree is divided
only near the holes, the number of octree cubes depends only
on the relative size of the hole with respect to the model, and
on the size of the triangles surrounding the hole. We found
that if, for example, the input mesh is subdivided – increas-
ing the number of triangles by a factor of four – the number
of octree cubes increases only by a factor of two.

If using an “unbounded” octree depth is problematic, an-
other option is to limit the octree to a fixed depth. If a cube
reaches the max depth, that cube is tetrahedralized (or split
into atomic volumes using a BSP tree). In our effort to main-
tain the input mesh, we have avoided changing or removing
any of the input triangles, but since the only requirement is to
not change the surface away from the holes, offending faces
around the holes could also be removed to ease tetrahedral-
ization.

As shown in Figure 6, the completed octree consists of
three type of cubes:

Blank cubes do not contain any faces of the original
mesh. The cube can therefore be considered to be either en-
tirely inside or entirely outside the model.

Inside/Outside (IO) cubes contain faces of the mesh that
are not adjacent to a hole. For these cubes, even though there
is no explicit partition into atomic volumes, the boundary
between the inside and outside is precisely known and can
be ignored.

KEY

Out Cube In Cube Blank Cube Hole Cube

(a) Quadtree Classification (b) Adjacency Graph

x

xx

(c) Constraint Edges (d) Min Cut

(e) Adding Faces (f) Smoothing

Figure 6: These images show the steps of the algorithm
pipeline on a 2D example. (a) A quadtree is created out of
a bounding square of the input curve. Squares are split until
triangulation of the end points is trivial. The quadtree square
types are labeled: green and red squares are IO squares,
blank squares are white, and hole squares are colored in
blue and triangulated. (b) The adjacency graph is created.
IO squares get two graph nodes, blank squares get one,
and hole squares get one node per triangle. Nodes corre-
sponding to neighboring volumes are connected by an edge
with a finite weight. (c) Constraint Edges are added. All
IO nodes are constrained by edges connecting them to the
proper node. (d) The min-cut pass splits the graph into two
sub-graphs. (e) The corresponding edges are added to the
mesh creating a watertight surface. (f) Smoothing is pre-
formed on the patch.

Hole cubes contain either a single vertex that lies on the
boundary of a hole (boundary vertex), or a single edge that
lies on the boundary of a hole (boundary edge). These cubes
are trivially tetrahedralized into atomic volumes, with a sin-

c© The Eurographics Association 2005.



J. Podolak & S. Rusinkiewicz / Atomic Volumes for Mesh Completion

gle center point (the boundary vertex in the cube, or a point
on the boundary edge in the cube) as the head of all the tetra-
hedra, while the bases of the tetrahedra are obtained by trian-
gulating each of the faces of the cube. The tetrahedra created
do not intersect the faces in the hole cubes, and therefore
may each be labeled as inside or outside separately.

4. Label Assignment

Once space has been partitioned, each atomic volume is la-
beled as either either inside or outside the model. As shown
in Figure 6d we use a graph cut [KS96] algorithm to label
the volumes in a global manner.

4.1. Graph Nodes

We create a graph by assigning each octree cube a number
of nodes corresponding to the number of significant atomic
volumes it contains. Blank cubes correspond to a single node
in the graph. IO cubes are always described by two nodes,
one node representing the atomic volumes inside the model,
and the other node representing the atomic volumes outside
the model. Hole cubes are allotted one node for each tetra-
hedron contained within. In addition, the graph contains two
other nodes: the source node and the sink node. After run-
ning the min-cut on the graph, the atomic volumes whose
nodes are on the source side of the graph will be labeled as
inside, while the volumes whose nodes are on the sink side
will be labeled as outside.

4.2. Graph Edges

Edges in the graph are designated as Constraint Edges or
Boundary Edges, and are given appropriate weights.

Constraint Edges are edges with an edge-weight of in-
finity, and connect the source and sink to nodes correspond-
ing to atomic volumes that have been pre-defined as inside
or outside. For example, a node corresponding to the inside
volumes of an IO cube will have a constraint edge connect-
ing that node to the source node. Because the weight of the
edge is infinite, this edge will never be cut by the min-cut al-
gorithm, guaranteeing that the interior volumes of that cube
are labeled as inside the model at the end of the process.

In a similar manner, any user-defined constraints (as de-
scribed below) are represented with edges of infinite weight
connected to the proper node.

Boundary Edges are edges with a finite edge-weight,
placed between any two nodes with adjacent atomic vol-
umes. If the boundary between two volumes is intersected
by a face of the input surface then no edge is needed. In
such a case, both volumes must be IO cubes, and therefore
the boundary between those two cubes is pre-defined. In all
other cases, an edge is added.

In most cases, adding the edge means connecting the two
nodes corresponding to neighboring atomic volumes in the
graph. When connecting to an IO node, however, an extra
test is necessary in order to decide if to connect to the inside
portion of the cube, or the outside portion. We take advan-
tage of the fact that the boundary between an atomic volume
and an IO cube is always a polygon that does not intersect
any input triangles. Furthermore, the boundary between the
inside volumes and the outside volumes in the cube is com-
pletely defined. Therefore, we may determine whether any
point is inside or outside by checking the normal at the clos-
est point on the surface. This lets use determine if that atomic
volume should be connected to to the inside node of the IO
cube or the outside node.

A node corresponding to an atomic volume on the bound-
ary of the octree is connected by an edge to the sink (exte-
rior) node with a finite edge weight. If this edge is cut, a face
on the bounding cube is added.

The exact weight of the boundary edges determines the
nature of the patch generated. For example, if all boundary
edges are given an edge weight of one, the hole will be filled
with a minimum number of faces. If the edge weight used is
the area of the boundary between the two atomic volumes,
the surface area of the patch will be minimized. It is impor-
tant to note that no matter what edge-weights are given, as
long as they are finite, the algorithm will yield a correct, wa-
tertight surface. In the examples in this paper, we use weights
based on surface area, yielding minimum-area patches.

4.3. User Constraints

In addition to the constraints imposed on the atomic vol-
umes by the initial polygon mesh, further constraints may be
added based on other sources of information such as space
carving [DMGL02], shadow carving [SRBP02], or direct
user input. As shown in Figure 7, if a portion of space needs
to be outside or inside the model in the final solution, the
node corresponding to the volume that contains that area gets
an additional constraint edge, ensuring that the node falls
in the correct sub-graph. Cubes with multiple contradicting
constraints are subdivided. Once the graph is partitioned, any
polygon that corresponds to a cut edge is added to the mesh,
creating a watertight surface.

5. Smoothing

The next step in our algorithm involves smoothing the re-
sulting patch. Because the first phase of the algorithm deals
only with atomic volumes, the surface created by a union of
such volumes will necessarily be faceted, and some smooth-
ing is necessary in order to create a visually pleasing patch.
The surface is smoothed by moving the vertices of the newly
created patch faces. In our implementation, each point on
the patch is pulled as if it had a spring connected to each
of its neighbors, providing an approximation to Laplacian

c© The Eurographics Association 2005.



J. Podolak & S. Rusinkiewicz / Atomic Volumes for Mesh Completion

(a) (b)

(c) (d)

Figure 7: (a) Points constrained to be outside the mesh
are added. (b) The octree only needs to subdivide where
there are contradicting constraints. (c) The min-cut is run
normally on the new graph and (d) the resulting patch is
smoothed.

mesh smoothing. Points are moved simultaneously to their
new location. Points from the input mesh are not allowed to
move.

In order to smooth the vertices correctly, the topology of
the graph must be preserved. This still provides leeway for
smoothing as the atomic volumes can be warped as long as
the graph adjacency information is unchanged. In our im-
plementation, limited warping of the atomic volumes is al-
lowed. For every atomic volume, the “center” of the volume
is defined as either the centroid or, if user constraints are
used, the point (or multiple points) in the cube specified by
the user. Vertices may be moved as long as each remains
within its own area, defined by the centers of the neighbor-
ing atomic volume. In practice, for each point, we check if
moving it will cause the centers of the neighboring atomic
volumes to fall outside of their volume. If moving a point
fails this test, the point is not moved during that iteration.
An additional constraint is that IO cubes cannot be violated,
as we have no knowledge of how the surface behaves inside
them. We found that this method yielded smooth patches for
the models tested.

In order to allow more freedom with smoothing, an op-
tional extension of this method would be to allow smooth-
ing without any constraints (with a possible result of a self-
intersecting surface). The new surface will then intersect
a new set of atomic volumes. Edges with (a small) finite
weight can be added from the source and sink nodes to these
volumes to “suggest” that the surface pass through them.
Running a new min-cut on the new graph will incorporate

Model Number of faces Number of nodes Time

Skull 1,250 10,481 8 sec
Bunny 70,000 17,300 78 sec
Angel 340,000 530,000 17.5 min
Toes 350,000 570,000 19 min

these suggestions while maintaining all the constraints im-
posed by the user and by the input mesh. A subsequent con-
strained smoothing pass will ensure unfaceted results.

6. Results

We tested our algorithm on a number of complex meshes,
including well-known examples of scans with holes. The re-
sults are topologically accurate and preserve the original data
away from the holes. The models were run on a Pentium 4
with 2GHz and 3GB of RAM. Timings and octree sizes are
shown in the table above.

Figure 8 shows our results on the Stanford bunny model,
which has holes in the base and feet. Our technique fills
the holes, while preserving the existing geometry. The skull
model (Figure 10) contains a large proportion of missing ge-
ometry. Our unsmoothed result shows that the initial atomic
volume decomposition produced relatively large flat areas,
showing that space was not subdivided except near the
boundaries of the existing mesh. Smoothing produces a fi-
nal result.

Figures 9 and 11 show examples of large, complex
scanned meshes, each containing around 350,000 polygons.
Notice that the model of the toes of Michelangelo’s David
has been filled in two different ways: in 11b, no user-based
constraints are added, and the two toes are connected by a
handle. In 11c, the user adds constraint points to select the
correct way to fill the largest hole. Although the selection
was done manually in this case (by constraining a few cubes
to be outside the surface), space-carving data could be used
to obtain the same result automatically.

7. Conclusions and Future Work

This paper investigates the problem of hole-filling, and pro-
poses a solution based on adaptive spatial decomposition and
graph cuts. Utilizing atomic volumes as the foundation of the
algorithm allows user-based constraints such as space carv-
ing to be added to the input, and the min-cut algorithm pro-
vides an intuitive global method to split space into inside and
outside portions.

While other types of atomic volumes may be employed
(splitting the entire volume into tetrahedra, or using a BSP
tree), the adaptive octree data structure allows the algorithm
to focus on the areas surrounding the holes, and utilizing
cubes as the basic volume allows easy smoothing.

c© The Eurographics Association 2005.



J. Podolak & S. Rusinkiewicz / Atomic Volumes for Mesh Completion

Smoothing the patch after it has been constructed must be
done carefully. Perturbation of the surface must not cause
self-intersection or the breaking of one of the user-based
constraints. The octree data structure allows local inspection
of the surface to ensure correctness.

The existing algorithm could be extended in several ways.
First, our current implementation of smoothing allows only
the boundaries between atomic volumes, not the centers of
the volumes, to move. A more flexible smoothing scheme
would allow the centers of the atomic volumes to move as
long as the topology of the graph describing the volumes
does not change. In addition, we have only explored the
simplest method of smoothing, based on minimizing sur-
face area. However, the framework is general enough to be
adapted to any smoothing method, such as minimizing thin-
plate energy [Mas04], or texture synthesis from existing lo-
cal surface data [SACO04].

Currently all edges between the graph nodes and the
source and sink have an edge weight of infinity. A addi-
tional way to influence the resulting patch is to add “hints,”
as opposed to constraints, about what parts of space are in-
side the model and what parts are outside. By adding finite
weighted edges between such nodes and the corresponding
source/sink node, we allow atomic volumes to be on the
wrong side of the model “for a price.” An example of such
a hint would be to add a “soft” symmetry constraint, for a
translational or rotational symmetry that is either specified
manually or detected automatically [KFR04]. Atomic vol-
umes would therefore be suggested to be inside or outside
based on the symmetric counterpart in the input mesh.

Finally, a more general line of research is to take advan-
tage of our dual surface- and volume-based representation to
enforce topological constraints and non-intersection during
a variety of other geometric signal processing algorithms.
Localized filtering, deformation, and collision are all appli-
cations that would benefit from an adaptive, local data struc-
ture that guarantees results that are manifold and noninter-
secting.

References

[ACK01] AMENTA N., CHOI S., KOLLURI R. K.: The
power crust, unions of balls, and the medial axis trans-
form. Computational Geometry 19, 2-3 (2001), 127–153.
2

[BDE92] BERN M., DOBKIN D., EPPSTEIN D.: Trian-
gulating polygons without large angles. In Proceedings of
the eighth annual symposium on Computational geometry
(1992), ACM Press, pp. 222–231. 5

[CL96] CURLESS B., LEVOY M.: A volumetric method
for building complex models from range images. In SIG-
GRAPH ’96: Proceedings of the 23rd annual conference
on Computer graphics and interactive techniques (1996),
ACM Press, pp. 303–312. 5

[DMGL02] DAVIS J., MARSCHNER S., GARR M.,
LEVOY M.: Filling holes in complex surfaces using vol-
umetric diffusion, 2002. 3, 6

[Ju04] JU T.: Robust repair of polygonal models. ACM
Trans. Graph. 23, 3 (2004), 888–895. 3

[KFR04] KAZHDAN M., FUNKHOUSER T.,
RUSINKIEWICZ S.: Symmetry descriptors and 3D
shape matching. In Proc. Symposium on Geometry
Processing (2004). 8

[Kol03] KOLLURI R. K.: Spectral watertight surface re-
construction, 2003. 2

[KS96] KARGER D. R., STEIN C.: A new approach to the
minimum cut problem. J. ACM 43, 4 (1996), 601–640. 3,
6

[KSE∗03] KWATRA V., SCHÖDL A., ESSA I., TURK G.,
BOBICK A.: Graphcut textures: Image and video syn-
thesis using graph cuts. ACM Transactions on Graphics,
SIGGRAPH 2003 22, 3 (July 2003), 277–286. 3

[Lie03] LIEPA P.: Filling holes in meshes. In Proceed-
ings of the Eurographics/ACM SIGGRAPH symposium on
Geometry processing (2003), Eurographics Association,
pp. 200–205. 2

[Mas04] MASUDA T.: Filling the signed distance field by
fitting local quadrics. In 3DPVT (2004), pp. 1003–1010.
3, 8

[MF97] MURALI T. M., FUNKHOUSER T. A.: Consistent
solid and boundary representations from arbitrary polyg-
onal data. In Proceedings of the 1997 symposium on In-
teractive 3D graphics (1997), ACM Press, pp. 155–ff. 3

[MV92] MITCHELL S. A., VAVASIS S. A.: Quality mesh
generation in three dimensions. In Proceedings of the
eighth annual symposium on Computational geometry
(1992), ACM Press, pp. 212–221. 3, 5

[PSQ05] PARIS S., SILLION F., QUAN L.: A surface re-
construction method using global graph cut optimization.
International Journal of Computer Vision (2005). to ap-
pear. 3

[SACO04] SHARF A., ALEXA M., COHEN-OR D.:
Context-based surface completion. ACM Trans. Graph.
23, 3 (2004), 878–887. 8

[She98] SHEWCHUK J. R.: Tetrahedral mesh generation
by delaunay refinement. In Symposium on Computational
Geometry (1998), pp. 86–95. 3

[SM00] SHI J., MALIK J.: Normalized cuts and image
segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence 22, 8 (2000), 888–905. 3

[SRBP02] SAVARESE S., RUSHMEIER H. E., BERNAR-
DINI F., PERONA P.: Implementation of a shadow carving
system for shape capture. In 3DPVT (2002), pp. 12–23.
6

c© The Eurographics Association 2005.



J. Podolak & S. Rusinkiewicz / Atomic Volumes for Mesh Completion

Figure 8: The well-known bunny model is filled with an oc-
tree depth of 12. The hole filling process took a little longer
than a minute

Figure 9: A scanned angel model contained numerous holes
that take up a large portion of the surface. The octree
reached a maximum depth of 23 to split some of the vertices
surrounding the holes, though only 530,000 total nodes were
required. The hole-filling process took about 15min.

(a) (b) (c) (d)

Figure 10: (a) Our algorithm filled this skull model, even though a large percentage of the surface area was missing. (b) The
min-cut produces an initial result. (c,d) This is smoothed to produce a more pleasing solution.

(a) (b) (c)

Figure 11: (a) The toes of Michelangelo’s David. (b) The repaired model without user-based constraints. Note the “tunnel”
connecting the two toes. (c) Adding user-based constraints. By asserting that the area between the two toes is empty (manually
in this case, though space-carving data could also be used), a new patch is created, correctly filling the hole between the toes.

c© The Eurographics Association 2005.


