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The Iterative Closest Point (ICP) algorithm, commonly used for align-
ment of 3D models, has previously been defined using either a point-to-
point or point-to-plane objective. Alternatively, researchers have proposed
computationally-expensive methods that directly minimize the distance
function between surfaces. We introduce a new symmetrized objective
function that achieves the simplicity and computational efficiency of point-
to-plane optimization, while yielding improved convergence speed and a
wider convergence basin. In addition, we present a linearization of the ob-
jective that is exact in the case of exact correspondences. We experimentally
demonstrate the improved speed and convergence basin of the symmetric
objective, on both smooth models and challenging cases involving noise
and partial overlap.
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1 INTRODUCTION

Registration of 3D shapes is a key step in both 3D model creation
(from scanners or computer vision systems) and shape analysis.
For rigid-body alignment based purely on geometry (as opposed to
RGB-D), the most common methods are based on variants of the It-
erative Closest Point (ICP) algorithm [Besl and McKay 1992]. In this
method, points are repeatedly selected from one model, their near-
est points on the other model (given the current best-estimate rigid-
body alignment) are selected as correspondences, and an incremen-
tal transformation is found that minimizes distances between point
pairs. The algorithm eventually converges to a local minimum of
surface-to-surface distance.

Because ICP-like algorithms can be made efficient and reliable,
they have become widely adopted. As a result, researchers have fo-
cused on both addressing the shortcomings of ICP and extending
it to new settings such as color-based registration and non-rigid
alignment. One particular class of improvements has focused on
the loss function that is optimized to obtain an incremental transfor-
mation. For example, as compared to the original work of Besl and
McKay, which minimized point-to-point distance, the method of
Chen and Medioni [1992] minimized the distance between a point
on one mesh and a plane containing the matching point and per-
pendicular to its normal. This point-to-plane objective generally
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results in faster convergence to the correct alignment and greater
ultimate accuracy, though it does not necessarily increase the basin
of convergence. Work by Fitzgibbon [2001], Mitra et al. [2004], and
Pottmann et al. [2006] showed that both point-to-point and point-
to-plane minimization may be thought of as approximations to min-
imizing the squared Euclidean distance function of the surface, and
they presented algorithms that achieved greater convergence speed
and stability, albeit at the cost of greater computational complexity
and/or auxiliary data structures.

This paper proposes a symmetrized version of the point-to-plane
objective for use in ICP, incorporating two key ideas. First, the
plane in which the error is minimized is based on the surface nor-
mals of both points in the corresponding pair. Second, the optimiza-
tion is performed in a “stationary” coordinate system, while both
meshes are moved in opposite directions. These changes require
a relatively small modification to the optimization problem being
performed, and almost no increased computation per iteration, but
result in improved convergence of ICP.

The reason for this improvement is that the symmetric objective
is minimized whenever the pair of points lies on a second-order
(constant-curvature) patch of surface, rather than being minimized
only if the points are on a plane. Thus, we gain some of the same
benefits as second-order distance function minimization methods,
but without explicit computation of second-order surface proper-
ties, or the need for volumetric data structures to store an approxi-
mation to the squared Euclidean distance function.

In addition to the primary contribution of the new symmetric
objective, we also introduce an alternative approach to lineariza-
tion of rotations that allows us to reduce the optimization to a lin-
ear least-squares problem, while still solving for the exact transfor-
mation when correspondences are exact. We conduct experiments
that demonstrate both greater per-iteration error reduction and an
increase in the convergence basin for our proposed method.

2 RELATED WORK

Since the original ICP algorithms by Besl and McKay [1992] and
Chen and Medioni [1992], there have been significant efforts to im-
prove convergence and stability. For a comprehensive overview of
many variants, see the surveys by Rusinkiewicz and Levoy [2001],
Diez et al. [2015], and Pomerleau et al. [2015]. Much of this work
focuses on finding better correspondences (e.g., by matching local
surface properties or descriptors), performing outlier-tolerant opti-
mization, or generalizing to non-rigid deformation. Here we focus
specifically on methods that modify the objective function and/or
the strategy for minimizing it.

Segal et al. [2009] generalize ICP to associate a probabilistic
model (in practice, a covariance matrix) with each point. This al-
lows for a “soft plane-to-plane” minimization that improves the
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matching of planar surfaces. Halber and Funkhouser [2017] have
explored incorporating additional constraints between planes, such
as parallelism or orthogonality, into registration.

Fitzgibbon [2001] proposes to directly minimize the distance be-
tween samples on one shape (referred to as “data”) and the sec-
ond shape itself (the “model”). This is done by computing the
squared distance transform of the model, evaluating it at data lo-
cations, applying a robustifying kernel, and minimizing the result
using Levenberg-Marquardt. Mitra et al. [2004] propose two meth-
ods for using the distance field of a shape for optimization: one
based on local quadratic approximation at closest corresponding
points, and the other based on a global hierarchical d?-Tree data
structure [Leopoldseder et al. 2003] that stores a bounded-error ap-
proximation to the global squared distance field. Pottmann et al.
[2006] analyze the theoretical properties of distance-function min-
imization, and demonstrate its improved convergence.

The variants described above all perform local minimization, re-
quiring an initial guess. This may be based on exhaustive search,
matching of descriptors (such as spin images [Huber and Hebert
2003] or integral invariants [Gelfand et al. 2005]), or finding con-
strained point arrangements [Aiger et al. 2008]. In contrast, Yang
et al. [2016] combine local registration with a branch-and-bound
algorithm that yields a provably globally-optimal solution. The
loss function, however, is still based on point-to-point, which is ex-
ploited for derivation of the error bounds for global search.

In this paper, we derive an objective that is closest in spirit to
simple point-to-plane minimization, but locally converges to zero
for quadratic, rather than just planar, patches. This is done by con-
sidering the normals of both points in a pair, though we do so in a
way unrelated to Segal et al. [2009].

3 METHOD
3.1 Background and Motivation

Consider the problem of aligning surfaces # and Q. This involves
finding a rigid-body transformation (R|t) such that applying the
transformation to # causes it to lie on top of Q. The original ICP
algorithm of Besl and McKay [1992] may be thought of as an in-
stance of Expectation Maximization: the problem is solved by al-
ternately computing pairs of corresponding points (p;, q;), where
qi is the closest point to p; given the current transformation, and
finding the transformation minimizing the point-to-point objective:

2
Epoint = Z HRpi +1t- qu . (1)
i

Because this iteration converges slowly, authors including
Fitzgibbon [2001], Mitra et al. [2004], and Pottmann et al. [2006]
have re-cast alignment as iterative minimization of the squared
Euclidean distance function of Q, sampled at points p;. The most
accurate way to accomplish this is to pre-compute a data structure
that stores at each point in space (an approximation to) the squared
distance field, then use it at run-time in an optimization based on
Levenberg-Marquardt [Fitzgibbon 2001] or Newton’s method [Mi-
tra et al. 2004]. This leads to fast convergence and a wide con-
vergence basin, though at significant computational and storage
cost. A simpler approach is to approximate the distance function
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based on the local surface at each corresponding point g;. The “on-
demand” method of Mitra et al. [2004] approximates the surface as
locally quadratic, which requires evaluation of second-order sur-
face properties (i.e., curvatures). Even more straightforward is to
approximate the surface around g; as planar, which only requires
evaluation of surface normals ng ;. Indeed, this approach dates
back to the work of Chen and Medioni [1992], who minimized
what has come to be called the point-to-plane objective:
2
Eplane = Z[(Rpi +t—qi) ngil - ()
L

It can be shown that minimizing this objective is equivalent to
Gauss-Newton minimization of squared Euclidean distance.

The latter does indeed improve convergence rate relative to the
point-to-point objective, and point-to-plane minimization has be-
come the workhorse of most modern ICP-like implementations.
However, point-to-plane ICP has been observed to have a narrower
convergence basin than point-to-point [Mitra et al. 2004]. In addi-
tion, the residual at optimal alignment is zero only when the sur-
face is locally flat, if the correspondences are not perfect (which
is necessarily the case if point sets {p;} and {q;} differ in their
sampling of the surface, as with 3D scans). This is important be-
cause the zero-set of the objective function defines what transfor-
mations are “free.” in the sense that the surface is allowed to slide
along itself to permit geometric features elsewhere to lock down
the transformation. This is exploited by work such as the normal-
space sampling of Rusinkiewicz and Levoy [2001], the covariance-
eigenvector-directed sampling of Gelfand et al. [2003], and the sta-
ble sampling of Brown and Rusinkiewicz [2007], all of which bias
the sampling to regions that are most necessary to constrain the
aligning transformation.

We therefore seek to develop a new objective function whose
zero-set allows a greater class of surfaces to “slide along” them-
selves at zero penalty. Thinking within the framework of Expecta-
tion Maximization, this makes the method as robust as possible to
mis-estimation of point correspondences in the Expectation step.

3.2 A Symmetric Objective Function

Because the surfaces  and Q should be, up to noise, the same, we
consider what residual the objective function will attain if we were
to sample a pair of nearby points (p, g) on that surface. In the point-
to-plane case, the error is

P-9- ng. (3)
If we consider the possibility of sampling (p, g) anywhere within

some small region of a surface, this will be zero only if the surface
is perfectly flat. However, consider the more symmetric function’

(P =q) - (np +ng). )
Examining the behavior of this function in 2D (see Figure 1), we see
that it is zero whenever p and g are sampled from a circle, since n,
and nq have opposite projections onto p — g. As rigid-body transfor-
mations are applied to P, this expression will continue to evaluate

!If oriented normals are not available, then np and ng should be adjusted to point in
the same direction, by negating either one if their dot product is negative. This does
not affect any of the discussion below, and only makes a difference to the outlier re-
jection strategy described in Section 4.3.



Fig. 1. For any points p and g sampled from a circular arc, the vector be-
tween them p — g is perpendicular to the sum of normals ny, + ng. This is
the fundamental property exploited by the symmetric ICP formulation.

to zero as long as p and g end up in a relative position consistent
with their placement on some circle (Figure 2, top). A similar prop-
erty is true in 3D: Equation 4 evaluates to zero as long as p and g and
their normals are consistent with some cylinder. Because it is diffi-
cult to describe, and especially to visualize, the set of (p, np) that lie
on arbitrary cylinders containing a fixed (g, nq) — it is a 4D space —
Section 4.1 investigates a different property: Equation 4 also holds
whenever p and q are consistent with a locally-second-order sur-
face centered between them. While this constraint still provides a
great deal of freedom for (p, np) to move relative to (g, ng), it is a
“more useful” form of freedom than provided by the point-to-plane
metric. In particular, it constrains (p, np) to be consistent with a
plausible extension of (g, ng), unlike point-to-plane (Figure 2, bot-
tom). Note that achieving this property does not require the eval-
uation of any higher-order information (i.e., curvature), which is a
major benefit for computational efficiency and noise resistance.

To formulate an objective function, we consider minimizing
Equation 4 with respect to transformations applied to the surfaces
% and/or Q. Although most previous work applies a rigid-body
transformation to only one of the surfaces (e.g., the transformation
in Epjqne is applied only to P), we consider a symmetric split of the
transformation: we imagine evaluating the metric in a fixed, “neu-
tral” coordinate system and applying opposite transformations to
# and Q. Thus, we can formulate a symmetric objective as:

2
Esymmin = Y| Rpi = Rgi + 1) Rnpi +Rng)| . (5)
1

where the final transformation from P to Q is now Ro T o R (with
T being the translation matrix). We will refer to this as the rotated-
normals (“-RN”) version of the symmetric objective.

This splitting of rotations has a number of advantages when we
consider linearizing the objective (Section 3.3):

o It reduces linearization error by optimizing for half of the
rotation angle.

e It further reduces error, because the error in linearizing
Rp — q is proportional to p - a, where a is the rotation axis,
while the error in linearizing Rp — R™q is proportional to
(p — q) - a. Except for extreme misalignment, p — q is usually
smaller than p (i.e., the distance from p to the origin).

e It enables reduction of linearization error to zero when cor-
respondences are exact (Section 4.2).

We have also explored a simpler version of this objective in which
the normals are not rotated. That is, the direction of minimization
per point pair remains fixed, while the points themselves are ro-
tated in opposite directions:

2
ssymm = Z[(sz - Rﬁlqi +1)- (np,i + nq,i) . (6)

1
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Fig. 2. Top: As p moves relative to g, the property (p — q) - (np + ng) =0
holds as long as there is some circular arc with which p, g, np, and ng are
consistent. Bottom: This is in contrast to the point-to-plane metric, which
is zero when p is in the plane defined by g and ng, regardless of n,.

Why might this be a reasonable simplification to make? Con-
sider the sum of two unit-length vectors in 2D. Applying opposite
rotations to the vectors preserves the direction of their sum, so that
the contribution of each point pair to the two variants of the objec-
tive would be the same up to a scale. In 3D, this is not true for all
rotation axes, but approaches true as n, approaches ng. The exper-
iments in Section 4.3 show that the two objectives lead to similar
convergence, but Esymm leads to simpler derivations and implemen-
tation. Therefore, the remainder of this paper adopts Esymm as the
symmetric objective.

3.3 Linear Approximation

The traditional method for converting an objective function involv-
ing rotations into an easily-optimized linear least-squares system
is to make the approximations cos 6 ~ 1, sin 6 ~ 6, for small incre-
mental rotations 6. This converts the rotation matrix R into a linear
form, which then yields a linear least-squares system.

We instead pursue a linearization that starts with the Rodrigues
rotation formula for the effect of a rotation R on a vector v:

Ru=vcosf+ (axv)sinf+a(a-v)(l--cosb), (7)

where a and 6 are the axis and angle of rotation. We observe that
the last term in (7) is quadratic in the incremental rotation angle 0,
so we drop it to linearize:

Ru~vcosh+ (axv)sinb
=cos 0 (v + (axv)), ®)
where d = atan 6. Substituting into (6),
Esymm = Z [cos&(pi —-qi)-ni +
i 2
cosO (ax (pi +qi)) ni +t- ni]

-3 costo e
l ((pi +qi) X ni) -a + n;- 2]2, ©)

where n; = np ; + ng,; and f = t/cosf. We now make the addi-
tional approximation of weighting the objective by 1/cos? 8, which
approaches 1 for small 6. Finally, for better numerical stability, we
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normalize the (p;, g;) by translating each point set to the origin and
adjusting the solved-for translation appropriately. This yields:

L L y 12
Z[(Pi_qi)'ni+((Pi+‘]i)xni)'a+ni't]v (10)
i
where p; = p; — p and §; = q; — q. This is a least-squares problem
in d and #, and the final transformation from P to Q is:

trans(q) o rot(@, 4) o trans(f cos 8) o rot(@, ﬁ) o trans(—p),

llall al

where 6 = tan™! ||d|. an

Note that the new linearization results in the same system of
equations as would the traditional approach. What changes is how
the solved-for variables G and f are interpreted. This produces a mod-
est increase in accuracy but, more importantly, is necessary to ob-
tain the property that the linearization is exact for exact correspon-
dences (see Section 4.2). We may interpret (10) as a Gauss-Newton
step applied to (6), using the Gibbs representation of rotations.

4 THEORETICAL AND EXPERIMENTAL RESULTS

4.1 The Symmetric Error Is Zero When Corresponding
Points Are Consistent With a Quadratic Surface

Assume that points p and g are located on a height field z = h(x, y)
that may be approximated locally as second-order. We construct a
coordinate system centered at their geodesic midpoint m, with the
surface tangent to xy (see Figure 3). The height of that surface rela-
tive to the tangent plane may be expressed as a quadratic function
of xy displacement away from m:

Az:%(Ax Ay)(; J;)(ﬁ;) (12)

This is an even function, so if p and q are displaced by equal amounts
in opposite directions from m, then their z coordinates are equal,
and p — q is parallel to the xy plane. Conversely, the perturbation
of the surface normal away from 2 is an odd function:?

)=o) e

Therefore, np +ng is parallel to the z axis, and so it must be per-
pendicular to p — gq.

Note that the property that the error vanishes near a second-
order patch of surface does not hold for point-to-point, point-to-
plane, or even the method of Mitra et al. [2004]. The latter, for ex-
ample, considers a quadratic approximant to the square of the Eu-
clidean distance function, which can be minimized only at a plane,
line, or point. An objective function that vanishes near a curved sur-
face, however, would require a higher-order approximation. This
partially explains the faster convergence of Esymm, as observed in
the experiments of Section 4.3.

Note also that, as p and ¢ move away from being consistent with a
second-order surface, the error in Equation 4 remains well-behaved:
it is just linear in positions and normals. This is in contrast to the
(squared) Euclidean distance function, whose Hessian diverges at
the medial surface.

2 After perturbation, n must be re-normalized, but the the dependency on (Ax, Ay)
remains odd.
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Side view Top view

Fig. 3. A second-order patch of surface around m, the geodesic midpoint
between p and q. Because the variation of height and normal relative to m
are even and odd, respectively, p — q and np, + ng are parallel and perpen-
dicular to the tangent plane at m, and so Equation 4 holds.

4.2 The Linearization is Exact for Exact Correspondences

Unlike the traditional linearization of rotations, we observe that the
linear least-squares problem in (10) produces an exact result when
correspondences (p;, q;) are correct. This is because the approxima-
tion of 1/(cos 0)? as 1 involves a multiplicative factor that may be
interpreted as a weight, and so the only additive term that is actually
dropped contains a factor of (p; — §;) - a. However, if correspon-
dences are correct and the points are center-of-mass normalized,
then p; — §; is guaranteed to be perpendicular to the rotation axis,
and hence zero error is introduced by the linearization. We have
verified experimentally that this is the case, up to roundoff error.

This an unexpected result, because previous techniques that
solve for exact rotations have tended to involve nonlinear optimiza-
tion, and hence require multiple iterations. There do exist several
closed-form solutions for the minimization of &Eppint, but all are
based on SVD or eigenvector problems [Eggert et al. 1997]. To the
best of our knowledge, there are no published techniques that ex-
actly optimize Epjqp Or any related metric with a single linear solve,
even for exact correspondences.

4.3 Egymm Accelerates Per-Iteration Convergence

In an ICP implementation, of course, correspondences will not be
exact. Nevertheless, we observe that Eymm produces faster conver-
gence than Epoint and Epjgye. We conduct an experiment in which
we start with two copies of a mesh, then move one copy away
from its ground-truth position and orientation. We execute a single
iteration of ICP to align the shifted copy back towards the origi-
nal. We measure error, both before and after that ICP iteration, as
the root-mean-square distance between actual vertex positions and
their ground-truth locations, where the mesh is scaled such that
the root-mean-squared vertex distance from the center of mass is 1.
No outlier rejection is performed.

We test a total of six objective functions, of which four are Epoint,
Eplanes Esymm-RN> and Esymm. The two additional objectives are:

e Quadratic: the method of Mitra et al. [2004] that minimizes
alocally-quadratic approximant to the squared Euclidean dis-
tance function. The implementation uses the “on demand”
method described in that paper, in which the approximation
uses curvature information at the closest point.
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Fig. 4. Left: Error decrease due to one ICP iteration on the dragon model, aligned to itself. Ground-truth errors before and after the ICP iteration are shown
on the x and y axes, respectively, of this log-log plot. The proposed symmetric objective results in significantly faster decrease of error at each iteration.
Center: Error decrease due to one iteration of ICP, aligning bun@90 to bun@ea (illustrated in blue and red, respectively, with the areas of overlap in purple).
Right: Error decrease in one ICP iteration, aligning two scans from the TUM RGB-D dataset. Note the slower convergence because of the high level of noise.

e Two-plane: minimizing the sum of squared distances to
planes defined by both ny, and ng:

8two—plane = Z [(Rpi —-R'g; +1)- (Rnp,i)]z +
! , (14)
|Rps = Rgi + ) R7ng.0)|

This approach is a symmetrized version (with split rotations)
of methods previously used by Tagliasacchi et al. [2015] and
Luong et al. [2016], which in turn were related to the Haus-
dorff metric by Tkach et al. [2016].

Figure 4, left, shows the result of this experiment on the dragon
model [Curless and Levoy 1996]. The graph compares the error
after an iteration of alignment (plotted along the y axis) to error
before alignment (x axis), for each method. Each datapoint repre-
sents the average over 1000 trials, each having a different starting
transformation (that produces the same initial error).

We see that the behaviors of the different methods fall into three
general categories. The point-to-point objective is the slowest: it re-
liably exhibits linear convergence. The point-to-plane, two-plane,
and quadratic methods exhibit superlinear convergence, while the
two symmetric objectives (whose curves lie essentially on top of
each other) are even faster: they have a higher convergence order
(greater slope of the curve) for large misalignment, and a similar
convergence order but more favorable constant once alignment im-
proves. Note that the graph is on a log-log scale, so the vertical dis-
tance between the curves can represent improvement by as much
as an order of magnitude in per-iteration convergence.

Figure 4, center, shows a similar experiment, but for incomplete
and partially-overlapping range scans (the bun@0e and bun@90 scans
from the bunny model [Turk and Levoy 1994]). In this case, some
form of robust estimation is necessary to account for partial over-
lap, and this may be done using techniques including explicit out-
lier rejection [Turk and Levoy 1994; Pulli 1999; Chetverikov et al.
2005], consistency conditions [Pajdla and Van Gool 1995; Dorai
et al. 1998], M-estimation [Fitzgibbon 2001], or sparsity-inducing
norms [Bouaziz et al. 2013]. Because it is not our intention to ex-
haustively explore options for robust estimation, we adopt a rela-
tively simple outlier-rejection strategy that excludes matches hav-
ing normals with negative dot product, and pairs with (point-to-
point) distance greater than 2.5 times the standard deviation of dis-
tances at each iteration [Masuda et al. 1996]. (The standard devia-
tion is estimated robustly as 1.4826 times the median distance.) The
relative ordering of the ICP variants is similar to the whole-model
case, but the variants are closer to each other, due to noise and im-
perfect outlier rejection — these meshes only have an overlap (mea-
sured as intersection over union, or IOU) of approximately 23%.

Finally, Figure 4, right, shows the experimental convergence
for a pair of scans of an indoor office environment, specifically
timestamps 1305031104.030279 and 1305031108.503548 of the
freiburgl_xyz sequence from the TUM RGB-D dataset [Sturm
et al. 2012]. This dataset is qualitatively different from the bunny,
since it contains many planar surfaces (which might be expected to
boost the performance of &4y, and related variants), but also has
some warp and scanning noise from the Kinect sensor (which leads
to a nontrivial residual, decreasing the difference between variants).
Even in this scenario, which might be expected to provide the least
benefit to Esymm, the symmetric objective outperforms the others.
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4.4 ICP with &symm Has a Wide Convergence Basin

To measure how reliably the different ICP objectives reach the cor-
rect alignment, we repeatedly misalign two meshes by a given an-
gle (about a random axis) and a given translation magnitude (in a
random direction), then run ICP for a fixed number of iterations.
For consistency, all variants sample points from both meshes, find
closest points (according to Euclidean distance) on the other mesh,
and use the outlier rejection strategies described above. The suc-
cess of ICP is determined by whether points are within a threshold
(1% of mesh size) of their ground-truth locations after alignment.

Figure 5 shows the convergence basin for the six ICP variants
from the previous experiment, plus two variants that apply the
Levenberg-Marquardt algorithm, either to Epjgp, as in the work of
Fitzgibbon [2001], or to the new Esymm. Each small square shows
the percentage of successful trials, averaged over all pairs of bunny
scans having IOU overlap greater than 20%, and over 1000 initial
transformations that have the given rotation angle and translation
magnitude.

With 500 iterations, Epoint and &yjgne have regimes in which one
is slightly better (Epoint for large translation and small rotation, and
vice versa for Epjgpe). The quadratic method of Mitra et al. [2004]
and Fitzgibbon’s LM-ICP (applied to &;4y¢) modestly improve con-
vergence, with Esymm comparable to those two and E;yo-plane im-
proving reliability even more. Levenberg-Marquardt applied to
Esymm is both fast and reliable, achieving the widest convergence
basin at 20 iterations and coming within a few percent of E4,,0-piane
at 500 iterations. The availability of a fast and reliable ICP variant
is vital for real-time applications such as interactive 3D scanning
[Izadi et al. 2011], which have heretofore used point-to-plane ICP.

5 DISCUSSION AND FUTURE WORK

The symmetric objective represents a simple improvement to tra-
ditional point-to-plane ICP. At minimal additional implementation
cost, it produces faster and more reliable convergence. Future work
in this area consists of exploring the combination of the symmetric
objective with modern approaches for denoising, surface descrip-
tor matching, robust {p minimization, and step size control.

A further topic for future investigation is relating the symmetric
objective to distance function minimization. Just as Equation 3 can
be considered a linearization of the signed distance to Q evaluated
at points on %, Equation 4 can be considered the linearization of
the sum of that function, plus the signed distance to # evaluated
at points on Q. While it might be possible to simplify this descrip-
tion (perhaps by considering samples at the midpoint between the
two surfaces), even that does not readily lead to an explanation of
the properties in Sections 3 and 4.1. Future analysis of the sum of
distance transforms could lead to additional insights on Esymm.
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Fig. 5. Convergence basins of different ICP variants, illustrated as percentage of the time that ICP succeeded within 20, 100, and 500 iterations (left, center,
and right columns, respectively). Each small square represents an average over all overlapping pairs of scans in the bunny dataset, and over 1000 random
initial transformations that have the given rotation angle and translation magnitude (relative to mesh size). ~ Colormap: CET-L19 by Kovesi [2015].

ACM Trans. Graph., Vol. 38, No. 4, Article 85. Publication date: July 2019.



	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Background and Motivation
	3.2 A Symmetric Objective Function
	3.3 Linear Approximation

	4 Theoretical and Experimental Results
	4.1 The Symmetric Error Is Zero When Corresponding Points Are Consistent With a Quadratic Surface
	4.2 The Linearization is Exact for Exact Correspondences
	4.3 Esymm Accelerates Per-Iteration Convergence
	4.4 ICP with Esymm Has a Wide Convergence Basin

	5 Discussion and Future Work
	Acknowledgments
	References

