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Fig. 1. We propose an end-to-end deep neural network learned to predict both reflectional and rotational symmetries from single-view RGB-D images. For

each example, we show the input RGB-D images with the object of interest segmented out (see the yellow masks) as well as the detection results over the

unprojected 3D point clouds. Reflectional symmetries are depicted with red planes (reflection plane) and rotational symmetries with green lines (rotation axis).

Note how our method is able to detect the composition of an arbitrary number of symmetries, possibly of different types, present in the same object.

We study the problem of symmetry detection of 3D shapes from single-view
RGB-D images, where severely missing data renders geometric detection
approach infeasible. We propose an end-to-end deep neural network which
is able to predict both reflectional and rotational symmetries of 3D objects
present in the input RGB-D image. Directly training a deep model for sym-
metry prediction, however, can quickly run into the issue of overfitting. We
adopt a multi-task learning approach. Aside from symmetry axis predic-
tion, our network is also trained to predict symmetry correspondences. In
particular, given the 3D points present in the RGB-D image, our network
outputs for each 3D point its symmetric counterpart corresponding to a
specific predicted symmetry. In addition, our network is able to detect for
a given shape multiple symmetries of different types. We also contribute a
benchmark of 3D symmetry detection based on single-view RGB-D images.
Extensive evaluation on the benchmark demonstrates the strong general-
ization ability of our method, in terms of high accuracy of both symmetry
axis prediction and counterpart estimation. In particular, our method is
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robust in handling unseen object instances with large variation in shape,
multi-symmetry composition, as well as novel object categories.
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1 INTRODUCTION

Symmetry is omnipresent in both nature and the synthetic world.
Symmetry detection is therefore a long-standing problem that has
attracted substantial attention in both computer graphics and vi-
sion [Liu et al. 2010; Mitra et al. 2013]. Symmetry is at heart a
purely geometric concept, with a rigorous definition on the basis of
transformation invariance and group theory. It might therefore be
supposed that symmetry detection can always be solved by a purely
geometric approach. For example, reflectional symmetry in 2D or
3D can be easily parameterized in the transformation space. As such,
detection methods such as the Hough transform have historically
been utilized to accumulate local cues of symmetry transformations
based on detected symmetry point correspondences [Mitra et al.
2006; Podolak et al. 2006; Yip 2000].

If we consider the problem of symmetry detection in the presence
of significant missing data, however, it becomes appropriate to aban-
don purely-geometric approaches and infer what symmetries might
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be present. A common application scenario is estimating symme-
tries of 3D shapes based on a single-view RGB-D image. Single-view
symmetry detection finds various potential applications ranging
from object/scene completion, camera tracking, and relocalization,
to object pose estimation. Due to partial observations and object
occlusion, it also poses special challenges that are beyond the reach
of geometric detection. For example, it is difficult, if not impossi-
ble, to find local symmetry correspondences and transformations
supporting global symmetry analysis. In this situation, symmetry
analysis should rely not only on geometric detection but also on
statistical inference. The latter necessitates data-driven learning.
In this work, we propose an end-to-end learning approach for

symmetry prediction based on a single RGB-D image using deep
neural networks. As shown in Figure 1, given an RGB-D image as
input, the network is trained to detect two types of 3D symmetries
present in the scene, namely (planar) reflectional and (cylindrical)
rotational symmetries, and outputs the corresponding symmetry
planes and axes, respectively. Directly training a deep model for
symmetry prediction, however, can quickly run into the issue of
overfitting. This is due to the fact that the network is able to eas-
ily “memorize” the symmetry axes of a class of objects in training
and will simply perform object recognition at test time. Such an
overfitted model cannot generalize well to large shape variation or
changes in the symmetries that are present. In fact, symmetry is not
a global shape property but rather is supported by local geometric
cues: symmetry transformation invariance is defined by local shape
correspondences. Straightforward training of symmetry prediction
cannot help the network to truly understand the local-to-global
support.

To this end, we adopt a multi-task learning approach. Aside from
symmetry axis prediction, our network is also trained to predict sym-
metry correspondences. In particular, given the 3D points present
in the RGB-D image, our network outputs for each 3D point its sym-
metric counterpart corresponding to a specific predicted symmetry.
Given any point 𝑃𝑖 , its counterpart may lie in the 3D point cloud or
be missing due to occlusion or limited field of view. To accommodate
both cases, we output the counterpart in two modalities. First, we
output a heat map for each point in the point cloud indicating the
probability of any other points being the symmetric counterpart
of this point. Second, we directly regress the (𝑥,𝑦, 𝑧) location of
this counterpart. To avoid overfitting, we correlate the two tasks
by supervising their learning with a unified supervision signal, i.e.,
the ground-truth local position of the counterparts. We devise a
loss that encourages a point with high counterpart probability to
be spatially close to its corresponding ground-truth location.

Through proper parameterization, our network is able to handle
reflectional symmetry, as well as continuous and discrete rotational
symmetry. Since the number of symmetries present in a 3D shape
may vary, a network with single output is not suitable for the sym-
metry prediction task. To this end, we design our network to produce
multiple symmetry outputs. When training the network, however,
one needs to know how to match the outputs to different ground-
truth symmetries in order to compute proper prediction error for
gradient propagation. This is achieved by an optimal assignment
process, which keeps the entire network end-to-end trainable.

Through extensive evaluation on three symmetry prediction
datasets, we demonstrate the strong generalization ability of our
method. It attains high accuracy not only for symmetry axis predic-
tion, but also for counterpart estimation. Therefore, our method is
robust in handling unseen object instances with large variation in
shape, multi-symmetry composition, as well as novel object cate-
gories. In summary, we make the following contributions:

• We propose the problem of reflective and rotational symmetry
detection from single-view RGB-D images, and introduce a
robust solution based on deep learning.

• We use a series of dedicated tasks (losses) to guide the deep
network to learn not only parametrized symmetry axes but
also the local symmetry correspondences that support them.

• We realize end-to-end learning of multi-symmetry detection
by devising an optimal assignment process for multi-output
network training.

• We propose a benchmark for single-view symmetry detection,
encompassing a moderately-sized dataset containing both
real and synthetic scenes, as well as evaluation metrics.

2 RELATED WORK

Symmetry detection has a large body of literature, which has been
comprehensively reviewed by the two excellent surveys of Liu et
al. [2010] and Mitra et al. [2013]. Here we focus only on the work
that is most related to our specific designs and techniques.

2D symmetry detection. 2D symmetry detection has long been a
major topic of interest in computer vision. Many approaches have
been proposed, including direct methods [Kuehnle 1991], voting-
based methods [Ogawa 1991], and moment-based methods [Marola
1989]. Different types of primitive symmetries such as rotation,
translation, and reflection, as well as symmetry groups [Liu and
Collins 2000], have been studied. Among all these directions, the
detection of bilateral reflectional symmetry and its skewed ver-
sion [Liu and Collins 2001] from 2D images has received the most
attention from the community. Our work is relatively closely related
to the detection of skewed bilateral symmetry, since the latter is
inherently inferring reflectional symmetry of 3D objects from their
2D projections. In contrast to our work, these works do not output
symmetries in 3D space and rely on the presence of a large portion
of the symmetric regions.

3D symmetry detection. Since the two seminal works of Mitra et
al. [2006] and Podolak et al. [2006], symmetry detection of 3D geom-
etry has attractedmuch attention in the field of geometry processing.
Existing works can be categorized according to different problem
settings targeted, such as exact vs. approximate symmetry, local vs.
global symmetry, and extrinsic vs. intrinsic symmetry. Different com-
binations of the settings lead to different problems and approaches,
such as the detection of extrinsic global symmetries [Martinet et al.
2006; Podolak et al. 2006], extrinsic partial symmetries [Bokeloh
et al. 2009; Lipman et al. 2010; Mitra et al. 2006], intrinsic global
symmetries [Ovsjanikov et al. 2008; Raviv et al. 2007], and intrinsic
partial symmetries [Raviv et al. 2010; Xu et al. 2009]. Common to
these works is the reliance on 3D shape correspondence [Van Kaick
et al. 2011], which is regarded as a primary building block of 3D
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Fig. 2. The pipeline of our proposed symmetry prediction method comprising three major components. Taking an RGB image and a depth image as input,

the network first extract point-wise appearance and geometry feature maps. The features are then used for point-wise symmetry prediction via multi-task

learning. The final symmetry predictions are made with symmetry aggregation and visibility-based verification.

symmetry detection. However, in cases of significant missing data,
such as single-view scans, shape correspondence becomes extremely
challenging. Continuous rotational and spherical symmetries can
be detected locally by slippage analysis [Gelfand and Guibas 2004].
However, it would have to be combined with different methods for
other symmetry types.

Learning-based symmetry detection. Early methods for symmetry
detection using statistical learning include the use of feed-forward
networks to detect and enhance edges that are symmetric in terms of
edge orientation [Zielke et al. 1992]. Tsogkas and Kokkinos [2012]
employ hand-crafted features and multiple instance learning to
detect ribbon-like structures in natural images, which was later
extended to detect more general reflectional symmetry [Shen et al.
2016a]. Teo et al. [2015] utilize structured random forests to detect
curved reflectional symmetries. Most recently, deep learning has
been adopted for the task of 2D symmetry detection [Ke et al. 2017;
Shen et al. 2016b], typically detecting reflectional symmetries as 2D
skeletons instead of symmetries in 3D space.
Gao et al. [2019] propose PRS-Net, the first deep learning based

symmetry detection method for 3D models demonstrating excel-
lent results. They develop a loss function to measure symmetry
correspondence that requires the counterpart of any point to lie
on the shape surface. This limits their use in handling single-view
scans: the reflective counterpart of a point may be far away from
the surface due to missing data, which may lead to high loss and
slow convergence.

Learning-based shape correspondence. Deep learning has also been
applied to shape correspondence. Existing works mostly focus on
learning-based shape descriptors [Huang et al. 2017], which have
proven more robust than hand-crafted ones. Wei et al. [2016] learn
feature descriptors for each pixel in a depth scan of a human for
establishing dense correspondences. Zeng et al. [2017] learn a local
patch descriptor for volumetric data, which can be used for align-
ing depth data for RGB-D reconstruction. Although data-driven
local shape descriptors can be used for symmetry detection, it is
unclear how to harness them to realize an end-to-end learned sym-
metry detector. Moreover, severe data incompleteness renders shape
correspondence inapplicable.

Learning-based object pose estimation. Our work is also related to
6D object pose estimation based on single-view RGB(D) input, since
pose and symmetry usually imply each other. Most existing methods
are instance-level [Avetisyan et al. 2019; Choi and Christensen 2012;
Georgakis et al. 2018; Hodaň et al. 2015; Konishi et al. 2018; Peng
et al. 2019; Wang et al. 2019a] and require a template 3D model,
which is unavailable for our single-view symmetry detection task.
Recently, Wang et al. [Wang et al. 2019b] achieve category-level 6D
pose estimation based on a Normalized Object Coordinate Space
(NOCS), a shared canonical representation of object instances within
a category. They train a neural network to directly infer the pixel-
wise correspondence between an RGB image and the NOCS. 6D
object pose is estimated using shape matching. This method finds
difficulty in generalizing across different shape categories. Our net-
work, on the other hand, attains satisfying cross-category generality
on symmetry prediction making it suited for pose estimation.

3 METHOD

The symmetry of a 3D object is easily measurable when its geome-
try is fully known. Conventional symmetry detection pipelines for
3D objects normally establish symmetric correspondences within
the observed geometrical elements (e.g. points or parts) before ag-
gregating them into meaningful symmetries. However, single-view
observations of real-world objects are usually incomplete due occlu-
sion and limited field of view. Symmetry detection on incomplete
geometry is an ill-posed problem which is difficult to solve with
existing approaches.

When inferring the underlying symmetries of an incompletely ob-
served object, humans usually resolve ambiguities based on whether
the object is familiar. For an object commonly encountered in daily
life, a person recognizes its category, estimates its pose, and deter-
mines the symmetries, all based on prior knowledge. For a novel,
rarely-encountered object, however, she may look for local evidence
of symmetry (i.e., establish symmetry correspondences) over the
observed geometry and/or imagined unseen parts. Clearly, sym-
metry inference for novel objects is much harder since it involves
simultaneous shape matching and shape completion. In this work,
we propose a unified solution to single-view symmetry detection

ACM Trans. Graph., Vol. 39, No. 6, Article 213. Publication date: December 2020.



213:4 • Yifei Shi, Junwen Huang, Hongjia Zhang, Xin Xu, Szymon Rusinkiewicz, and Kai Xu

for both known and novel objects through coupling the predictions
of symmetries and symmetry correspondences.
Our solution is to train an end-to-end network for symmetry

prediction; see Figure 2. The network consists of three major com-
ponents. The first module takes an RGB image and a depth image as
input and extracts point-wise appearance and geometric features,
respectively. These features are subsequently utilized for point-wise
symmetry prediction. Finally, the third module performs symmetry
aggregation and verification during inference.

3.1 Problem definition

Given an RGB-D image of an 3D object, our goal is to detect its extrin-
sic reflectional and/or rotational symmetries, if any. In particular, we
detect at most𝑀ref reflectional symmetries Sref = {𝑆ref𝑖 }𝑖=1,...,𝑀 ref ,

which is parameterized as 𝑆ref𝑖 = {pref𝑖 , nref𝑖 } with p
ref
𝑖 being a point

in the reflection plane and n
ref
𝑖 the plane normal. We also detect

at most𝑀rot rotational symmetries Srot = {𝑆rot𝑖 }𝑖=1,...,𝑀 rot , param-

eterized as 𝑆rot𝑖 = {prot𝑖 , nrot𝑖 } where p
rot is a point lying on the

rotation axis and n
rot defines the axis orientation. All symmetries

are represented in the camera reference frame.

3.2 Symmetry prediction network

Let us first introduce how the network predicts one symmetry, and
then extend it to output multiple symmetries.

Dense-point symmetry prediction. We first extract features for
both RGB and depth images and then fuse their feature maps. Fol-
lowing [Wang et al. 2019a], we extract point-wise appearance and
geometric features using a fully-convolutional network [Wang et al.
2019a] and a PointNet [Qi et al. 2017], respectively. The two features
are then concatenated and used for point-wise prediction tasks.
Our network makes individual predictions for each point before
aggregating all the predictions to form the final one. The overall
prediction loss is L = 1

𝑁

∑𝑁
𝑖 L𝑖 , where L𝑖 is the prediction loss of

point 𝑃𝑖 .
Since symmetry is non-local, both local shape properties and the

global shape structure are crucial for its detection. Therefore, the
point-wise prediction takes both point-wise and global features as
input. To compute global features, a straightforward way would be
to perform average- or max-pooling over all point features. How-
ever, average-pooling over all points is redundant for symmetry
detection, which can be determined by features of sparse points [Mi-
tra et al. 2006]. On the other hand, max-pooling may lose too much
information. We instead opt for spatially weighted pooling [Hu
et al. 2017]. This method measures the significance of the each point
by learning a weighted mask for every feature map. We insert a
spatially weighted pooling layer after the appearance and geomet-
ric feature extraction layers. The resulting global feature is then
concatenated with the point-wise features for symmetry prediction.
To improve the prediction accuracy and generality, we train the

point-wise symmetry prediction network with a multi-task learning
scheme. In particular, the tasks include 1) a classification of symme-

try type (null if there is no symmetry), 2) a regression predicting
the symmetry parameters, 3) a regression estimating the location

(a) (b)

Fig. 3. Demonstration of the relationship between the to-be-predicted point

𝑃𝑖 , its counterpart𝑄𝑖 , and𝑂𝑖 which is the projection of 𝑃𝑖 onto (a) the pre-

dicted symmetry plane with the plane normal nref𝑖 for reflectional symmetry

and (b) the predicted symmetry axis with the unit vector nrot𝑖 for rotational

symmetry.

of the symmetric counterpart of a given point for the correspond-
ing symmetry, and 4) a classification indicating whether an input

point is the symmetric counterpart of the current point. To make the
point-wise prediction easy to train, all predicted coordinates are
represented in a local reference frame centered at the current point,
with the same orientation as the camera reference frame.

Although the extra tasks of symmetric counterpart prediction
make the point-wise symmetry detection over-constrained, they
allow the network to learn the essence of symmetry (i.e., symmetry
correspondence) via reinforcing the relation between symmetry
parameters and symmetric counterparts.

Given a point 𝑃𝑖 , its symmetry prediction loss is defined as

L𝑖 = L
type
𝑖 + L

sym
𝑖 , (1)

where L
type
𝑖 is the cross-entropy loss for symmetry type classifica-

tion (null (0) for no symmetry, 1 for reflectional symmetry, 2 for
rotational symmetry). L

sym
𝑖 is the loss for symmetry parameters

and symmetric counterparts calculated based on the ground-truth
symmetry type:

L
sym
𝑖 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L
ref_reg
𝑖 +𝑤 ref · L

ref_cp
𝑖 , if ref. sym.

L
rot_reg
𝑖 +𝑤 rot · L

rot_cp
𝑖 , if rot. sym.

0, if no sym.

(2)

For reflectional symmetry (Figure 3a), the network outputs𝑂𝑖 , the
projection of 𝑃𝑖 onto the predicted symmetry plane, and measures
the distance between this point and its ground-truth location �̂�𝑖 :

L
ref_reg
𝑖 = 𝑑2 (𝑂𝑖 , �̂�𝑖 ), (3)

where 𝑑 is Euclidean distance. In the local reference frame of 𝑃𝑖 , the

predicted normal of the symmetry plane nref𝑖 is
−−−→
𝑃𝑖𝑂𝑖

|
−−−→
𝑃𝑖𝑂𝑖 |

.

The counterpart loss for reflectional symmetry is:

L
ref_cp
𝑖 =

1

𝑁

𝑁∑
𝑗

Lcls (𝑝𝑖 𝑗 , 𝑝𝑖 𝑗 ) + 𝑑
2 (𝑄𝑖 , �̂�𝑖 ), (4)

where 𝑝𝑖 𝑗 is the predicted probability that point 𝑃 𝑗 is the counter-
part of point 𝑃𝑖 and 𝑝𝑖 𝑗 is the ground-truth label (0 for negative and

1 for positive). Lcls is the cross-entropy loss. 𝑄𝑖 is the predicted
symmetric reflection (counterpart) of 𝑃𝑖 , and �̂�𝑖 is its corresponding
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Fig. 4. Illustration of the process of obtaining the present symmetries for each point out of multiple output symmetries via binary classification and optimal

assignment.

ground-truth. The counterpart loss penalizes when a point with
high counterpart probability is spatially distant from the correspond-
ing ground-truth counterpart location. The weight𝑤 ref tunes the
importance of counterpart prediction.

For rotational symmetry (Figure 3b), the network predicts point
𝑂𝑖 as the projection of 𝑃𝑖 onto the predicted symmetry axis ñrot𝑖 .
We define the rotational symmetry prediction loss as:

L
rot_reg
𝑖 = 𝑑2 (𝑂𝑖 , �̂�𝑖 ) +

��1 − |nrot𝑖 · n̂rot𝑖 |
�� , (5)

where �̂�𝑖 and n̂
rot
𝑖 are the corresponding ground-truths.

Unlike reflectional symmetry, in which each point has only one
symmetric counterpart, rotational symmetry induces more than one
counterpart on the rotational orbit. For discrete rotational symme-
try, the number of counterparts is equal to the order of rotational
symmetry. For continuous rotational symmetry, on the other hand,
the number is infinite. Learning to regress all points on the rotation
orbit is extremely difficult if not impossible. We therefore opt to
predict the probability for a given input point how likely it is to
be in the rotation orbit. In addition, we predict the order 𝑟 of the
rotational symmetry (𝑟 = 0 for continuous rotational symmetry
and 𝑟 > 0 for discrete rotational symmetry) using an MLP and a
softmax layer for 𝑅-way classification. 𝑅 is the maximal order of
discrete rotational symmetry in the datatset. We set 𝑅 = 10 in our
experiment. Note that with this formulation we unify the prediction
of continuous and discrete symmetry, leading to reduced model
parameters.

The counterpart loss for rotational symmetry is:

L
rot_cp
𝑖 =

1

𝑁

𝑁∑
𝑗

Lcls (𝑝𝑜𝑖 𝑗 , 𝑝
𝑜
𝑖 𝑗 ) + Lcls (𝑟𝑖 , 𝑟𝑖 ), (6)

where 𝑝𝑜𝑖 𝑗 is the predicted probability that a point 𝑃 𝑗 lies in the

ground-truth orbit of 𝑃𝑖 , 𝑟𝑖 is the predicted order, 𝑝𝑜𝑖 𝑗 and 𝑟𝑖 are the

corresponding ground-truths, and𝑤 rot is a trade-off weight.

Handling arbitrary number of symmetries. To accommodate mul-
tiple symmetries in our network, one option is to train a recurrent
neural network which is able to output an arbitrary number of sym-
metries sequentially. However, training such a sequential prediction
requires a prescribed consistent order for the symmetries, which is
obviously infeasible. A more straightforward option is to have an
𝑀-way output with𝑀 being the maximum number of symmetries
per object, which we adopt in our approach. However, training a
network with an𝑀-way output still requires predefining the order

of different outputs. To circumvent this order dependency, we pro-
pose an optimal assignment based approach to train the network
for order-independent multi-way output.

In particular, each point produces a maximum of𝑀ref outputs for
reflectional symmetry or𝑀rot for rotational symmetry. A classifier
is used to determine the presence or absence of each symmetry.
For those symmetries verified by the classifier, an optimization is
applied to find the maximally-beneficial-matching to the ground-
truth symmetries. To be specific, we solve the following optimization
during training:

argmax
Π

𝑀∑
𝑚=1

𝐾∑
𝑘=1

𝐵𝑚,𝑘Π𝑚,𝑘 ,

s.t.
𝑀∑
𝑚=1

Π𝑚,𝑘 = 1, 𝑘 ∈ {1 . . . 𝐾};
𝐾∑
𝑘=1

Π𝑚,𝑘 ≤ 1,𝑚 ∈ {1 . . . 𝑀}.

(7)

Π is a permutation matrix with Π𝑚,𝑘 ∈ {0, 1} indicating whether
the 𝑘-th ground-truth symmetry matches the𝑚-th predicted sym-
metries. 𝑀 is the total number of the output symmetries, and 𝐾
the total number of the ground-truth symmetries. 𝐵 is a benefit
matrix in which 𝐵𝑚,𝑘 represents the benefit of matching the 𝑘-th
ground-truth symmetry to the𝑚-th predicted symmetry. A higher
similarity between two symmetries leads to a larger benefit.
We compute the benefit as follows. For reflectional symmetries,

given two symmetries 𝑆ref𝑚 and 𝑆ref
𝑘

, and their corresponding reflec-

tional transformations𝑇 ref
𝑚 and𝑇 ref

𝑘
, the benefit of matching 𝑆ref𝑚 and

𝑆ref
𝑘

is computed as the Euclidean distance between points that are
transformed by the two reflectional transformations respectively:

𝐵ref𝑚,𝑘 =
𝑁∑
𝑗

1���𝑇 ref
𝑚 (𝑃 𝑗 ) −𝑇

ref
𝑘

(𝑃 𝑗 )
��� + 𝜖

, (8)

where 𝜖 = 0.01 is a small value used to prevent dividing by zero.
For rotational symmetries, the benefit of matching two symme-

tries 𝑆rot𝑚 and 𝑆rot
𝑘

is defined as the Euclidean distance between
points that are transformed by the two rotational transformations
respectively:

𝐵rot𝑚,𝑘 =
1

|Γ |

∑
𝛾 ∈Γ

𝑁∑
𝑗

1���𝑇 rot,𝛾
𝑚 (𝑃 𝑗 ) −𝑇

rot,𝛾
𝑘

(𝑃 𝑗 )
��� + 𝜖

, (9)

where 𝑇 rot,𝛾 is the rotational transformation of 𝑆rot with a rotation
angle of 𝛾 . The set of rotation angles is Γ = {𝜅 · 𝜋/8}𝜅=1,...,16. Note
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Fig. 5. Verification of the symmetry prediction based on the matching error

which is equivalent to the overlap between the transformed points 𝑇 (𝑃 )
and the regions of space that are known to be free.

that the transformations with different rotation angles are used only
for comparing two rotational symmetries; they have nothing to do
with the order of the rotational symmetries.

Solving this optimization amounts to finding the assignment that
maximizes the total benefit of matching between the predicted and
ground-truth symmetries. We use the Hungarian algorithm [Kuhn
1955] to solve the optimization. Figure 4 shows an illustration of
the entire process of outputting multiple symmetries per point and
finding the optimal assignment.

3.3 Symmetry inference

Prediction aggregation. During inference, we start by extracting
point-wise features and making point-wise symmetry predictions.
We then aggregate these individual predictions to generate the
ultimate prediction. A straightforward method of aggregation is to
perform a clustering over the predicted symmetries and select the
final predictions as the cluster centers, similar in spirit to [Mitra et al.
2006] and [Podolak et al. 2006]. When clustering, we need to account
for the importance of the predictions since they are not equally
accurate due to the influence of occlusion and non-uniform lighting.
To this end, we introduce a confidence value for each symmetry
prediction of each point. In particular, the confidence is evaluated as
the probability output by the softmax layer in predicting symmetry

type (the L
type
𝑖 in Eq. (1)).

After testing the performance of various clustering algorithms, we
found that Density-Based Spatial Clustering (DBSCAN) [Ester et al.
1996] works the best for our task. The dissimilarity between two
symmetries is defined in Eq. (8) and Eq. (9). In addition, we use the
confidence value of each predicted symmetry as its density weight,
thus encouraging the selection of more confident predictions.

Visibility-based verification. Symmetry prediction on complete
3D objects can be conveniently verified by computing the match-
ing error between the original model and the model transformed
by the predicted symmetry. Large matching error implies inaccu-
rate/incorrect symmetry prediction. This verification, however, is
infeasible when the observation is incomplete because even a correct
symmetry may have a large matching error due to data incomplete-
ness. We therefore propose a visibility-based verification approach
which is suited to our data, i.e., single-view RGB-D images.

As depicted in Figure 5, we first compute a volumetric represen-
tation of the space observed by the depth image. Based on visibility
w.r.t. the camera pose, the volumetric map contains three types of
voxels: observed, free, and unknown. Unknown voxels represent
those which are either occluded or outside the FOV. The verification
then computes the matching error as the overlap between the trans-
formed surface points and the known free regions. A large overlap
means a large confirmed mismatch. We then filter out the predicted
symmetries with a large mismatch.
We have also tested using this visibility-based verification as

an extra constraint (loss) in the network training. However, we
found that it leads to slow convergence while resulting in little
improvement in prediction accuracy.

4 IMPLEMENTATION DETAILS

Network architecture. To extract point-wise color features, we
use a fully-convolutional network consisting of five convolutional
layers, each of which is followed by a Batch Normalization (BN)
layer. It encodes an input RGB image of size 𝐻 ×𝑊 × 3 into a
𝐻 ×𝑊 × 256 feature space. We use PointNet to extract geometric
features. The architecture of our PointNet implementation is the
same as the point cloud segmentation network described in [Qi et al.
2017]. It encodes a point cloud with 𝑁 points into a 𝑁 × 256 feature
matrix. The size of the global feature is 512. After concatenating
local and global features, the size of per-point feature is 1024. The
symmetry predictor is a three-layer Multi-Layer Perceptron (MLP)
which takes the per-point features as input and outputs symmetries.
Each MLP is followed by a BN layer. The weights 𝑤 ref and 𝑤 rot

are both set to 0.5. 𝑀ref and 𝑀rot in the multi-way prediction of
reflectional and rotational symmetries are 9 and 3, respectively.

Training and inference. We implement the prediction network in
PyTorch [Paszke et al. 2019]. The Adam optimizer [Kingma and Ba
2015] is used with a base learning rate of 0.0001. We use the default
hyper-parameters of 𝛽1 = 0.9, 𝛽2 = 0.99, and a weight decay of
0.9. The batch size is 32. For DBSCAN, the maximum neighborhood
distance eps is 0.2. The minimal number of neighbours for a point
to be considered as a core point is 500. We filter the symmetry
predictions whose confidence value is less than 0.2. For the visibility-
based verification, we filter out the predictions with more than 50
counterpart points located in the known-empty region.

5 RESULTS AND APPLICATIONS

5.1 Benchmark

In order to train and evaluate the proposed network, we have con-
structed a 3D symmetry detection benchmark for single-view RGB-
D images. The benchmark is built upon ShapeNet [Chang et al. 2015],
YCB [Calli et al. 2015], and ScanNet [Dai et al. 2017]. For each of
the three datasets, we automatically compute symmetries on the 3D
models using existing methods. The symmetry labels are then metic-
ulously verified by experienced workers. Finally, we transfer the
symmetries of the 3D models to each RGB-D image, transforming
by each object’s pose. The details of collecting symmetry detection
annotations for these datasets are as follows:
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Table 1. Statistics of the benchmark.

Dataset Subset #View #Object #Scene

ShapeNet

Train 300 000 30 000 -
Holdout view 7 200 2 400 -

Holdout instance 7 200 2 400 -
Holdout category 4 800 1 600 -

YCB
Train 16 189 18 80
Test 2 949 18 12

ScanNet
Train 13 126 1 642 400

Holdout view 4 723 1 642 400
Holdout scene 1121 425 100

ShapeNet consists of 3D CAD models with category labels. We
first use an optimization-based symmetry detection method to find
the ground-truth symmetries in each model, then perform RGB-D
virtual scans and transfer the ground-truth symmetry annotations
to the local camera coordinates of each RGB-D image. We split this
dataset into four subsets: rendered RGB-D images of training mod-
els (Train), rendered RGB-D images from novel views of training
models (Holdout view), rendered RGB-D images of testing models
(Holdout instance), and rendered RGB-D images of models in un-
trained categories (Holdout category). The details of the train and
holdout categories are provided in the supplemental material.

YCB is a dataset originally built for robotic manipulation and 6D
pose estimation. It contains RGB-D videos of table-top objects with
different sizes, shapes, and textures. High quality 3D reconstructions
are provided for each object. We manually annotate ground-truth
symmetries for these reconstructed 3D models, and transfer them
to the local camera coordinates of each RGB-D image by using
the ground-truth 6D pose of each object. We follow the original
train/test split established in Calli et al. [2015].
ScanNet is a dataset containing RGB-D videos of indoor scenes,

annotated with 3D camera poses, surface reconstructions, and se-
mantic segmentations. The recent work Scan2CAD [Avetisyan et al.
2019] provides individual alignment between 3D CAD models and
the objects present in the reconstructed surfaces. To obtain the
ground-truth symmetries, we first perform an optimization-based
symmetry detection on the 3D CAD models, then transfer the de-
tected symmetries to each RGB-D frame. We split the original
train/test split into three subsets: RGB-D images of the training
scenes (Train), holdout RGB-D images of the training scenes (Hold-
out view), and RGB-D images of the testing scenes (Holdout scene).

The statistics of the benchmark datasets are reported in Table 1.

5.2 Evaluation metric

To evaluate and compare the proposed method, we show precision-
recall curves [Funk et al. 2017] produced by altering the threshold
of the confidence value of the prediction. To determine whether a
predicted symmetry is a true positive or a false positive, we compute
a dense symmetry error from the difference between the predicted
symmetry and the ground-truth symmetry. Specifically, for a re-
flectional symmetry, the dense symmetry error of the predicted
symmetry 𝑆ref and the ground-truth symmetry 𝑆ref of an object

with points P = {𝑃𝑖 }, 𝑖 ∈ [1, 𝑁 ] is computed as:

Eref =
1

𝑁

𝑁∑
𝑖

		𝑇 ref (𝑃𝑖 ) −𝑇
ref (𝑃𝑖 )

		
2

𝜌
, (10)

where 𝑇 ref and 𝑇 ref are the symmetric transformations of 𝑆ref

and 𝑆ref, respectively, and 𝜌 is the max distance from the points in
P to the symmetric plane of 𝑆ref.
For rotational symmetries, the dense symmetry error between a

predicted symmetry 𝑆rot and the ground-truth symmetry 𝑆rot is:

Erot =
1

|Γ |

1

𝑁

∑
𝛾 ∈Γ

𝑁∑
𝑖

		𝑇 rot,𝛾 (𝑃𝑖 ) −𝑇
rot,𝛾 (𝑃𝑖 )

		
2

𝜌
, (11)

where 𝑇 rot,𝛾 is the rotational transformation of 𝑆rot with a rotation
angle of 𝛾 . The set of rotation angles is Γ = {𝜅 · 𝜋/8}𝜅=1,...,16, and
𝜌 is the max distance from the points in P to the rotational axis of
𝑆rot.

In all experiments, we set the dense symmetry error threshold to
be 0.25 for both reflectional and rotational symmetries. The confi-
dence value of a predicted symmetry 𝑆 is computed by the number
of input points and the number of samples (symmetries predicted
by each point) belonging to the same cluster as symmetry 𝑆 .

5.3 Ablation studies

To study the importance of each component of our method, we
compare our full method against several variants. A specific part of
the pipeline is taken out for each variant, as follows:

• No RGB Input: without the input RGB image channels (see
the first component in Figure 2). The network can only learn
knowledge about symmetries based on geometry.

• No Counterpart Predictions: without multi-task learning
in the form of counterpart predictions Lref_cp or Lrot_cp dur-
ing training (see the second component in Figure 2).

• NoVerification: without the visibility-based filtering of false
positives during inference (see the third component in Fig-
ure 2).

Figure 6 shows the results of our ablation studies, for reflectional
(left column) and rotational (right column) symmetry detection. The
full method outperforms the simpler variants in almost all cases.
Omitting counterpart prediction degrades the results the most, es-
pecially for reflectional symmetry detection. This demonstrates that
the multi-task learning scheme is crucial to our approach. An inter-
esting observation is that the baseline without RGB input achieves
comparable or even better results on subsets containing novel ob-
jects (see Figure 6 d, e, and f). This demonstrates that generalization
to unknown objects requires geometry, and confirms the intuition
presented in Section 3.

5.4 Comparison to baselines

We evaluate our method against three baseline symmetry detection
methods for objects based on RGB-D images:

• Geometric Fitting [Ecins et al. 2018]: a state-of-the-art sym-
metry detection approach for point clouds. It first generates
a set of symmetry candidates, and then performs symmetry
refinement based on geometric constraints. Since their focus
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is to detect reflectional symmetries, we only compare with it
on the reflectional symmetry prediction task.

• RGB-D Retrieval: an intuitive approach for symmetry de-
tection that finds, for each object in an RGB-D image, the
most similar object present in the training data. The precom-
puted symmetries are then transferred from the training data
to be the symmetry predictions. To achieve this, we train a
FoldingNet [Yang et al. 2018] to extract the feature vectors of
all objects in the training data. During testing, 𝐿2 distance in
the feature space is used to retrieve the most similar RGB-D
image.

• Shape Completion: a two-step approach which first per-
forms a shape completion [Liu et al. 2020] on the input point
cloud and then detects symmetries on the completed shape
by a geometric symmetry detection method [Li et al. 2014].
We compare to it on the reflectional symmetry prediction
task of ShapeNet.

• DenseFusion [Wang et al. 2019a]: a cutting-edge approach
to estimate the 6D pose of the known objects. We transform
the ground-truth symmetries of the known objects by using
the predicted 6D pose produced by DenseFusion, thus obtain-
ing the predicted symmetries for each object in the RGB-D
images. Since DenseFusion only works on scenarios where
the geometries of the target objects are known, we compare
to it on the YCB dataset.

The comparisons are plotted in Figure 7 (reflectional symmetry)
and Figure 8 (rotational symmetry). They show that our method
outperforms the baselines by a large margin, for both the reflectional
and rotational symmetry detection tasks, and over all the data sub-
sets. Crucially, our method achieves relatively high performance on
subsets (ShapeNet holdout category and ScanNet holdout scene) that
include very different objects from those present in the training data.
The Shape Completion baseline is inferior to our method, especially
on the ShapeNet holdout Category subset, due to its poor generality
in completing the shape on the untrained categories. Even though
the Geometric Fitting baseline has high precision for the symmetries
it detects, it fails to detect most of the symmetries since it can be
easily influenced by incomplete observations. The RGB-D Retrieval
baseline shows worse performance than our method, especially
on the ShapeNet holdout Category subset and the ScanNet dataset,
due to its weaker generalization ability. The DenseFusion baseline
achieves a relatively high precision and recall on the YCB dataset.
However, it cannot be extended to datasets containing objects that
have not been seen during training.

5.5 Qualitative results

Figure 9 visualizes the symmetry prediction results for both syn-
thetic and real data. Our approach detects both reflectional and
rotational symmetries in challenging cases, such as novel objects,
objects with multiple symmetries, and objects with heavy occlu-
sion. We also show the qualitative comparison with baselines in
Figure 17. We see that partial observations and occlusion interfere
with the ability of Geometric Fitting and PRS-Net to establish cor-
respondences on the observed points. RGB-D Retrieval provides
poor features for untrained objects, leading to an inability to predict

(a) Ref. sym.,  holdout view

(c) Ref. sym., holdout instance

(e) Ref. sym., holdout category

(b) Rot. sym.,  holdout view

(d) Rot. sym., holdout instance

(f) Rot. sym., holdout category

Fig. 6. Ablation studies: comparison of symmetry prediction performance

on three subsets of ShapeNet between our full proposed method (red) and

its several variants (blue: without RGB input; green: without verification

procedure; orange: without counterpart prediction, i.e. without multi-task

learning). The left and right columns show predictions of reflectional and

rotational symmetry, respectively. Note that in most cases using RGB input

helps prediction, but the variant without RGB input stands out at predicting

the reflectional symmetry for the held-out category (e).

accurate symmetries. Shape Completion can generate reasonably
good geometry for common objects, but it is less capable in cases
where the objects are novel or heavily occluded. Our method, in
contrast, successfully predicts symmetries with high accuracy for
all of these examples.

5.6 Sensitivity to occlusion

To evaluate the capability of our approachwhen it comes to occluded
objects, we create a dataset based on ShapeNet by grouping the
data according to the occlusion ratio. In order to generate data
with mutual occlusion, we randomly add a foreground mask in
the rendered RGB-D images. The occlusion ratio of the object is
computed by dividing the area of the occluded region by the area
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(a) ShapeNet holdout view

(c) ShapeNet holdout category

(e) ScanNet holdout view

(b) ShapeNet holdout instance

(d) YCB test

(f) ScanNet holdout scene

Fig. 7. Comparison between our proposed approach and the baseline meth-

ods on the performance of predicting reflectional symmetry for three

datasets divided into six subsets: (a) ShapeNet holdout view; (b) ShapeNet

holdout instance; (c) ShapeNet holdout category; (d) YCB test; (e) ScanNet

holdout view; and (f) ScanNet holdout scene. Note that in (c), our approach

is significantly more precise at symmetry prediction for categories that

it has never encountered before (holdout category), demonstrating high

generalization ability.

of the whole surface. Examples of the occluded data are provided
in the supplemental material. Note that both self-occlusion and
mutual-occlusion are included.
Figure 10 compares our approach with the Shape Completion,

Geometric Fitting, and RGB-D Retrieval baselines, all three of which
are capable of finding symmetries for occluded objects. It is evi-
dent that our method performs better than the baseline methods
for all the experiments. While the overall performance is generally
affected as the occlusion ratio increases, ours outperforms the base-
line methods and shows a relatively smaller decreasing rate in all
cases. Qualitative results on the real data with occlusions are shown
in Figure 1, Figure 9 and Figure 17.

(a) ShapeNet holdout view

(c) ShapeNet holdout category

(b) ShapeNet holdout instance

(d) YCB test

(e) ScanNet holdout view (f) ScanNet holdout scene

Fig. 8. Comparison between our proposed approach and the baseline meth-

ods on the performance of predicting rotational symmetry for three datasets

divided into six subsets: (a) ShapeNet holdout view; (b) ShapeNet holdout

instance; (c) ShapeNet holdout category; (d) YCB test; (e) ScanNet holdout

view; and (f) ScanNet holdout scene. Similar to Figure 7(c), the generalization

ability of our approach is illustrated in (c).

5.7 Evaluation of counterpart prediction

To evaluate the quality of the predicted counterparts, we compute
and plot the distribution of the Euclidean distance of each predicted
counterpart to its ground-truth counterpart, similar to [Kim et al.
2011]. Figure 11 shows the plots on the three ShapeNet subsets for
reflectional symmetry. The x-axis of the plots represents a varying
Euclidean distance (error) threshold. The y-axis shows the percent-
age of counterpart correspondences whose Euclidean distance are
within the threshold. Larger AUC (Area Under the Curve) represents
better performance. Compared to the baselines, our method is more
accurate on the counterpart prediction task over all ShapeNet sub-
sets. Figure 12 shows a visualization of the predicted counterparts.
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Ground-truth 
symmetry

RGB-D image Predicted symmetry Predicted symmetry 
(side-view)

Ground-truth 
symmetry Predicted symmetry Predicted symmetry 

(side-view)
RGB-D image

Fig. 9. Qualitative symmetry prediction results on ScanNet [Dai et al. 2017] and ShapeNet [Chang et al. 2015]. The first column has two images of the

object, i.e. the input RGB image with the target object marked in green rectangle (upper) and the input depth image (lower). The second column shows the

ground-truth symmetries of the objects. The last two columns visualize the predicted symmetries by our method. Our method is able to handle objects with

all forms of symmetry compositions (reflectional symmetry only, rotational symmetry only and multi-symmetry).

5.8 Prediction of discrete rotational symmetry

To evaluate the performance of our method on predicting discrete
rotational symmetry, we create a dataset of shapes from ShapeNet,
with ground-truth rotational symmetries of various orders. We ran-
domly add foreground occlusions to the rendered RGB-D images
to verify the sensitivity to occlusion. Details of the dataset can be
found in the supplemental material. We use two metrics to evaluate
the results. First, since the order prediction is a classification task,
classification accuracy is used. Second, the error of rotational angle
is reported. Note that the error of rotational angle is computed as
|2𝜋/𝑟 − 2𝜋/𝑟 |, where 𝑟 and 𝑟 are the predicted and the ground-truth
order of the rotational symmetry, respectively. Figure 13 shows the

results. We see that our proposed method can accurately predict the
order of discrete rotational symmetries when the occlusion is not
present or light. The performance drops as the occlusion increases.

5.9 Runtime analysis

Table 2 reports the timing of each component in our approach
on a server with an Intel® Xeon® CPU E5-2678 v3 @ 2.50GHz ×
48, 128GB RAM, and an Nvidia TITAN V graphics card. Note that
our method is dramatically faster compared to the state-of-the-art
method in [Ecins et al. 2018] which takes about 15 seconds to detect
symmetries for an object.
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(a) Ref. sym., light occlusion

(c) Ref. sym., medium occlusion

(e) Ref. sym., heavy occlusion

(b) Rot. sym., light occlusion

(d) Rot. sym., medium occlusion

(f) Rot. sym., heavy occlusion

Fig. 10. Occlusion ratio sensitivity evaluation of our proposed approach

(red), compared to the Geometric Fittingmethod (blue) and RGB-D Retrieval

(green). The three rows include different occlusion ratios: light (50-60%)

occlusion for (a) and (b); medium (60-70%) occlusion for (c) and (d); and

heavy (70-80%) occlusion for (e) and (f). The left and right columns illus-

trate reflectional and rotational symmetry detection, respectively. While

the performance of all methods decreases with increasing occlusion, our

approach outperforms the baselines in all scenarios, and demonstrates

relatively modest decrease in performance with increasing occlusion.

Table 2. Training and runtime performance statistics of each component of

the proposed SymmetryNet.

Dataset Network train Network inference Aggregation Verification

ShapeNet 64 h 50 ms 50 ms 40 ms
YCB 20 h 50 ms 50 ms 40 ms

ScanNet 26 h 50 ms 50 ms 40 ms

5.10 Failure cases

Figure 14 shows two typical failure cases found in our experiments.
The first case is that our method is unable to deal with other sym-
metry types than it was trained for. In the example, it detects two

(a) Holdout view (b) Holdout instance (c) Holdout class

Fig. 11. Comparison between our proposed approach and the baseline

methods on the performance of predicting counterparts of the reflectional

symmetries on ShapeNet dataset. Each curve depicts the percentage of

counterpart correspondences (y-axis) whose Euclidean distance (error) are

within the thresholds (x-axis).

large

small

large

small

large

small

large

small

Fig. 12. Visualization of the predicted counterparts. The grey points repre-

sent the input points. The colored points are the predicted counterparts,

where the color encodes the Euclidean distance between the location of the

predicted counterparts and their ground-truth location (i.e. the Euclidean

distance error). Referring to the color bar, the warmer the color, the larger

the error is.
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Fig. 13. Evaluation of discrete rotational symmetry prediction of ourmethod.

The plots show the classification accuracy (left) and the error of angle (right)

on input with different occlusion ratios (the ratio of occluded area over the

whole bounding box of the target object): no mutual occlusion, light (50-60%)

occlusion, medium (60-70%) occlusion and heavy (70-80%) occlusion. The

error of angle is in degrees.

reflectional symmetries for a spherical symmetry. Another case is
when a cuboid object is viewed orthogonally from only one face,
our method would fail to infer the location of the reflection plane
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Fig. 14. Two failure cases. Left: Our method cannot deal with spherical

symmetry characterized by the center of a sphere; It detects two reflectional

symmetries wrongly. Right: When a cuboid object is viewed orthogonally

from only one face, our method would fail to infer the reflectional symmetry

in the depth direction.

along the depth direction since the shape information is completely
missing along that direction.

5.11 Applications

Various applications can potentially benefit from symmetry pre-
diction. A straightforward application is symmetry-based object
completion as commonly demonstrated in many symmetry detec-
tion works (e.g., [Bokeloh et al. 2009]). Here, we focus on a more
unique application, i.e., how to apply our predicted symmetries to
assist 6D object pose estimation from single-view RGB-D images.

To demonstrate the effectiveness of the predicted symmetries on
the improvement of 6D pose estimation, we combine the predicted
symmetry information of our approach to the state-of-the-art 6D
pose estimation approach DenseFusion [Wang et al. 2019a]. To
be specific, we feed the parameters of predicted symmetries to
DenseFusion as extra features. These features are then processed by
an MLP and concatenated to the point cloud feature in DenseFusion.
We train the network using the same data as described in [Wang
et al. 2019a]. Figure 15 demonstrates how the predicted symmetries
boost the performance of DenseFusion.
Another interesting application is symmetry-induced segmen-

tation of RGB-D images. Thanks to our symmetry prediction, the
input RGB-D images can be segmented into parts presenting dif-
ferent symmetries, although there was no such segmentation label
for RGB-D images available during training. This can be realized
naturally by projecting the point-wise symmetry labels to the in-
put RGB-D images. Figure 16 demonstrates two examples of this
application.

6 DISCUSSION AND CONCLUSIONS

We have proposed a novel problem of detecting 3D symmetries from
single-view RGB-D images. Due to partial observation and object
occlusion, the problem is challenging, to the point of being beyond
the reach of purely geometric detection methods. Instead, we have
proposed an end-to-end deep neural network that predicts both re-
flectional and rotational symmetries for 3D objects based on a single
RGB-D image. Several dedicated designs make our method general
and robust. First, our network is trained on multiple tightly coupled
tasks to achieve outstanding generalizability for both types of sym-
metries. Second, we devise an optimal assignment module in our
network to enable it to output an arbitrary number of symmetries.

DenseFusion+Symmetry

DenseFusion

Fig. 15. By incorporating the feature of our predicted symmetries, Dense-

Fusion+Symmetry achieves more accurate pose estimations, compared to

the original DenseFusion approach [Wang et al. 2019a].

Fig. 16. Symmetry-induced RGB-D segmentation. The input RGB-D images

are segmented through projecting the points segmented and labeled with

different predicted symmetries. The segmentations are visualized by distinct

colors both on the 3D point clouds and the input RGB images. Note that

the outlier points are colored grey.

Our current method has certain limitations, which we believe
will inspire future research:

• Our method relies on a good object-level segmentation. If the
segmentation mask of an object of interest contains other ob-
jects, the symmetry detection will be affected. Although there
have been many powerful deep models trained for RGB-D
segmentation, it would still be interesting to integrate object
detection/segmentation and symmetry detection into one
unified deep learning model.

• Our current network can only deal with reflectional and rota-
tional symmetries. Extending it to other types of symmetry
should not be difficult, although it may make the network
harder to train. In general, finding a suited parameteriza-
tion/representation of symmetry for end-to-end learning is a
fundamental and interesting future direction to pursue.

• Our method cannot handle hierarchical (nested) symmetries
such as those considered in [Wang et al. 2011]. We expect
that recursive neural networks (RvNN) could be utilized for
this case, following the series of works on using RvNNs for
3D structure encoding/decoding [Li et al. 2017; Yu et al. 2019].

• Our network relies on strong supervision. Annotating sym-
metries for RGB-D data is a non-trivial endeavor. Therefore,
it would be interesting to look into unsupervised or self-
supervised approaches to symmetry detection, through ex-
ploiting rich geometric constraints.
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OursGeometric Fitting Shape CompletionRGB-D Retrieval

Ground-truth 
symmetry

RGB-D image Geometric Fitting PRS-NetShape CompletionRGB-D Retrieval

Ground-truth 
symmetry

RGB-D image

Ours

Fig. 17. Qualitative comparisons to previous works (Geometric Fitting [Ecins et al. 2018], RGB-D Retrieval, PRS-Net [Gao et al. 2019] and Shape Completion [Li

et al. 2014; Liu et al. 2020].) on both synthetic data and real data. The Geometric Fitting baseline fails to detect any symmetry. The PRS-Net baseline correctly

predicts the number of symmetries but fails to regress the parameters of the symmetries accurately. The RGB-D Retrieval baseline could not predict the

parameters of symmetries correctly. The Shape Completion baseline predicts accurate symmetries for objects with simple geometry, but fails on cases where

the objects are novel or occluded. Our method achieves the best performance on the four examples.
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