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Abstract

Databases of 3D shapes have become widespread for
a variety of applications, and a key research problem is
searching these databases for similar shapes. This paper in-
troduces a method for finding distinctive features of a shape
that are useful for determining shape similarity. Although
global shape descriptors have been developed to facilitate
retrieval, they fail when local shape properties are the dis-
tinctive features of a class. Alternatively, local shape de-
scriptors can be generated over the surface of shapes, but
then storage and search of the descriptors becomes unnec-
essarily expensive, as perhaps only a few descriptors are
sufficient to distinguish classes. The challenge is to select
local descriptors from a query shape that are most distinc-
tive for retrieval.

Our approach is to define distinction as the retrieval
performance of a local shape descriptor. During a train-
ing phase, we estimate descriptor likelihood using a multi-
variate Gaussian distribution of real-valued shape descrip-
tors, evaluate the retrieval performance of each descriptor
from a training set, and average these performance val-
ues at every likelihood value. For each query, we evaluate
the likelihood of local shape descriptors on its surface and
lookup the expected retrieval values learned from the train-
ing set to determine their predicted distinction values. We
show that querying with the most distinctive shape descrip-
tors provides favorable retrieval performance during tests
with a database of common graphics objects.

Keywords: shape retrieval, geometric matching, shape
database, shape distinction.

1 Introduction

Databases of 3D shapes have become widespread in a
variety of applications including computer graphics, me-
chanical CAD, molecular biology, and medicine. Searching
databases for similar shapes is a fundamental task that can
sometimes speed up design or discovery processes, and thus
it is an active research problem.

The goal of this project is to develop an effective shape-
based method to retrieve similar objects from a database of

3D shapes. The key intuition behind our work is the im-
portance of focusing the shape matching process on local
features of shapes that are both consistent within a class
and distinguishing from other classes. Many previous ap-
proaches have represented each shape with a single shape
descriptor for the entire shape. During retrieval, the global
shape descriptor for the query shape is compared against
the descriptors for all of the shapes in the database, and
the results are sorted by similarity to the query descriptor.
A drawback of using global descriptors is the underlying
assumption that objects within a class have overall simi-
lar shape. Instead, other researchers have matched multi-
ple local shape descriptors accounting for the fact that cer-
tain classes have articulations or optional parts. We focus
on analyzing a database of shapes to determine which local
features are distinctive and will therefore provide the best
retrieval performance. As shown in Figure 1, some local
regions of shape are more useful than others for retrieving
objects in the same class – our goal is find them.

Our work is based on using local features of each shape
to improve retrieval performance [4, 14]. An object is rep-
resented by a set of local shape descriptors, each represent-
ing a (possibly overlapping) region of the shape. Then, the
similarity between two shapes is related to the similarity
between the two sets of local descriptors, so a chair without
armrests may match well to a chair with armrests because of
consistency among the other local features. Unfortunately,
using many local shape descriptors dramatically increases
the size of the descriptor database and slows retrieval time.
Therefore, we are motivated to investigate methods for se-
lecting a small subset of shape descriptors to be used for
matching 3D objects.

Previous methods have described how to select subsets
of descriptors for matching based on saliency [9] or like-
lihood [14], for example. In contrast, our approach is to
select features that are distinctive of a class. We map shape
descriptors into a space parameterized by their likelihood
and learn (from a training set) the retrieval value of each
likelihood – i.e. how distinctive they are. Then, we predict
the expected retrieval performance of each query descriptor
by evaluating the likelihood of the descriptor and looking
up the expected retrieval performance associated with the
likelihood value in the training set. We select a subset of
descriptors from the query with high expected retrieval per-
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Figure 1. Predicted distinction scores are shown across

three classes of shapes with higher scores shown in red.

We find that selecting a small subset of the most distinc-

tive features provides retrieval performance equivalent

to using all local features at significantly less cost.

formance, i.e. the ones expected to be distinctive of the
object class.

In this paper, we address the research problem of pre-
dicting shape distinction and using it for retrieval. Specif-
ically, we make the following contributions: (1) the defini-
tion of a mapping function for shape descriptor likelihood
that separates descriptors with good retrieval performance,
(2) an algorithm for learning the retrieval performance of
descriptors from a training set, and (3) a method for match-
ing shapes using only the most distinctive shape descriptors.
We find that using a small set of distinctive descriptors for
retrieval performs almost as well as using the full set of de-
scriptors while being significantly faster.

The remainder of this paper is organized as follows: The
next section provides a summary of previous work for local
shape descriptors and shape distinction. Section 3 describes
how shape distinction can be used to improve local match-
ing for retrieval. In Section 4, we define a mapping function
based on the likelihood of shape descriptors and then show
how to learn the retrieval performance of each descriptor
from a training set in Section 5. We show how to select a
small set descriptors for each shape that are predicted to be
distinctive in Section 6 and how to use multiple descriptors
for retrieval in Section 7. In Section 8, we provide empirical
results demonstrating our definition of shape distinction is
useful for retrieval. We summarize our results and describe
future work in Section 9.

2 Related Work

In this overview of previous work, we present two main
categories: (1) shape descriptors for various properties of
shapes and (2) techniques for selecting important local de-
scriptors for retrieval. For a thorough summary of shape
matching and a comparison of techniques, see [12, 25].

3D Shape Descriptors: The shape matching problem has
largely focused on whole-to-whole shape matching. Var-
ious descriptors have been proposed for representing the
distribution of a shape’s surface area [1, 3, 8, 14, 22, 26].
As two examples, the Mass per Shell Shape Histogram de-
scriptor [1] creates a histogram of the amount of surface
area in concentric shells, and the Spherical Harmonic De-
scriptor [16] represents the distribution of surface area in
each shell as a series of spherical harmonic coefficients. Al-
though global shape descriptors have shown good perfor-
mance on many data sets, they have an underlying assump-
tion that shapes from the same category have similar overall
shape.

Part-to-part matching addresses the problem of articu-
lated or missing parts by using local descriptors of the
shape. Spin images [14] were developed for scanned objects
by creating a cylindrical projection of local sets of surface
points represented as an image. Local surface curvatures [4]
and Shape Contexts [2, 7, 17] have also been used for de-
scribing the shapes of local regions. A drawback with these
approaches is that matching time is related to the number of
descriptors, and thus retrieval times are quite slow for large
databases.

Distinctive Features: Selecting a subset of local descrip-
tors is a well known technique for speeding up retrieval, and
several researchers have proposed different methods for this
task.

The simplest technique is to select local descriptors from
the query shape randomly [7, 20]. Mori et al. [20] found
that randomly selecting several 2D Shape Context descrip-
tors had low pruning error. Unfortunately, with random se-
lection, there is no consideration of whether the selected
descriptor is useful for discrimination, and thus a greater
number of descriptors may be required to achieve the same
retrieval performance.

There have been several attempts to select regions that
humans find salient for recognition. Early motivation for
research on salient features comes from psychophysical ex-
periments, which showed that the human visual system de-
composes complex shapes into parts based on curvature
and processes salient features before higher level recogni-
tion [10]. These findings from human vision research were
applied in a scene recognition system [6] using a combina-
tion of filters measuring edges and local maxima to focus
search on a small portion of the scene. Gal et al. [9] aug-
mented part-in-whole matching by considering salient fea-
tures based on curvature properties. A center-surround filter
of curvature across multiple scales on a shape was also con-
sidered [18] for selecting salient regions for mesh simpli-
fication and view point selection. A similar approach was
used to select salient regions for shape matching [21]. A
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difficulty with these approaches is the focus on curvature,
which typically requires a manifold surface or dense point
samples. Also, while these previous projects have defined
saliency based on human vision, it is not clear that a com-
puter vision system would find the same features to be dis-
tinctive for shape descriptor matching.

Other previous work has focused on rare descriptors, un-
der the assumption that these features are distinctive for re-
trieval. Using local spin images, distinctive regions were
defined by Shan et al. [23] where each spin image was
used as a query. A query could match multiple times to
each shape in the database, and the number of matches was
recorded. Descriptors that mostly matched to a single shape
were considered distinctive as opposed to common descrip-
tors that matched all shapes equally well. This approach has
the advantage of being independent of the underlying type
of shape descriptor but does require using each descriptor
for retrieval to determine its distinction. Work by Chua at
al. [4] found “selective points” by comparing local descrip-
tors from the query to each other and selecting descriptors
that failed to match other regions of the shape.

The approach most similar to our own is that of John-
son [15], where the likelihood of each descriptor was cal-
culated based on a Gaussian distribution of the descriptors
within each query model, and only the least likely descrip-
tors were used for surface matching. We augment this ap-
proach in two important ways. First, we compute likelihood
with respect to all shape descriptors in an entire database,
rather than just for the query model. Second, we predict the
retrieval performance for every likelihood value and then
select only the shape descriptors with highest expected re-
trieval performance for shape matching. These differences
allow our shape matching method to achieve higher perfor-
mance than previous related methods (see Section 8).

3 Overview of the Approach

The goal of our project is to predict which shape fea-
tures are distinctive and focus similarity retrieval on those
features. Our approach is to compute shape descriptors for
several regions of each shape, map them into a space pa-
rameterized by their likelihood, predict their retrieval per-
formance based on a training set of labeled descriptors, and
then select only the most distinctive descriptors to be used
during retrieval.

The organization of our system is shown in Figure 2.
During a training phase, a distinction function is learned.
First, the shapes are normalized for scale, and then ran-
dom points are generated across the surface of each shape.
A shape descriptor is created, centered at each random
point. Then, the likelihood of each descriptor is evaluated
along with its retrieval performance in the classified train-
ing database. A histogram of retrieval performance scores
is built for different descriptor likelihood values.

When a user presents a query shape to the system, dis-
tinction values are predicted for local descriptors on the
query shape. First, local descriptors are generated across the
surface in a manner similar to the training phase. The like-
lihood of each descriptor relative to the training database is
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Figure 2. Diagram of training and query phases.

calculated. Then, the distinction scores of the descriptors
are predicted based on their likelihood values and the dis-
tinction function learned during the training phase. A small
set of the k most distinctive descriptors are then selected
for the query. Each selected descriptor is matched against
all descriptors in the database, and then the objects with the
best sum of match scores for all k selected query scores are
returned as the retrieval result.

The key step in this process is the way in which we pre-
dict distinction for every shape descriptor based on the aver-
age retrieval performance of descriptors with the same like-
lihood in a training set. More formally, predicted distinc-
tion function D maps descriptor

−→
d with likelihood func-

tion map into a bin representing descriptors from a training
database with the same likelihood value as

−→
d . We repre-

sent these training descriptors with the same likelihood as−→
d as the set F . The predicted distinction value for

−→
d is the

average retrieval performance of the descriptors
−→
f ∈ F .

D(map(−→d )) =
1
|F |

∑
−→
f ∈F

RetrievalPerf(−→f )

There are several advantages to this approach. The main
advantage is that our predicted distinction function D is
based on the retrieval performance of descriptors from the
training database. This produces more accurate predictions
than considering only descriptor likelihood. Another ad-
vantage is that D is independent of the type of descrip-
tor, so it can be applied to many real-valued descriptors.
Also, by defining a predicted distinction function in terms
of descriptors mapped by likelihood, we have created a one-
dimensional parameterization. This allows for a compact
representation of predicted distinction as a table of average
retrieval scores computed from a training set. The query
descriptor with likelihood having the highest predicted dis-
tinction can be used as the query into the database. If multi-
ple descriptors for the query shape will be used for retrieval,
D provides an ordering of the descriptors. Alternatively,
while descriptors are being calculated for the query shape,
predicted distinction can be determined for each descriptor,
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and the process can end early when a descriptor with a suf-
ficiently high distinction value is found. As such, we have
a quick way to select the most distinctive descriptors for a
query.

In the following sections, we investigate several research
problems for creating the distinction function. We first de-
fine a likelihood model for shape descriptors and then show
how to use a training set to evaluate retrieval performance.
We then explain how to select a subset of the most distinc-
tive descriptors for a query shape and use the subset dur-
ing retrieval. We then evaluate D against other alternatives.
Since the focus of our project is on a descriptor-independent
distinction function, we rely on previous research into shape
descriptors, which is not a contribution of our work.

4 Mapping from Descriptors to Likelihood

The first issue in implementing our approach is to define
a mapping function that clusters shape descriptors based on
their retrieval performance. The challenge is to define a
mapping such that descriptors near each other in the mapped
space will have similar retrieval scores and be well sepa-
rated from descriptors with different scores. There are many
options for a mapping function. One approach is to use the
full descriptors directly, though this would affect the lookup
time during prediction. Other mapping functions could use
the local curvature or the descriptors’ positions relative to a
coordinate system such as the shape’s center of mass.

We define a mapping function of shape descriptors us-
ing likelihood based on the work of [4, 15]. A rationale
for this approach is that rare features (such as the wing-
tips and tail of the plane in Figure 3) may be discriminating
for retrieval, while common areas (such as the flat portions
of the wings) may match numerous categories of shapes.
Likelihood mapping has the advantage of being indepen-
dent of the underlying real-valued feature vector used as a
shape descriptor. After descriptor statistics are estimated
from the training set, the likelihood function can be evalu-
ated quickly for queries.

A key question is then how to map descriptors to like-
lihoods. In previous work, Johnson et al. used a mixture
of Gaussian distributions to estimate descriptor likelihoods.
However, if the distribution of our descriptors is normal,
then perhaps we can use a single Gaussian distribution to
achieve the same performance at less cost. Based on the as-
sumption of a normal distribution of shape descriptors, the
probability density of descriptor −→x can be modeled by a
multivariate normal distribution [5]:

density(−→x ) =
1

(2π)
d
2 |Σ| 12 e−

1
2 (−→x −−→µ )tΣ−1(−→x −−→µ )

with the mean −→µ and covariance Σ estimated from a train-
ing set and d equal to the dimensionality of the shape de-
scriptor.

Under floating point arithmetic, the exponential function
rounds to zero for descriptors far from −→µ , so we work with

Likelihood
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0

-inf

Figure 3. The likelihood of the descriptors is color coded

with red indicating the most likely descriptors. Notice

that the likelihood of the descriptors changes with the

scale of the descriptor.

the natural log of the density function. We also drop the
normalization term since we are interested in the relative
density of descriptors as opposed to their exact values. We
refer to this function, p, as the likelihood of a descriptor:

p(−→x ) ∝ ln(density(−→x ))

p(−→x ) = −1
2
(−→x −−→µ )tΣ−1(−→x −−→µ )

In practice, we calculate distinction function D from
the training set with p as the mapping function, therefore
map ≡ p. Bins partitioning the likelihood space hold the
average retrieval performance of the training set descrip-
tors. Since the distribution has a long tail of low likelihood,
a threshold is selected and a bin represents all descriptors
with likelihood below the threshold.

To evaluate this normality hypothesis, we generated
200,000 local descriptors on 100 shapes from the Prince-
ton Shape Benchmark (PSB) [24]. For this experiment we
used a version of the Spherical Harmonic Descriptor [16]
representing a local region of each shape with 512 values.
We compared the distribution of these descriptors against
200,000 feature vectors randomly generated with distribu-
tion N (0, 1) and 512 dimensions. Since our definition of
likelihood incorporates a covariance matrix that accounts
for correlated features, we evaluated the shape descriptors
with a diagonal covariance matrix for this experiment. Fig-
ure 4 shows a quantile-quantile plot [11] comparing the
shape descriptor distribution against the randomly gener-
ated feature vectors. A quantile-quantile plot is a visualiza-
tion of the relationship between two distributions of data.
For each + marker, the horizontal position indicates the
likelihood value for a quantile of the randomly generated
data, and the vertical position for the maker indicates the
likelihood for an equal quantile of the measured shape de-
scriptor data. The straight line indicates the line of best fit
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between the distributions, which corresponds to a normal
distribution with different mean and variance. While the
shape descriptor distribution varies from the line of best fit,
a normal distribution is a reasonable model for the majority
of shape descriptors.
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Figure 4. Quantile-Quantile plot of the likelihood of SHD

descriptors against a randomly generated N (0, 1) dis-

tribution. The + markers indicate the relationship be-

tween the measured and randomly generated data. A

normal distribution provides a good model of the shape

descriptor distribution.

5 Mapping from Likelihood to Distinction

The second step is to define a distinction function that
maps descriptor likelihood to an expected retrieval score.
For this step, we evaluate the retrieval performance of every
local shape descriptor in a training set and build a histogram
of average retrieval performance as a function of likelihood.

During a training phase, each query shape is presented
to a retrieval system, and local descriptors are calculated
over the shape. Consider shape X consisting of a set of
N shape descriptors, X = {−→X1, ...,

−−→
XN}. We define the

correspondence between the ith feature of shape X to shape
Y as the minimal distance between descriptor

−→
Xi and all of

the descriptors of Y .

C(−→Xi, Y ) = min
j

|−→Xi −−→
Yj |

Given the distance from the ith feature of X to every
other shape in the database, we sort the distances from
smallest to largest. This sorted list is typically called the
retrieval list for

−→
Xi and represents the order of retrieval re-

sults.
Then, we evaluate the quality of the retrieval list with

any standard retrieval metric [19]. We prefer to use the Dis-
counted Cumulative Gain (DCG) [13] because it incorpo-
rates the entire retrieval list. Correct results near the front

of the retrieval list are weighted more heavily than correct
results near the end under the assumption that a user is most
interested in the first results.

To calculate the DCG for a descriptor, the retrieval list
R is converted to a list G, where element Gi has value 1
if element Ri is in the correct class and value 0 otherwise.
Discounted cumulative gain is then defined as:

DCGi =
{

G1, i = 1
DCGi−1 + Gi

log2(i)
, otherwise

}

This result is then divided by the maximum possible DCG,
which is achieved if the first C elements are in the correct
class, where C is the size of the class:

DCG =
DCGM

1 +
∑|C|

j=2
1

log2(j)

where M is the number of shapes in the database. The DCG
for a descriptor is between zero and one, with better re-
trieval performance corresponding to DCG values closer to
one (Figure 5).

For every query in the training set, we evaluate both its
likelihood and its DCG retrieval performance. Then, we
cluster descriptors into regular bins by likelihood and aver-
age the DCG scores for all descriptors in the same likeli-
hood bin. The result is a histogram of average DCG scores
indexed by likelihood that can be used as a map from like-
lihood to distinction.
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Figure 5. The retrieval performance for local descriptors

over the surface is shown with red indicating the best

performance. Across multiple descriptor scales, the tail

region of the plane has distinctive descriptors.
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6 Selecting Distinctive Descriptors

When performing a retrieval task, the dissimilarity score
between the query and each shape in the database should be
related to the difference between their sets of local shape
descriptors. Our goal is to select the k most distinctive
descriptors from each query shape to focus the matching
process. One issue is that geometrically close descriptors
provide little additional information about the shape, so the
shape is better represented by selecting distinctive descrip-
tors that are spread apart. Figure 6 shows that predicted dis-
tinction scores are clustered, so naively selecting descrip-
tors with the highest scores will tend to pick descriptors near
each other. There are several possible techniques for spread-
ing out the selected descriptors such as non-maximum sup-
pression or enforcing distance constraints.

We found that requiring a minimum distance between se-
lected descriptors works well in practice. We sort the query
descriptors based on their distinction scores and select the
k descriptors with the highest scores that are a minimum
distance apart. Descriptors are selected in a greedy manner,
so the first descriptor in each list–with the highest predicted
distinction–is always selected.

Mesh Descriptors Distinction
Scores

3 Selected
Descriptors

Figure 6. When a new query mesh is presented, shape

descriptors are created at random positions, the pre-

dicted distinction scores D are calculated based on the

likelihood of each descriptor, and a subset of distinctive

descriptors is selected to be used during retrieval.

7 Querying with Selected Descriptors

The final step is to evaluate the difference between query
shape X and each database shape Y . The goal is to create
a distance metric that accounts for differences between lo-
cal features of each shape. While there are distance metrics
that account for spatial distribution of the descriptors such
as [2, 21], we take a simple approach in this study: we mea-
sure the sum of distances between all k descriptors from X
(represented as Xk) and the closest descriptors of Y :

|Xk − Y | =
k∑
i

C(
−→
Xk

i , Y )

Although this distance function does not consider the
amount of deformation necessary to bring the correspond-
ing regions of the shape into alignment, it is fast to compute,
and it can be considered a lower-bound on more complex
geometric distance functions.

8 Results

In this section, we evaluate the value of selecting dis-
tinctive descriptors based on likelihood and learned retrieval
performance. We first describe the shape database and set
of shape descriptors used for our experiments, and then we
address the following research questions with empirical re-
sults.

• Does mapping descriptors by their likelihood group
those with similar retrieval performance?

• Can a few distinctive local descriptors improve re-
trieval over a single global descriptor?

• Can we speed up retrieval with a few distinctive de-
scriptors compared to using the full set of local de-
scriptors, while maintaining retrieval performance?

• How well do distinctive descriptors compare against
other alternative approaches for selecting local de-
scriptors?

8.1 Shape Database

We evaluated our experiments on 100 models1 from the
Princeton Shape Benchmark [24], which consists of a set
of classified graphics objects. The 100 shapes, evenly di-
vided into ten classes, represent classes that are in different
branches of the hierarchical classification, so a diverse set
of classes was included.

During the preprocessing phase, all shapes were scaled
so that average surface points were 0.5 units from the cen-
ter of mass. Then 2,000 points were generated randomly
over the surface with uniform distribution to serve as the
center points for local shape descriptors. Each shape de-
scriptor was computed to include the portion of the shape
that fell within a local radius of support. We experimented
with radii of {0.25, 0.5, 1.0, 2.0}, where the smallest radius
(0.25) represented a reasonably local shape region while the
largest radius (2.0) covered the entire surface when the de-
scriptor was positioned on a point sample on an extremity.
Unless otherwise noted, all of the reported experiments are
for a scale of 1.0, which generally included about 30% of
the shape when positioned on an extremity.

8.2 Shape Descriptor Types

We experimented with two different shape descriptor
types:

• The Mass per Shell Shape Histogram (SHELLS) [1]
descriptor is a 1D histogram of the distribution of sur-
face area relative to the center of mass. Thirty-two
evenly spaced bins were used.

1The shape classes include: biplane, spider, human with arms out,
dome church, dining chair, rectangular table, ice cream, potted plant,
sedan, and tank.
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• The Spherical Harmonic Descriptor (SHD) [16] is a
3D function, where the values are the composition of
a Gaussian with the Euclidean distance transform of
the model’s surface. Then, concentric spheres are re-
stricted to the function, and the norm of the spherical
harmonic frequency is stored, making the SHD rota-
tion invariant by construction. Thirty-two shells and
sixteen frequencies are used for all experiments.

These descriptors were chosen because they are simple
to compute, invariant to rotations (which simplifies match-
ing), and they are used in several previous studies (e.g., [7]).

8.3 Mapping Functions

We first evaluated whether mapping descriptors based on
their likelihood effectively groups descriptors with similar
retrieval performance. For every shape descriptor, we per-
formed a query into the database of descriptors for the 100
shapes and evaluated the likelihood of the descriptor and its
retrieval performance. Figure 7 shows the resulting average
retrieval performance as vertical bars for each likelihood
value. The horizontal axis shows the likelihood. The left
vertical axis is retrieval performance as measured by DCG,
with 1 standard deviation error bars shown in cyan. The ma-
genta line indicates the percentage of descriptors that falls
within each likelihood bin. Note that the axis for the ma-
genta line is on the right side of the plot.

We found that the most likely bin of the histogram (with
40% of the descriptors) contains descriptors with nearly the
worst retrieval performance. We also find that grouping
shape descriptors based on their likelihood effectively clus-
ters descriptors with similar retrieval performances. Using a
t-test, there is 99% confidence that the bin with the best per-
formance varies significantly from the most common bin.

For comparison sake, we considered alternative map-
pings, such as the amount of surface area within the descrip-
tor’s radius, as well as the position of the descriptor relative
to the shape’s center of mass, in studies not reported here in
detail. However, both alternatives failed to group descrip-
tors with similar retrieval scores as well as likelihood.

8.4 Retrieval Results

We next evaluated whether using distinctive local de-
scriptors can improve retrieval performance over competing
methods. We performed leave-one-out experiments where
we held out one model as a query and trained the distinction
function over the remaining models (this maximizes the size
of our training and test sets, since each of the 100 models
serves as a query once and the training set has the remaining
99 models). For each query, we matched its k best descrip-
tors to all the descriptors of the other 99 models, and then
we returned the models in a ranked retrieval list in order of
the sum of descriptor match scores, as described in Section
7.

Comparison to Global Shape Descriptors: Figure 8
shows a precision recall plot comparing retrieval with a sin-
gle global descriptor versus using 10 descriptors with high
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Figure 7. Using a likelihood mapping of SHD descriptors,

the majority of descriptors fall within a poor retrieval

group to the right. An area between the least likely and

most likely descriptors tends to be better for retrieval.

distinction values. Recall is the percentage of shapes re-
trieved from the same class as the query, while precision is
the percentage from the retrieval list that are from the cor-
rect class for a given recall level. Higher lines indicate bet-
ter retrieval performance. For this experiment, 10 descrip-
tors were used and the distance threshold was 0.1 on the
scaled shapes. Using these distinctive descriptors improves
retrieval performance beyond a single global descriptor. To
be fair, shape matching with a global descriptor is faster
than with local descriptors (Table 1), but the improved re-
trieval accuracy may be worth the extra time for certain ap-
plications.
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Figure 8. Using 10 distinctive SHD descriptors improves

retrieval compared to using a single global descriptor.
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Effect of selecting fewer descriptors: We also consid-
ered how the retrieval performance varies with k, the num-
ber of descriptors selected for each query model. Figure 9
shows the retrieval performance when using different num-
bers of query descriptors. For most values of k > 3, re-
trieval performance remains almost as high as when using
all 2,000 descriptors. This result shows that using a small
number of distinctive descriptors can approximate the re-
trieval result of using the full set. Meanwhile, Table 1 shows
that comparing a query shape against a shape in the database
using only the 3 most distinctive descriptors only takes 1

350
of the time for using all 2,000 (Table 1). This combination
provides a significant time savings with minimal loss of re-
trieval precision.
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Figure 9. Performance decreases gradually as the num-

ber of distinctive SHD descriptors is reduced.

Comparison to other selection methods: We next eval-
uated how well our predicted distinction function compares
to previous techniques for selecting local descriptors. We
compare against three alternative approaches:

• Least Likely DB: For each model, the descriptors are
sorted based on their likelihood as calculated based on
the distribution for the entire database.

• Least Likely Model: For each model, the descriptors
are sorted based on their likelihood as calculated based
on the distribution of descriptors for the model.

• Random: The descriptors are randomly sorted.

Figure 10 shows the retrieval performance when com-
bining descriptors with k = 3. In this plot, the vertical
axis shows the percentage improvement over Random. Re-
sults for both SHELLS and SHD descriptors are shown.
Selecting the k descriptors with highest predicted distinc-
tion scores outperforms Global as well as Random, Least
Likely DB, and Least Likely Model for most recall val-
ues. The minimum distance constraint was set to 0.2 for the
SHELLS descriptor and 0.1 for the SHD descriptor. Since
the SHELLS descriptor has less descriptive power, it is nec-
essary to require the descriptors to be farther apart. The

distance constraint was also applied to the alternative tech-
niques. It should be noted that as k increases, the difference
between all of the techniques decreases, since each shape
becomes fully represented with the local descriptors.

This result demonstrates that distinctive features are gen-
erally better for retrieval than other approaches that focus on
likelihood without consideration of how likelihood relates
to retrieval performance. While this is the only retrieval re-
sult shown for the SHELLS descriptor, our results on other
experiments are consistent for both the SHELLS and SHD
descriptors.

Timing Results
Generate Calculate Compare Retrieval

Descriptors Descriptors Likelihood Descriptors DCG

Global SHD 0.35s NA 0.000009s 0.762
3 SHD 81.5s 3.7s 0.0057s 0.785
10 SHD 81.5s 3.7s 0.018s 0.794
2,000 SHD 81.5s NA 2.18s 0.796
Global SHELLS 0.35s NA 0.000001s 0.638
3 SHELLS 68.7s 0.1s 0.0007s 0.679
10 SHELLS 68.7s 0.1s 0.0016s 0.718
2,000 SHELLS 68.7s NA 0.56s 0.735

Table 1. Using a few distinctive features provides better

matching results than a global descriptor and is faster

than using the full set of local descriptors, with a mod-

est decrease in retrieval accuracy. All timing results are

for experiments on a computer running the Windows XP

operating system on an Intel Pentium 4 processor run-

ning at 3 GHz with 1 GB of RAM.

9 Conclusion and Future Work
The main contribution of our work is a method for select-

ing a subset of local shape descriptors to use during match-
ing based on shape distinction. We map descriptors based
on their likelihood and calculate the average DCG for each
descriptor within a likelihood bin. From this training data,
we can efficiently predict the distinction score for descrip-
tors from a query based on their likelihoods.

During our experiments, we have demonstrated several
important properties of distinctive descriptors. Descriptors
with similar likelihoods have similar retrieval performance.
However, the least likely descriptors do not have the best re-
trieval performance – although they are rarest, they are not
the most distinctive. Rather, ones with intermediate like-
lihoods provide the best retrieval performance, and thus it
is valuable to store a mapping from likelihood to retrieval
performance and to use that mapping for selecting query
descriptors during shape matching. We find that distinctive
descriptors can be combined to improve retrieval over us-
ing a single global descriptor, and a small subset of distinc-
tive descriptors can approximate the retrieval performance
of the full set while dramatically improving retrieval times.
We also found that distinctive descriptors are better for re-
trieval than alternative approaches such as either selecting
randomly or selecting the least likely descriptors.
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Figure 10. Distinctive descriptors have better retrieval performance than using randomly selected descriptors, least likely (LL)

descriptors, or a global descriptor. Precision values are shown as improvement over randomly selected descriptors.

There are several limitations to our work that should be
considered. Although descriptors with high predicted dis-
tinction scores are better for retrieval than those selected
randomly or with other metrics, there is less improvement
as the number of selected descriptors thoroughly covers the
shape. This does confirm the importance of using multi-
ple regions of each shape for matching. Assuming a normal
distribution and using that parameterization of descriptors is
an initial mapping approach but also suggests a range of al-
ternatives. Other distribution models may more accurately
reflect the true likelihood, but all likelihood mappings con-
dense the descriptors to one dimension parameterized by
likelihood. This has the drawback of grouping all descrip-
tors within a shell of equal likelihood, even if there is a
large variation of retrieval performance within each shell.
Other groupings of descriptors may better separate those
with higher retrieval scores, though increasing the dimen-
sionality of the mapped space can adversely affect distinc-
tion calculation for query descriptors.

We feel that our general framework, mapping descrip-
tors to a space where training performance is recorded, can
be extended in several ways. We plan to consider the fea-
ture space of the descriptors directly, which is likely to pro-
vide a better clustering of retrieval performance. Finally,
we believe our framework can be extended beyond retrieval
to such tasks as mesh alignment and classification applica-
tions.
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