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ABSTRACT

This paper introduces a deep learning approach to enhance
speech recordings made in a specific environment. A single neural
network learns to ameliorate several types of recording artifacts,
including noise, reverberation, and non-linear equalization. The
method relies on a new perceptual loss function that combines
adversarial loss with spectrogram features. Both subjective and
objective evaluations show that the proposed approach improves on
state-of-the-art baseline methods.

Index Terms— Denoising, de-reverberation, equalization
matching, speech enhancement, perceptual loss.

1. INTRODUCTION

This paper introduces a unified method for enhancing the quality
of recorded speech. Many factors in a typical environment can
diminish the quality of a recording – including noise, reverberance,
and undesirable equalization. We describe a data-driven method that
ameliorates such effects by learning from example recordings made
in a specific source environment. Following the acquisition approach
proposed by Mysore [1], studio-quality recordings in a variety of
voices are re-played and re-recorded in the source environment.
This approach yields two parallel recordings – one studio quality
and a second degraded in the source environment – from which our
proposed method can learn a transfer function that can enhance new
recordings made in the source environment towards studio quality.

Speech enhancement is a well-studied problem [2], and re-
searchers have developed a variety of methods to remove noise [3, 4],
remove reverberance [5, 6], and match equalization [7]. Classical
approaches to these problems operate in the time-frequency domain
and usually assume prior knowledge of the spectral structure of
speech. Some methods estimate an inverse filter of a room impulse
response so as to minimize weighted linear prediction error [8].
Researchers also apply non-negative matrix factorization on the
spectrogram to remove both noise and reverberance [9, 10].

Our work builds on recent advances in speech enhancement us-
ing deep learning, which has demonstrated significant performance
improvements over traditional approaches. Spectral methods learn to
enhance speech by transforming the spectrogram of a distorted input
signal to match that of a target signal. One approach is to estimate
a non-linear mapping from a distorted input spectrogram directly to
clean signal [11, 12]. A learned function can also predict a mask
(binary or ratio) to be applied to the input spectrogram [13, 14, 15].
One common network architecture is the feed-forward neural net-
work with several convolutional layers using a context window of
several frames as input [11]. Kodrasi and Bourland [13] use a de-
noising auto-encoder to estimate late reverberation PSD from micro-
phone signal PSD. Recurrent neural networks such as LSTM [14, 15]
and GRU [16] are increasingly used in speech enhancement, because
they better capture temporal dependency between frames.

A drawback common to spectral methods is that they rely on
phase to recover the output waveform. The phase of a reverberant
signal can deviate from that of the corresponding clean signal, and
thus naively copying the input phase results in residual artifacts. Es-
timating phase via the widely-used Griffin-Lim algorithm [17] pro-
duces noticeable glitches. The method of Williamson and Wang [18]
learns a complex ratio mask, but achieves only moderate perfor-
mance gains because the phase component is less predictable than
the magnitude component of the mask.

Deep learning methods that transform an input waveform di-
rectly to the output waveform obviate the phase problem. However,
they require a relatively larger receptive field because the waveform
itself has much higher temporal resolution than that of a spectro-
gram. WaveNet [19] and its variant for speech denoising [20] use
dilated convolutions to enable large receptive fields. Recurrent neu-
ral networks have been used to establish long-term dependency [21].
Researchers have also tackled de-reverberation from the perspective
of source separation in the time domain by conducting an LSTM on
a latent space learned by an encoder-decoder structure [22].

A major challenge for waveform-based approaches is the design
of a suitable loss function. L1 and L2 loss are brittle with respect
to phase shifts and minor alignment errors, for example due to
clock drift. Moreover, L1 and L2 loss fail to capture contextual
information and perceptual qualities, as they penalize per-sample
error in the waveform. Thus, while these loss functions work well
for synthetic data which can be perfectly aligned, they tend to
perform poorly for real world data. Generative adversarial networks
(GANs) incorporate an implicit adversarial loss – the discriminator,
which models whether a given audio example is real or fake, learns
the distribution of the target signal and drives the generator to
approximate the target. GANs can thus boost speech enhancement
performance [15, 23, 24]. However, GANs can also suffer from
mode collapse [25], and therefore researchers typically combine
adversarial loss with some regularizing term like L1 loss [23].

Our approach combines some aspects of the spectral meth-
ods and waveform methods. In particular, we use a waveform-
to-waveform generator in a GAN framework, regularized by a
spectrogram-based loss function. The method is robust to phase
shifts in the data because it works directly on the waveform, rather
than recovering it from a spectrogram. The loss function captures
some perceptual qualities directly from the spectrogram, while other
perceptual qualities that are more difficult to characterize are mod-
eled by the adversary. Thus, our main contributions are: (1) a
unified speech enhancement method that works with both synthetic
and real data, involving noise, reverberance, non-linear microphone
response, and dynamic gain adjustment – and wherein the data
is only weakly aligned due to phase shift, clock drift, etc; (2) a
perceptually-motivated spectrogram loss function, coupled with a
GAN, with application to speech enhancement; and (3) experiments
(MOS tests) demonstrating improved performance over baseline
methods for both synthetic and real data.



2. APPROACH

2.1. Feed-forward WaveNet

WaveNet [19] is a waveform-to-waveform autoregressive model that
models the probability distribution of a sample conditioned on all
previous samples. Its key design features have proven successful in
dealing with waveform synthesis and conversion: dilated convolu-
tions yield a receptive field that is exponential in the number of lay-
ers; causal convolutions model temporal dependencies; residual and
skip connections accelerate learning; Gated Activation Units (GAU)
help information flow as in LSTMs; and Softmax prediction sup-
ports multi-modal distributions. As a generative approach, although
it trains in parallel, it requires generating one sample at a time, which
is inefficient at inference time. Later, Parallel-WaveNet [26] was
proposed to reduce inference time on GPUs, at the cost of higher
complexity in the learning procedure.

Inspired by WaveNet, Speech Denoising WaveNet [20] uses the
WaveNet architecture but modifies several design choices. It uses
non-causal dilated convolutions and real-valued regression outputs
to predict samples in parallel. It uses 3 × 1 convolution as a
post-processing step to avoid sporadic point discontinuities. For
the purpose of speech enhancement, it has L1 loss on both the
clean speech prediction branch and the noise prediction branch.
As shown in the generator part of Figure 1, we use the same
architecture as Speech Denoising WaveNet for our generator, but
with a different loss function. Also, we do not use speaker identity
conditioning, which is present in WaveNet and Speech Denoising
WaveNet, because we target at a speaker-independent model.

2.2. Perceptually-motivated Loss

One limitation of Speech Denoising WaveNet is that training re-
quires sample-to-sample L1 loss, and thus the approach only trains
on simulated data obtained by adding background noise to clean
speech. The effectiveness of L1 loss falls off when one waveform
is time-shifted from the other by even one sample. Moreover, a sig-
nificant performance gap is observed at inference time on real data,
since real world noise can interact with speech in complicated ways.
The approach is also not applicable for types of noise that cannot
be produced in simulation. Re-examining L1 loss, another issue is
that it only considers per-sample accuracy, but not perceptual qual-
ity. Humans hear sound not as individual samples, but rather the
frequencies inherent in sequences of samples. Therefore, we seek an
objective function that is more closely related to human perception
and can withstand a certain degree of misalignment between data.

2.2.1. Spectrogram Loss

Perceptual loss was proposed in computer vision research for neural
style transfer [27]. Feature maps are extracted from a trained
recognition network such as VggNet, as a semantic representation
of the input image. Content loss is computed on the mean squared
error (MSE) of the feature maps, whereas style loss is computed
on the MSE of the Gram matrix of the feature maps. Researchers
have found that the learned feature maps capture information more
closely related to human perception than input pixels [28]. In the
audio domain, Parallel-WaveNet [26] takes a similar approach using
feature maps of a trained phoneme recognition network with the
WaveNet structure. They found that applying perceptual loss has
significantly improved their performance. However, one difficulty
for using perceptual loss in the audio domain is that there is no well
established pre-trained recognition model from which researchers

can extract deep features. Meanwhile, there are many well studied
traditional acoustic features, such as log spectrogram, log mel-
spectrogram, mel-frequency cepstral coefficients (MFCC), and mel-
generalized cepstral coefficients (MGC). They work well as an
informative representation of audio, especially for human speech.

In this paper, we propose to use a spectrogram-based loss func-
tion for training, as a kind of perceptual loss. In addition, we also
use L1 or L2 loss on the waveform, when sample level alignment
is possible, for example with synthetic data. This combines benefits
from both waveform-to-waveform conversion, which has no need
for inverse STFT, as well as the spectrogram’s effective modeling
of human perception. For the particular choice of spectrogram, we
experimented with traditional spectrogram, log spectrogram, mel-
spectrogram and log mel-spectrogram, and found L1 loss on log
spectrogram works best in our application. Finally we note that the
steps of the STFT process are differentiable, and thus we can per-
form end-to-end deep learning with spectrogram-based loss.

2.2.2. Generative Adversarial Training

In our experiments, we found that a feed-forward network like
WaveNet coupled with spectrogram loss could mostly remove re-
verberation, but the resulting audio sounds noisy. The noise is most
severe for models trained on real data, and particularly for either
unvoiced sounds or audio containing correlated noise. It has been
widely observed in computer vision that L1 and L2 loss functions
have the problem of blurring image results [29]. The analogous
over-smoothing effect on spectrograms can give rise to artifacts like
poorly modeled unvoiced sounds. Therefore, we supplement our
spectrogram loss with a Generative Adversarial Network (GAN)
training process to encourage finer detail in the spectrogram.

GANs are an important tool for generative and conversion deep
learning problems. They have been used in speech enhancement
(e.g., SEGAN [23]) and coupled with WaveNet structure for synthe-
sis [30]. The main idea is that two adversaries – the generator and the
discriminator – are trained together. The discriminator tries to dis-
tinguish between real data and the output of the generator, and will
learn to identify any telltale artifacts from generation. Meanwhile
the generator improves its fidelity as it learns to fool the discrimi-
nator (in some sense mimicking human perception). Thus, GANs
help produce more naturalistic speech, and reduce telltale artifacts
like noise [15, 23, 24] However, GANs can be hard to train because
of mode collapse [25], and thus studies have pointed out that GANs
should be trained together with some auxiliary loss [29, 31]. There-
fore, we use the proposed spectrogram loss as auxiliary supervision
when training with a GAN.

We adopt the discriminator structure from StartGAN-VC [32],
which takes in a segment of log mel-spectrogram and predicts joint
probability of the speech being real. It is a gated CNN, with several
stacks of convolutional layer, batch normalization layer and Gated
Linear Unit (GLU). The discriminator is fully convolutional, thus
allowing inputs of arbitrary size. Figure 1 shows the detailed struc-
ture of the discriminator. During training, the generator G optimizes
loss LG which is the sum of adversarial loss and spectrogram loss:

LG(x, x
′) = α|LogSpec(G(x))− LogSpec(x′)|
+ (1− α)(1−D(LogMel(G(x)))

LD(x, x′) = D(LogMel(G(x))) + 1−D(LogMel(x′))

The discriminator D optimizes loss LD . Here LogSpec represents
log spectrogram, and LogMel represents log mel-spectrogram. The
tuple (x, x′) denotes the pair of input audio x and target audio x′

from the training dataset.



Fig. 1: Network Architecture. The generator is a feed-forward WaveNet architecture that outputs a waveform based on an input waveform.
The discriminator takes in the log mel-spectrogram of either a real waveform or a generated waveform, and outputs a prediction (real or fake).

3. EVALUATION

We evaluate our method using a 20-layer feed-forward WaveNet
with two stacks of dilated convolutions. The channel size is 256
across the entire network. We use two convolutional layers of 3×1
filters at the post-processing step. The STFT for the spectrogram loss
relies on a window size of 2048 and hop size of 512, with a sampling
rate of 16 kHz. We give equal weights to sample-level L1 loss and
spectrogram loss when necessary. For the discriminator, we use
kernel sizes of (3, 9), (3, 8), (3, 8), (3, 6), stride sizes of (1, 2), (1, 2),
(1, 2), (1, 2), and channel sizes of (1, 32), (32, 32), (32, 32), (32, 32)
for the sequence of the network layers, following the discriminator
structure of StarGAN-VC [32]. The input is computed as the log
of 80 coefficient mel-spectrogram ranging from 20Hz to 8000Hz,
using the same STFT parameters as before. For training with both
L1 loss and perceptual loss, we train the network for 100K iterations
with a batch size of 10 using the ADAM optimizer with learning rate
0.0001, reduced by a factor of ten after 50K iterations. Training with
only perceptual loss is more sensitive to the learning rate, and thus
we reduce the learning rate by a factor of ten after 10K iterations,
and again after 50K iterations. For GANs, we take a generator model
pre-trained with spectrogram loss, and train the discriminator from
scratch for 5K iterations while keeping the generator fixed. Finally
we perform joint training on both generator and discriminator.

Experiments were conducted on both simulated room settings
and real room settings. For real data, we used the Device and
Produced Speech (DAPS) Dataset [1], which provides pairs of studio
quality recordings and distorted ones of the same speech. DAPS
is produced by replaying studio quality audio in certain indoor
or outdoor environments and re-recording them with consumer
devices. Thus, the audio pairs are weakly aligned, and the low
quality recordings incorporate interactions of many acoustic factors
in the real world scenario, making it suitable for our purposes.
For simulated data, we obtained noisy reverberant recordings by
applying room impulse response filters from the SimData category
of the 2014 REVERB Challenge dataset [6] to the studio quality
recordings in DAPS. Background noise was added to the reverberant
speech with 20dB SNR. This gave us perfectly aligned inputs and
targets. Twenty voices, ten male and ten female, from DAPS dataset,
were used in our experiments. Each of the voices narrates the
same set of five scripts, each around two minutes. Across all the
experiments, the first nine voices for each gender and the first four
scripts were used for training, and the remaining unseen speakers
and unseen script were held out for evaluation. Each experiment
handles one specific room setting with distinct acoustic conditions.

We conducted subjective and objective evaluations of our meth-
ods in comparison with three baseline methods from the literature.

1. WPE [8]: A traditional inverse filtering method that does not
require training. It addresses de-reverberation specifically,
but not denoising or equalization matching.

2. BLSTM [14]: A learning-based spectral masking method,
using two layers of Bidirectional LSTM to predict ideal ratio
mask over magnitude spectrogram. It copies the input phase
for the prediction to get waveform back. We compare with
this method on both simulated and real data.

3. Speech Denoising WaveNet (WN) [20]: The architecture
used in our method, but with a different loss. It uses L1 losses
on both the speech prediction branch and the noise prediction
branch, which restricts it to training on perfectly aligned data,
so we will show comparison with it only on simulated data.

We compare those baselines with two variants of our method:

1. SPEC: Only spectrogram loss is used.

2. SPEC-GAN: Combines spectrogram loss and GAN loss.

In the scenarios of simulated data, we always used L1 loss alongside
our loss, because L1 is an easier training signal than perceptual loss
and helps training loss to drop fast. In the scenarios of real room, we
solely used perceptual loss.

3.1. Subjective Evaluation

We conducted a Mean Opinion Score (MOS) test which asks sub-
jects to rate the quality of the provided audio pieces. Subjects were
recruited on Amazon Mechanical Turk (AMT), a crowd-sourcing
platform commonly used for such experiments [33]. We designed
four room settings of tests, three simulated rooms with varying rever-
beration time and microphone-to-speaker distance (Table 1), and one
real room from the DAPS dataset – a typical office room with moder-
ate noise and reverberance. The models for comparison were trained
and evaluated on each specific room setting respectively. There are
26 utterances, each spoken by one male and one female. A subject
is presented with 18 different rating questions, two for each method
condition (five methods, clean speech and reverberant speech), and
additionally four validation questions in the same test voice. We
accept the answers only if the subject rates all validation questions
correctly, resulting in more than 100 ratings per tuple (condition,
room, voice). The audio clips and their MOS scores can be found at
our project website.1

1https://pixl.cs.princeton.edu/pubs/Su_2019_PM/

https://pixl.cs.princeton.edu/pubs/Su_2019_PM/


Table 1: Simulated Room Conditions. RT60 is the time that takes
for reverberation to decay by 60dB. Distance is the distance between
speaker and microphone when room impulse response is captured.

Room RT60 Distance
Sim Room 1 0.25s 200cm
Sim Room 2 0.25s 50cm
Sim Room 3 0.50s 50cm

Figure 2 shows the MOS results. Our methods, both SPEC
and SPEC-GAN, outperform all the baselines in all four room
settings. Our methods achieve ratings close to clean speech in
Sim Room 1 and Sim Room 2, which are relatively easy cases.
SPEC-GAN has varying performance, and its average rating does
not always outperform SPEC’s. Further ANOVA test revealed that
our method beats all baseline methods with p-value lower than 10−5

except for Sim Room 1 when our method is compared to WaveNet
which has p-value below 0.002 (still significant). This means our
method significantly improves over all baselines. However, it is not
statistically significant when SPEC-GAN is compared with SPEC.
Our belief is that this may be due to just-noticeable differences, and
requires further study.

WPE and BLSTM reduce reverberation but do not totally re-
move it. Thus, they do not work with the target of generating studio
quality speech. However, they are relatively robust to a wide range of
reverberation times, and thus their performances do not drop much
with the increasing difficulty of the room settings. Speech denoising
WaveNet has the closest results to ours, but it exhibits substantially
more noise, especially correlated noise, relative to our methods.

We also observe gender-based differences in the results. In Sim
Room 3, where SPEC-GAN improves the female voice, the male
voice score worsens. This may imply that speech enhancement
requires optimizing different aspects for different genders.

Fig. 2: MOS Test conducted on four different room settings. Models
are trained to be gender independent cross-speaker, but we split
data during evaluation to reveal the performance difference on
voices of different genders. The methods compared are Weighted
Prediction Error (WPE), two-layer bidirectional LSTM (BLSTM),
Speech Denoising WaveNet (WN), our spectrogram loss (SPEC),
our spectrogram loss plus generative adversarial training (SPEC-
GAN) and clean studio recordings (CLEAN). WN is not used in
“Real Room” experiment and thus not plotted.

Table 2: Objective Evaluation Scores. PESQ, FESEGSNR and
SRMR are the higher the better. CD is the lower the better.

Method PESQ FWSEGSNR SRMR CD
CLEAN 4.64 35.0 8.41 0.0
REVERB 1.24 -0.63 5.82 7.02
DN-WN 2.17 -1.55 8.18 6.94
BLSTM 2.10 5.87 6.90 3.87
WPE 1.39 0.01 7.03 6.98
SPEC 2.45 6.34 7.45 4.70
SPEC-GAN 2.61 12.53 8.17 3.12

3.2. Objective Evaluation

We report in Table 2 objective evaluation scores for metrics Per-
ceptual Evaluation of Speech Quality (PESQ), Frequency-weighted
Segmental SNR (FWSEGSNR), Speech-to-reverberation Modula-
tion Energy Ratio (SRMR), and Cepstrum Distance (CD) based
on evaluation tools provided by the 2014 REVERB Challenge [6].
These are commonly used metrics for evaluating enhancement over
noisy reverberant speech.

SPEC-GAN significantly outperforms all other baselines in
PESQ, FWSEG-SNR and CD, and achieves performance close to
clean speech on SRMR. This suggests that the improvement of the
GAN is just-noticeable, and thus not captured by human Turkers in
the MOS test. Employing a GAN does reduce the interruptions of
background noise and ghosting of residual reverberation.

4. CONCLUSION

In this paper, we present a deep learning method to enhance speech
recordings made in a specific environment. The method handles de-
noising, de-reverberation, and equalization matching in one network.
We introduce a new perceptually motivated loss function that com-
bines adversarial loss with spectrogram features. We show that the
method offers an improvement over state-of-the-art baseline meth-
ods in a mean opinion score test and objective evaluation tests.

In general, DNN-based speech enhancement methods achieve
optimal performance when training and inference have matched
acoustic conditions. Our method also learns for a specific envi-
ronment. The receptive field of a neural network usually needs
to scale up with the reverberation time to cover the corresponding
span of the original clean signal. To extend our method to cross-
environments, future work could explore various strategies, such as
the method of Wu et al. [34] which selects the optimal temporal
and spatial contexts based on estimated reverberation time before
inference, and Lee et al. [35] which integrates the trained DNN
models of various acoustic conditions online. In the meantime, the
idea of learning a feature embedding can be integrated to enable
environment-independent learning. Also, future research could em-
ploy some kind of bottleneck structure to learn features that describe
what is being spoken, and force all different noise or environments
to the same spot in the embedding.

Although we demonstrate on the speech enhancement problem,
the method presented in this paper is general. We believe it could
be applied to the broader problem of acoustics matching where
recordings from one environment are transformed to sound like
they were recorded in another, in a fashion similar to the work of
Germain et al. [7] (except that they just focus on equalization). This
could be useful for sound effect production.
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tian Braun, Bernd Edler, and Emanuël Habets, “Single-channel dere-
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