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ABSTRACT

Modern speech content creation tasks such as podcasts, video
voice-overs, and audio books require studio-quality audio with full
bandwidth and balanced equalization (EQ). These goals pose a
challenge for conventional speech enhancement methods, which
typically focus on removing significant acoustic degradation such as
noise and reverb so as to improve speech clarity and intelligibility.
We present HiFi-GAN-2, a waveform-to-waveform enhancement
method that improves the quality of real-world consumer-grade
recordings, with moderate noise, reverb and EQ distortion, to sound
like studio recordings. HiFi-GAN-2 has three components. First,
given a noisy reverberant recording as input, a recurrent network
predicts the acoustic features (MFCCs) of a clean signal. Second,
given the same noisy input, and conditioned on the MFCCs output
by the first network, a feed-forward WaveNet (modeled via multi-
domain multi-scale adversarial training) generates a clean 16kHz
signal. Third, a pre-trained bandwidth extension network generates
the final 48kHz studio-quality signal from the 16kHz output of the
second network. The complete pipeline is trained via simulation of
noise, reverb and EQ added to studio-quality speech. Objective and
subjective evaluations show that the proposed method outperforms
state-of-the-art baselines on both conventional denoising as well
as joint dereverberation and denoising tasks. Listening tests also
show that our method achieves close to studio quality on real-world
speech content (TED Talks and the VoxCeleb dataset).

Index Terms— speech enhancement, denoising, dereverbera-
tion, generative adversarial networks, acoustic features

1. INTRODUCTION

Speech enhancement methods typically focus on alleviating severe
noise and reverberation from recordings and improving intelligibil-
ity for downstream tasks such as speech recognition. Modern con-
tent creation scenarios (e.g., podcasts, video voice-overs, and au-
dio books) would benefit from improving consumer-grade record-
ings (which suffer from moderate noise, reverb, and EQ distortion)
to professional studio quality. Therefore, this paper addresses the
speech enhancement problem in a different context from that of pre-
vious work: to improve single-channel consumer-grade recordings
to sound like professional studio recordings. To address this goal re-
quires solving the combined problem of denoising, dereverberation
and equalization matching, while targeting a studio-quality dataset.

Recent advances in machine learning have enabled significant
progress on the long studied topics of speech enhancement, de-
noising and dereverberation problems. Typical methods tackle the
problem by learning a spectral mapping [1, 2] or masking [3, 4]
on the magnitude spectrogram, while inverse STFT process to re-
cover waveform introduces audible artifacts due to missing or mis-
matching phase. Other methods predict phase alongside the spec-

trogram [5, 6], or learn complex ratio mask [7, 8]. Another ap-
proach focuses on enhancement directly in the waveform, for ex-
ample, using WaveNet [9, 10] and Wave-U-Net [11], to avoid in-
formation loss or phase inversion. State-of-the-art methods like
DEMUCS [12] and PoCoNet [13] have shown significant audio
quality improvement, especially for hard denoising cases with low
SNRs. Yet those methods learn from datasets like VoxCeleb [14],
the Valentini dataset [15] and the DNS Challenge Dataset [16] that
do not contain studio-quality target audio, thus limiting the capa-
bilities of the learnt models. Moreover, these datasets do not sim-
ulate conditions matching typical consumer-grade recording envi-
ronments, which limits their use in the context of the problem we
address. As a result, such audio can be improved by these methods,
but the results remain far from studio-quality.

Generative adversarial networks (GANs) have been widely
shown effective in achieving high fidelity audio in speech process-
ing and generation. Researchers in speech enhancement have ex-
plored GANs on spectral features [17, 18] as well as on wave-
form [19, 20]. HiFi-GAN [21] shows high fidelity results by apply-
ing discrimination in both the time domain and the time-frequency
domain. Meanwhile, an emerging branch of research performs
speech enhancement by re-synthesis [22, 23], given recent success
in high-fidelity speech synthesis [24]. The idea is to extract speech
features from the input audio and re-synthesize the clean waveform
using neural vocoders. This approach aligns with our objective,
as the synthesized audio is naturally free of noise and reverbera-
tion. The performance is however limited by the quality of existing
vocoders, as most do not generalize well across speakers and tend to
generate “robotic” voices. They are also susceptible to inaccurately
estimated speech features, leading to speech content distortion and
unnatural prosody.

This paper proposes HiFi-GAN-2, which builds on our previous
HiFi-GAN method [21] and targets studio-quality output. The pre-
vious HiFi-GAN uses a feed-forward WaveNet together with deep
feature matching in multi-domain and multi-scale discriminators.
HiFi-GAN-2 incorporates a separate recurrent neural network to
predict the acoustic features of a clean target from those of noisy
input. The WaveNet then conditions on the predicted acoustic fea-
tures to generate the clean audio. This modification significantly
improves output audio quality. We believe that the acoustic features,
estimated from the entire input audio sequence, help the WaveNet
(which has limited receptive field) to generate audio that more faith-
fully matches the original speaker and content. We evaluate the
proposed method using objective and subjective tests in three appli-
cation scenarios: (1) joint denoising and dereverberation for real-
world recordings, (2) enhancement for real-world speech content at
full bandwidth, and (3) conventional denoising. We also show in
subjective evaluation that conventional denoising datasets that are
of low quality can hinder model performance, and thus encourage
use of studio-quality datasets in future research.
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Figure 1: Architecture. A pre-trained network (right) predicts acoustic features (MFCCs) of clean speech based on a noisy input spectrogram.
A WaveNet (left) generates clean speech from the same noisy input, locally conditioned on the predicted MFCCs. Adversarial training with
deep feature matching involves a spectrogram discriminator and multiple waveform discriminators for the signal at different resolutions.

2. METHOD

HiFi-GAN-2 builds on top of our previous work HiFi-GAN [21] for
speech denoising and dereverberation, to further push towards stu-
dio quality. HiFi-GAN uses an end-to-end feed-forward WaveNet
together with deep feature matching in multi-scale multi-domain
discriminators. Although HiFi-GAN is shown successful for ob-
taining clean high-fidelity audio recordings from noisy reverberant
conditions, we observe inconsistency in speaker identity when noise
and reverb are strong. This is likely caused by the ambiguity in dis-
entangling speech content and speaker identity from environment
effects (EQ and reverb). Moreover, the feed-forward WaveNet is
not able to enforce consistent speaker identity due to limited re-
ceptive field and lack of global context. Thus, the network would
benefit from extra information that helps it to infer speaker identity
and content, i.e. the clean speech. One possible solution is to use
speaker embedding as global conditioning, similar to that of multi-
speaker speech synthesizer [25], but we did not observe quality im-
provement, possibly due to the utterance-level fuzziness of the em-
bedding space. Instead, we propose conditioning the WaveNet on
acoustic features that contain clean speaker identity and speech con-
tent information. Hence, we incorporate a separate recurrent neural
network to predict clean acoustic features from the input noisy re-
verberant audio, which is then used as time-aligned local condition-
ing for HiFi-GAN. Such design combines benefits from waveform-
to-waveform conversion, which avoids information loss and arti-
facts in STFT/ISTFT processes, and the effectiveness of acoustic
features in modeling human perception of speech over a long pe-
riod of context. The overall architecture is shown in Figure 1.

2.1. Acoustic feature prediction network

We propose a network inspired by Tacotron 2 [25] for acoustic
feature prediction. It consists of three pre-processing convolution
blocks (1D convolution, batch normalization and ReLU), three
layers of bi-directional LSTMs, a linear projection layer, and a post-
net of five convolution blocks (1D convolution, batch normalization
and Tanh activation except for the last block). We use channel size
of 512 across all the layers, kernel size of 5 for the convolutions,
momentum of 0.9 for the batch normalization layers, and dropout
of 0.2 for the recurrent layers. This network is trained using the
acoustic feature of simulated noisy reverberant audio as input and
that of clean audio as target. It minimizes the MSE losses of
acoustic feature as well as the delta (first order difference) of the
feature, for the outputs both before and after post-net.

To select a proper acoustic feature, we examined log mel spec-
trogram (Mel) and Mel-frequency Cepstral Coefficients (MFCCs).
While Mel has higher frequency resolution, the MFCCs is more ro-

bust to noise. Our experiments found that predicting 18-coefficient
MFCCs of the target clean audio from the 80-coefficient Mel of the
input audio yields the best result. Since each cepstral coefficient has
a different range of values, the target MFCCs is also globally nor-
malized by subtracting each coefficient with the mean and dividing
by four times the standard deviation using the clean audio dataset’s
statistics, following the practice of Qian et al. [26]. We did not ob-
serve statistically significant improvement in changing the number
of cepstral coefficients to 24; yet the performance drops with 30 or
12 coefficients. Thus, we stick to 18 coefficients for further experi-
ments. Our ablation study is discussed in details in Section 3.1.

2.2. Conditional WaveNet

The waveform denoising network is a feed-forward WaveNet [9]
with local conditioning [27]. It uses non-causal dilated convolutions
with dilation rate as a power of two to enable large receptive field.
We use three WaveNet stacks (totaling 30 layers) and a channel size
of 128 across the network. Our early experiments show vanishing
benefit to further increasing the number of WaveNet stacks, as well
as degraded performance with other channel sizes (64 or 256). We
use weight normalization on all layers to accelerate convergence.

The prediction from the pre-trained acoustic feature prediction
network is up-sampled using linear interpolation along time axis
to match the length of the input waveform and is applied via
additive local conditioning as is described in the original WaveNet
design [27]: in each WaveNet layer, it is convolved with a 1×1
convolution before being added to the filter activation; same process
is done for the gate activation. We hypothesize that the WaveNet
can utilize the local conditioning in two ways: (1) if the acoustic
features contain sufficient information, the WaveNet may serve
like a vocoder where it re-synthesizes speech using the phase of
the input waveform; (2) or, the WaveNet utilizes this auxiliary
information to gain access to a cleaner representation of speech
content as well as larger temporal context. Our experiment shows
that (2) is more likely the case as the WaveNet with randomized
acoustic features can still generate intelligible speech but it sounds
muffled and less recognizable as the original speaker.

2.3. Adversarial training and loss functions

The adversarial training helps to improve perceptual quality and re-
moves artifacts and noises. We follow the same design as HiFi-
GAN, using a spectral discriminator and a set of waveform discrim-
inators. The spectral discriminator takes in the 128-coefficient log
mel-spectrogram. It consists of four stacks of 2D convolution layer,
batch normalization and Gated Linear Unit (GLU), and lastly a con-
volution layer followed by global average pooling, similar to the one
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used in StarGAN-VC [28]. It uses kernel sizes of (7, 9), (5, 8), (4,
8), (4, 6) and stride sizes of (1, 1), (1, 2), (2, 2), (2, 2) for the stacks,
and the last convolution layer uses a kernel size of (32, 5). The
channel sizes is 32 across all the layers. Meanwhile, a set of three
waveform discriminators respectively operate at the output signal
down-sampled by different ratios as a power of two, following the
design in MelGAN [24]. Each waveform discriminator is composed
of a set of grouped convolutions and global average pooling at the
end, with Leaky ReLU between the layers. Specifically, the kernel
sizes are 15, 41, 41, 41, 41, 5, 3; stride sizes 1, 4, 4, 4, 4, 1, 1; chan-
nel sizes 16, 64, 256, 1024, 1024, 1024, 1; and group sizes 1, 4, 16,
64, 256, 1, 1. The adversarial losses take hinge loss formulation.

The supervised loss function of the generator is composed of
L1 waveform loss, and L1 losses of multiple log spectrograms with
different FFT window sizes (i.e 512, 1024, and 2048 for 16kHz
audio, each with one-fourth as its hop size). In addition, we apply
the adversarial losses, as well as the feature matching losses [24] of
the discriminators which are computed as L1 difference of the deep
features between the generated audio and the ground-truth clean
audio. The feature matching loss helps to stabilize GAN training
and prevents the generator from mode collapse.

3. EXPERIMENTS

We evaluate our method, ablations and various baselines over
studio-quality speech enhancement task as well as conventional
denoising task. The term ”studio-quality” implies that the clean
audio used in training are recorded and professionally edited in
an anechoic studio, at a sample rate >=44.1kHz. The ”clean”
category of the Device and Produced Speech (DAPS) Dataset [29]
fits into this requirement. Due to limited bandwidth of baseline
methods, we first conduct a comparative study at 16kHz, on joint
denoising and dereverberation task on the DAPS dataset. Then
we expand the experiment to real-world recordings used in content
creation, evaluated at full 48kHz. Finally, we apply our method to
conventional denoising task to show its broad applicability.

We used the architecture described in Section 2 for experiments.
We compute Mel and MFCC using FFT length of 512 and hop
size 160 at 16kHz. We first train the acoustic feature prediction
network (24M params) for 100k steps using Adam optimizer with
a batch size of 64 and input length of 256 frames. The learning
rate starts with 0.001 and gets halved every 20k steps. Then we
train WaveNet (10M params) with the weights of acoustic feature
prediction network fixed. The WaveNet first trains for 1000k steps
with learning rate 0.001, using the waveform and the spectrogram
losses. Next we add randomly initialized discriminators to the
output of the WaveNet (generator). We use learning rate 1e-05 for
the generator (adversarial loss, feature matching loss and previously
used loss), and 0.001 for the discriminators, for 100k steps. A batch
size of 6 and a sample length of 22K are used throughout training.
On a Tesla V100, each of the three training stages takes seven days,
and inference takes 0.5 seconds per second of input audio. Audio
samples for our experiments are available at:
https://pixl.cs.princeton.edu/pubs/Su_2021_HSS/

3.1. Joint denoising and dereverberation
The DAPS Dataset provides pairs of recordings of the same set of
studio-quality speech re-recorded under twelve different room en-
vironments, and thus aligns with our goal of converting real-world
recordings to studio-quality recordings. One male voice (m10) and
one female voice (f10) are held out for evaluation purpose. We
also hold out 2 minutes of audio per training voice for validation

Table 1: Objective measures on the DAPS dataset.
Method PESQ STOI SRMR FW-SSNR
Noisy 1.41 0.87 4.79 3.04

HiFi-GAN [21] 2.00 0.89 7.67 7.62
HiFi-GAN (3×10) 1.92 0.89 7.61 8.52
FullSubNet [8] 2.14 0.89 7.23 4.50
DEMUCS [12] 2.16 0.92 7.51 10.15
HiFi-GAN-2 (ours) 2.23 0.92 7.83 9.98

Ablation Models

A (no GAN) 2.32 0.92 7.77 10.08
A-GT (no GAN, GT) 2.33 0.92 8.23 10.03
B (mfcc2mfcc, no GAN)) 2.23 0.92 7.57 9.94
C (local norm, no GAN) 2.25 0.92 7.54 9.96
D (mel2mel, no GAN) 2.28 0.92 7.82 9.89
D-GC (mel2mel, no GAN, GT) 2.21 0.91 8.32 9.50

A-GT-GAN (GT) 2.26 0.92 8.45 9.77
D-GAN (mel2mel) 2.25 0.91 7.87 9.60

purpose. Our training set is constructed around the rest of the
DAPS Dataset’s clean set following the same data simulation and
augmentation procedure as described in HiFi-GAN [21]. We con-
volve these studio-quality speech recordings with the 270 impulse
responses from the MIT Impulse Response Survey Dataset [30], and
then add noise from the REVERB Challenge database [31] and the
ACE Challenge database [32]. Data augmentation of HiFi-GAN is
used on all of speech, impulse responses and noise samples.

Our best full approach HiFi-GAN-2 consists of an acoustic
feature prediction network that predicts globally normalized 18-
coefficient MFCCs of clean target from 80-coefficient log mel
spectrogram of noisy input, the WaveNet conditioning on the
predicted 18-coefficient MFCCs, and GAN training. We conducted
ablation experiments to address the following four design questions,
and accordingly eight variants of our approach: Q1: Should we
train the WaveNet with ground truth acoustic features or generated
ones? Q2: Should we use MFCCs or other acoustic features (e.g.
log mel spectrogram) for conditioning? Q3: Should we predict
clean MFCCs from input audio’s MFCCs directly or from its log
mel spectrogram? Q4: Should we apply global normalization, local
normalization or no normalization for the conditioning?
Model A: Same as HiFi-GAN-2, but no GAN training (”no GAN”)
Model A-GT: Same as Model A, but conditioning on ground-truth
clean acoustic features for training (”GT”).
Model B: Same as Model A, but the prediction network takes
globally normalized 18-coefficient MFCCs as input (”mfcc2mfcc”).
Model C: Same as Model A, but the MFCCs are locally normalized
using instance statistics (”local norm”).
Model D: Same as Model A, but the prediction network outputs
80-coefficient log mel spectrogram (”mel2mel”).
Model D-GT: Same as Model D, but conditioning on ground-truth
clean acoustic features for training (”GT”).
Model A-GT-GAN: Model A-GT with GAN training.
Model D-GAN: Model D with GAN training.

We also compare to four state-of-the-art baselines: our previous
HiFi-GAN [21] with two WaveNet stacks and HiFi-GAN (3×10)
with three stacks (as in this work), a spectral-domain method using
complex ratio masking [8] (FullSubNet), a time-domain method
using encoder-decoder structure [12] (DEMUCS), and a speech
enhancement by resynthesis method [23] (Regen). DEMUCS and
FullSubNet originally targeted at speech denoising, so we re-train
their released models on our training set. Meanwhile, since speech
re-synthesis may completely change the appearance of the signal,
Regen is compared in the subjective evaluation only, using its

https://pixl.cs.princeton.edu/pubs/Su_2021_HSS/
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released audio samples re-sampled to 16kHz.
Table 1 shows the objective metrics [31] for speech denois-

ing, dereverberation and enhancement. All variants of our proposed
methods outperform all the baselines in PESQ and SRMR. Model
A-GT, Model A and Model D scores the top three. Though HiFi-
GAN-2’s objective score is lower, it has the highest perceptual qual-
ity shown in subjective evaluations. Adding one WaveNet stack
brings moderate improvement to the perceptual quality but not the
objective measures. Adding conditioning to the WaveNet improves
the objective scores universally by a large margin. Globally nor-
malized 18-coefficient MFCCs scores the best as conditioning (Q2,
Q4), and it can be more accurately predicted from Mel than from
MFCCs (Q3). Training with ground-truth conditioning can degrade
test performance due to mismatch of training and inference condi-
tions, as is the case in Model D and D-GT. However, training with
ground truth MFCCs (Model A-GT) outperforms generated ones
(Model A) (Q1). This may be due to that the prediction of MFCCs
as a compact representation is sufficiently close to the ground truth.
Although GAN training lowers objective scores, we observe signif-
icant perceptual quality improvement in the listening tests. GAN
helps the output to match the clean audio’s data distribution (hence
sounds realistic) rather than direct approximation to ground truth.

Since the objective scores may not correlate with perceptual
quality well [33], we also conduct Mean Opinion Score (MOS)
tests using Amazon Mechanical Turk (AMT) on the baselines and
our top performing methods. Using a studio-quality recording as
high anchor and audio with noise (0dB SNR) as low anchor, a
subject is asked to rate the sound quality of an audio recording on
a scale of 1 to 5, with 1=Bad, 5=Excellent. We collected 449 valid
HITs with 208 unique workers, totalling 11674 ratings. The MOS
scores are shown in Figure 2(a). Our methods outperform all the
baselines, and HiFi-GAN-2 achieves the best average rating of 3.90
(±0.03, p < 0.05 over second best in unpaired t-test). Therefore,
adding conditioning and adding GAN training respectively bring
steady perceptual quality improvement. While Model A and Model
A-GT are rated the same, training on generated MFCCs receive
more improvement from adversarial training than on ground-truth
ones, as the former exposes artifacts to the discriminators caused
by inaccuracy in MFCC prediction. Model A-GT-GAN can be an
efficient alternative to HiFi-GAN-2 as training on GT is easier.

3.2. Real-world speech at full bandwidth

We gather real-world customer-grade recordings from TED Talks
(www.ted.com) and VoxCeleb1 [14] to further evaluate if our
method can suffice speech content creation needs. We selected 10
male and 10 female speakers from TED 2004-06 and sampled two
random sentences (5-6 seconds) per episode. For VoxCeleb1, we
used Speech Transmission Index (STI) [34] to label each recording,
and randomly sampled 50 audio clips to cover an STI range of 0.75-
0.99 uniformly. Details are on our experiment result website.

We used the same trained models from Section 3.1, and ex-
tended output sample rate from 16kHz to 48kHz using the band-
width extension model of Su et al. [35] trained also on the DAPS
Dataset. We conducted the same MOS test as in Section 3.1, includ-
ing 348 valid HITs with 128 unique workers and 7656 ratings. The
result in Figure 2(b) shows that HiFi-GAN-2 performs the best,
and works well together with the bandwidth extension algorithm,
achieving close to studio quality for the resulting 48kHz audio (4.27
±0.03, p < 0.05 over second best, p < 0.0001 over all baselines).

Furthermore, we conducted experiments to show that datasets
used as clean audio in conventional speech enhancement can be low
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Figure 2: MOS scores: (a) joint denoising and dereverberation on
the DAPS dataset; (b) enhancement on real-world speech content.

quality and thus hinders the performance of algorithms trained on
them. For example, CREMA-D [36], a crowd-sourced emotional
dataset, contains similar amount of reverb and noise to customer-
grade recordings. We conducted the same MOS test as above on
CREMA-D dataset using first 62 speakers speaking sentence la-
belled ”IWL” in neutral emotion (84 unique workers, 4496 rat-
ings); the result shows HiFi-GAN-2 at full bandwidth scores 4.254
while the original dataset only scores 2.349; it also worth mention-
ing that DEMUCS trained on the DNS Challenge dataset (which
uses CREMA-D as clean data) scored 2.813 that is far lower than
HiFi-GAN-2 trained on the DAPS dataset.

Table 2: Objective measures on the Valentini Dataset.
Method PESQ CSIG CBAK COVL

Noisy 1.97 3.35 2.44 2.63
HiFi-GAN [21] 2.94 4.07 3.07 3.49
DEMUCS [12] 3.07 4.31 3.4 3.63

Model A-GT 3.18 4.49 3.60 3.84
Model A-GT-GAN 3.14 4.41 3.56 3.78

Model A 3.15 4.37 3.60 3.76
HiFi-GAN-2 3.11 4.37 3.54 3.74

3.3. Conventional denoising

To show that the proposed methods also works in conventional
setting, we experimented with the common benchmark Valentini
dataset [15] for speech denoising. We follow the standard split of
28 speakers for training and 2 speakers for test. Table 2 shows
our methods outperform all the other state-of-the-art methods on
the objective measures, and Model A-GT achieves the highest
scores so far to our knowledge. It is consistent with our previous
observations that training with ground-truth conditioning without
GAN is most favored by the objective measures.

4. CONCLUSION

In this paper, we characterize the difference between conven-
tional speech enhancement and studio-quality audio enhancement,
and present HiFi-GAN-2, a waveform-to-waveform enhancement
method that improves the quality of real-world amateur recordings
to studio quality. HiFi-GAN-2 consists of a recurrent neural net-
work that predicts acoustic features (i.e. MFCCs) of the clean tar-
get from the input audio, and a feed-forward WaveNet for waveform
enhancement that conditions on the predicted acoustic features, to-
gether with multi-domain multi-scale adversarial training. A pre-
trained bandwidth extension network can be optionally applied to
generate the final 48kHz studio quality signal from the output of
HiFi-GAN-2. Extensive evaluations show that the proposed method
outperforms all the other state-of-the-art baselines in both objective
metrics and subjective metrics on joint dereverberation and denois-
ing tasks as well as conventional denoising task.

https://www.ted.com
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hancement generative adversarial network,” Proc. Interspeech
2017, pp. 3642–3646.
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