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Figure 1: We decompose a time-lapse sequence of photographs (a) into sun, sky, shadow, and reflectance components. The representation
permits re-rendering without shadows (b) and without skylight (c), or modifying the reflectance of surfaces in the scene (d).

Abstract

We describe a method for converting time-lapse photography
captured with outdoor cameras into Factored Time-Lapse Video
(FTLV): a video in which time appears to move faster (i.e., lapsing)
and where data at each pixel has been factored into shadow, illumi-
nation, and reflectance components. The factorization allows a user
to easily relight the scene, recover a portion of the scene geometry
(normals), and to perform advanced image editing operations. Our
method is easy to implement, robust, and provides a compact repre-
sentation with good reconstruction characteristics. We show results
using several publicly available time-lapse sequences.

CR Categories: I.4.8 [Image Processing and Computer Vision]:
Scene Analysis—Time-varying Imagery I.3.7 [Computer Graph-
ics]: Three-Dimensional Graphics and Realism—Color, shading,
shadowing, and texture

Keywords: Image-based rendering and lighting, inverse problems,
computational photography, reflectance

1 Introduction

Time-lapse photography, in which frames are captured at a lower
rate than that at which they will ultimately be played back, dates
back to the late 19-th century1. Classic time-lapse photography
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1Georges Méliès’ motion picture Carrefour De L’Opera (1897)
(wikipedia.org)

subjects are clouds, stars, plants, and flowers. Today, most time-
lapse image sequences are collected by the thousands of cameras
(webcams) whose images can be accessed using the Internet. They
typically provide outdoor views of cities, construction sites, traffic,
the weather, or natural phenomena such as volcanoes. Outdoor we-
bcams are also used for surveillance to monitor outside activities
around companies, ports, or warehouses. So-called webcam direc-
tories index thousands of live webcams, providing instant online
access to time-lapse photos from around the world.

Time-lapse photography can create an overwhelming amount of
data. For example, a single camera that takes an image every 5
seconds will produce 17,280 images per day, or close to a million
images per year. Image or video compression reduces the storage
requirements, but the resulting data has compression artifacts and
is not very useful for further analysis. In addition, it is currently
difficult to edit the images in a time-lapse sequence, and advanced
image-based rendering operations such as relighting are impossi-
ble. A key challenge in dealing with time-lapse data is to provide
a representation that efficiently reduces storage requirements while
allowing useful scene analysis and advanced image editing.

In this paper we focus on time-lapse sequences of outdoor scenes
under clear-sky conditions. The camera viewpoint is fixed and
the scene is mostly stationary, hence the predominant changes in
the sequence are changes in illumination. Under these assump-
tions we have developed a method that provides a complete de-
composition of the original dataset into shadow, illumination, and
reflectance components. We call this representation Factored Time-
Lapse Video (FTLV).

Our method begins by locating the onset of shadows using the
time-varying intensity profiles at each pixel. We identify points
in shadow and points in direct sunlight to separate skylight and
sunlight components, respectively. We then analyze these spatio-
temporal volumes using matrix factorization. The results are basis
curves describing the changes of intensity over time, together with
per-pixel offsets and scales of these basis curves, which capture spa-
tial variation of reflectance and geometry. The resulting represen-
tation is compact, reducing a time-lapse sequence to three images,
two basis curves, and a compressed representation for shadows. Re-
constructions from the data show better error characteristics than
standard compression methods such as PCA.

FTLVs are an intrinsic image-like scene representation that allow a
user to analyse, reconstruct and modify illumination, reflectance, or



geometry. The shadows may be discarded or retained, depending
on the ultimate application, while other “outliers” such as pedes-
trians or cars are implicitly ignored. FTLVs can also be used for
various computer vision tasks such as background modeling, image
segmentation, and scene reconstruction. In this paper we demon-
strate several applications for FTLVs, including relighting, shadow
removal, advanced image editing, and pictorial rendering.

2 Previous Work

Time-Lapse Sequence Analysis Barrow and Tenen-
baum [1978] introduced the concept of intrinsic images to
represent intrinsic characteristics of a scene, such as illumination,
reflectance, and surface geometry. Weiss [2001] uses a maximum-
likelihood framework to estimate a single reflectance image and
multiple illumination images from time-lapse video. His work
was extended by Matsushita et al. [2004] who derive time-varying
reflectance and illumination images from surveillance video.

Matusik et al. [2004] use time-lapse data to compute the reflectance
field (or light transport) of a scene for a fixed viewpoint. They
represent images as a product of the reflectance field and the in-
coming illumination. However, the method requires estimating the
incident illumination using a light probe camera, and the estimated
reflectance field combines the effects of reflectance and shadows.

Koppal and Narasimhan [2006] acquire image sequences with a
randomly moving light source to cluster the image into regions that
have similar normals. These normal clusters are then used as priors
to bootstrap a variety of vision algorithms, including the decom-
position of the image into the terms of a linearly separable BRDF
model. Because the illumination is required to follow an unstruc-
tured trajectory, Koppal and Narasimhan’s work is applicable only
to outdoor time-lapse data captured over a larger period of time
(many days or weeks).

Unlike this previous work, we arrive at a decomposition of time-
lapse sequences into shadows, partial scene geometry, and time-
varying reflectance and illumination. This provides better estimates
of intrinsic image qualities and more accurate scene analysis.

Reflectance Factorizations Lawrence et al. [2006] describe a
factorization method to decompose complex surface reflectance
functions (spatially varying BRDFs) into a sum of products of lower
dimensional (1D or 2D) terms. Similarly, Gu et al. [2006] decom-
pose a time-varying surface appearance into lower dimensional rep-
resentations that are space-time dependent. Both of these methods
accomplish similar goals — they factorize large datasets of com-
plex surface reflectances into terms that are highly compact and at
the same time physically meaningful and editable. Since they ac-
quire and model the full eight-dimensional BRDF they can render
under any viewing, lighting, and, in the case of Gu et al.[2006],
temporal condition. However, the complexity of the BRDF acqui-
sition setup makes it impractical for complex, outdoor scenes.

Our work bridges the gap between intrinsic images and the factor-
ization of complex reflectance functions. In doing so we go beyond
the mid-level representation of intrinsic images without requiring
the acquisition setup and calibration of a complete BRDF estima-
tion.

Inverse Rendering Inverse rendering measures rendering at-
tributes — lighting, textures, and BRDF — from photographs. Al-
though there is prolific literature on inverse rendering, most of the
work focuses on small objects and indoor scenes. Yu and Ma-
lik [1998] and Debevec et al. [2004] recover photometric properties
from photographs of outdoor architectures. They are able to relight

them and create photo-realistic images from arbitrary viewpoints.
However, their methods require measurements of the incident illu-
mination and surface materials and a 3D model of the scene geom-
etry. Similarly, Nimeroff et al. [1994] render scenes under natural
illumination by combining basis images that are pre-rendered using
a set of basis illuminations. But they also require measurements of
scene geometry and reflectances.

Seitz et al. [2005] and Nayar et al. [2006] separate the illumina-
tion in a scene into its direct and global components using con-
trolled lighting. They demonstrate this for real-world materials and
comment on the contribution of the two terms to surface appear-
ance. We separate illumination into a global sky and a direct sun
component while ignoring secondary inter-reflections, scattering,
or translucency.

Video Analysis and Editing There has been considerable re-
search on analyzing video sequences to segment out objects and
extract mattes [Chuang et al. 2002; McGuire et al. 2005; Li et al.
2005; Wang et al. 2005], to extract shadows [Chuang et al. 2003],
to determine object motion and texture [Bregler et al. 1997; Schödl
et al. 2000; Bhat et al. 2004], and to combine video frames into
panoramas [Agarwala et al. 2005]. In addition, there has been re-
cent work that modifies video by inserting objects [Li et al. 2005;
Wang et al. 2005] or shadows [Chuang et al. 2002], enhancing
small motion [Liu et al. 2005], or applying non-photorealistic styl-
ization [Litwinowicz 1997; Wang et al. 2004; Winnemöller et al.
2006]. In contrast, the present paper performs a different type of
analysis, focusing not on inferring objects’ shape, motion, or tex-
ture, but rather on decomposing appearance and reflectance. Our
analysis enables a different class of edits, such as changing re-
flectance and lighting. In addition, by extracting partial geometry of
the scene, we are able to perform stylization using algorithms such
as exaggerated shading [Rusinkiewicz et al. 2006], which requires
more knowledge about the scene than simply pixel intensities.

3 Representation

Our goal is to decompose the space-time volume F(t) of the time-
lapse image sequence into factors that will enable us to analyze and
edit the scene. As the sun moves, the observations at every pixel
in the time-lapse sequence result in a continuous appearance pro-
file [Koppal and Narasimhan 2006] (see Figure 4(a)). The appear-
ance profile (red curve) is a vector of intensities Fi(t) measured at
pixel Pi over time (i.e., frame number). It is a complicated function
of the illumination, scene geometry, and surface reflectance.

Under the clear-sky assumption we can approximate the illumina-
tion as a sum of an ambient term corresponding to sky illumination
and a single-directional light source corresponding to the radiance
of the sun. Using the linearity of the rendering equation, the spatio-
temporal volume F(t) can therefore be expressed as a sum of the
sky light and sunlight components:

F(t) = Isky(t) + Ssun(t) ∗ Isun(t). (1)

Here Ssun(t) is the shadowing term that describes if a pixel is in
shadow (and therefore has no sunlight contribution) or not.

One of the key insights in this paper is that for outdoor time-
lapse sequences under clear-sky conditions the appearance pro-
files of all points in the scene are similar up to an offset along
the time axis and a scale factor. This is similar to the notion of
orientation-consistency introduced by Hertzmann and Seitz [2005],
which states that, under the right conditions, two points with the
same surface orientation must have the same or similar appearance



Figure 2: An overview of the FTLV factorization. We separate the
spatio-temporal volume (a) F(t) into the sky component (b) Isky(t)
and the sun component (d) Isun(t) modulated by the shadow vol-
ume (c) S(t). The sky component is factorized into (e) per-pixel
weights Wsky and a time-curve Hsky(t) while the sun component
is factorized into (f) albedo Wsun(t), reflectance Hsun(t) and per-
pixel shifts S(t).

in an image. They compute the surface normals of a target ob-
ject that has been imaged together with one or more reference ob-
jects with known shape (sphere) and similar BRDF. Koppal and
Narasimhan [2006] also noted that scene points with the same sur-
face normal often exhibit extrema in their profiles at the same time
instant, irrespective of their material properties. They use a metric
that matches appearance profile extremas, and unsupervised clus-
tering, to compute orientation consistencies between scene points
of unknown normals and BRDFs. The key difference in our work is
that we seek to separate the contributions of shadows, skylight, and
sun illumination. Similar to the work by Gu et al. [2006], we repre-
sent the corresponding appearance profiles as a linear combination
of basis curves that are offset and scaled.

Based on our insight, we approximate Isun(t) with a single basis
curve Hsun(t) scaled by per-pixel weights Wsun. In addition, we
allow a per-pixel time offset Φ to the sunlight curve that stands in
for the normal dependence of the appearance profile:

Isun,i(t) ≈ Wsun,i Hsun(t + Φi). (2)

We call weight matrix Wsun the sunlight image, the basis curve
Hsun(t) the sunlight basis curve and the offset Φ the shift map.
Since the sun is a strong directional light source, Hsun(t) is an
estimate of the 1-D slice of surface reflectance corresponding to the
camera viewpoint and the arc described by the sun’s motion.

The time-shifted basis is an accurate representation for appearance
profiles because of the nature of sun illumination. Since the sun
moves at a constant angular velocity, the appearance profiles at pix-
els with different surface normals correspond to different uniformly
sampled 1-D slices (corresponding to the camera viewpoint and the
plane of the sun) of the 4-D BRDF. For both diffuse and specular
surfaces it has been shown that the shape of this slice is largely the
same with the fundamental difference being the normal-dependent
shift that Φ captures. If the arc described by the sun is known, un-
der the assumption that the appearance profile is maximum when
the sunlight is normally incident on the surface, the computed shift
map can be converted into an estimate of the surface normal. Since
the sun moves only in a plane, the shift map is an estimate of the
surface normal projected onto this plane.

In order to estimate Isky(t) in Equation (1), we look to find a sin-
gle illumination-vs.-time basis curve Hsky(t) for the entire image
sequence, such that the appearance of any shadowed pixel Pi may
be reproduced as:

Isky,i(t) ≈ Wsky,i Hsky(t). (3)

We call the matrix Wsky of per-pixel weights the skylight image,
and the basis curve Hsky(t) the skylight basis curve. Note that we
do not apply an offset to the skylight curve in Equation (3) because
the diffuse nature of sky illumination makes the offset hard to esti-
mate.

The final representation (see Figure 2) therefore is:

F(t) ≈ Wsky Hsky(t) + Ssun(t) ∗Wsun Hsun(t + Φ). (4)

Our goal is to separate F(t) into Isky(t), Ssun(t), and Isun(t) and
estimate all the per-pixel weights, per-pixel shifts, and time-curves
without knowledge of scene geometry, reflectance, illumination, or
camera calibration. We make the observation that we can estimate
Isky(t) from points that are in shadow, whereas points in the sun
contain Isky(t)+Isun(t). Our approach is to first estimate Ssun(t)
and to use this to separate Isky(t) and Isun(t) and estimate the rest
of the terms. The next section describes how we estimate Ssun(t)
from the time-lapse data, and Section 5 shows how we use matrix
factorization to solve for Wsky , Hsky(t), Wsun, Φ and Hsun(t).

4 Shadow Estimation

Figure 3 shows one frame of a time-lapse sequence of the Santa
Catalina Mountains in Arizona. We will use this frame and pixels
A, B, and C throughout our discussion. All computations are per-
formed in RGB color space and independently on the three color
channels. For simplicity we will focus on the red channel only.

Figure 3: Frame 275 of the Arizona time-lapse sequence.

Our model assumes that the color of visible pixels is due to reflec-
tion from surfaces in the scene. Therefore we do not consider sky
pixels in our representation. We compute the sky mask (using Pho-
toshop’s magic wand tool) for one frame and use it to later compos-
ite the sky from the original data to the reconstructed images. This
has the added benefit that we preserve moving clouds, which are an
important visual component in time-lapse videos.

As can be seen in Figure 4(a) pixel intensities differ dramatically if
the scene point is illuminated by the sun or if it is in shadow. We use
these discontinuities in the appearance profiles to estimate shadow
images. We first compute the median value mmin of the n smallest
intensities at each pixel. We typically assume that each point is in
shadow at least 20% of the time, so n is 20% of the total number of
frames in the sequence. We set the shadow function Si(t) (purple
curve in Figure 4(a)) to one for each Fi(t) > kmmin and to zero
otherwise. We heuristically found that k = 1.5 worked well for
most of the sequences in our experiments.

Figure 5 (top) shows the value of the shadow function for all pixels
in frame 275. We call this the binary shadow image. It is gener-
ally quite noisy due to moving objects (e.g., trees, smoke, or peo-
ple) and changes in the illumination (e.g., clouds). Therefore, to
compute the final shadow image Ssun we use an edge-preserving
bi-lateral filter [Tomasi and Manduchi 1998] (Figure 5 (bottom)).
We could improve the shadow images by explicitly removing dy-
namic objects, either by computing median images for short time
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Figure 4: (a) Appearance profiles (red) and shadow functions (purple) of points A, B, and C (top to bottom). (b) Appearance profiles when
points A, B, and C (top to bottom) are in shadow (red) and the estimated skylight curves (blue). Note the different scale on the intensity
axis. (c) Appearance profiles when points A, B, and C are in the sun (red) and the estimated sunlight curves (green). The arrows indicate the
direction of the shift of the basis curves. (d) Original appearance profiles (red) and the sum of sunlight and skylight curves (blue).

Figure 5: Top: Binary shadow image. Bottom: Shadow image after
edge-preserving bi-lateral filtering. The inset shows a closeup that
illustrates the filtering.

intervals in the input sequence [Matsushita et al. 2004] or by using
more sophisticated background models.

5 Time-Lapse Factorization

The computational framework we use to decompose appearance
profiles into W and H factors is Alternating Constrained Least
Squares (ACLS) [Lawrence et al. 2006], which has previously been
applied to the problem of decomposing measured reflectance data
into intuitively editable components. ACLS is similarly well suited
for our task of decomposing appearance profiles, since its abil-
ity to incorporate domain-dependent constraints — such as non-
negativity, sparseness, and smoothness — leads to stable and in-
tuitive decompositions. ACLS can also incorporate a confidence
matrix C to deal with missing data; setting an entry of C to zero
will cause the corresponding measurement to have no effect on the
factorization. We use the matrix C to implicitly separate skylight
and sunlight components.

Formally, each application of ACLS decomposes an m × n data
matrix F(t), where m is the number of pixels in the image and n is
the number of frames in the time-lapse sequence, into the product
of an n × k weight matrix W and a k × m basis matrix H(t).
The algorithm takes k, the number of basis curves, as input. We
set k = 1 for the decompositions shown in this paper. We apply
ACLS in two separate steps to factor a matrix of measured spatio-

temporal appearance profiles F(t), first factoring Isky(t) and then
solving for Isun(t)).

5.1 Skylight Factorization

Multiplying the appearance profiles Fi(t) in Figure 4(a) by (1 −
Si(t)) yields the appearance profile of points in shadow as shown
in Figure 4(b). We perform ACLS factorization using F(t) as the
data matrix and (1− S(t)) as the confidence matrix to solve Equa-
tion (3). This ensures that we consider only shadowed pixels. Note
that this is a different strategy from using interpolation to fill in data
for unshadowed pixels, as we would need for factorization meth-
ods that do not consider confidence. However, because we have
many frames in the sequence, the system of equations is highly
over-constrained for a small number of basis curves. Intuitively, if
we are missing data at one pixel we probably observe it at another
pixel with a similar normal and appearance profile.

Figure 4(b) shows the skylight basis curve and its fit to the input
data. We reconstruct the estimated Isky(t) using Equation (3). Fig-
ure 6 shows the skylight image Wsky and a single frame of the
reconstructed Isky(t). The skylight image is related to both surface
albedo and ambient occlusion, where the ambient term for a point
on a surface is determined by how occluded that point is by other
surfaces in the scene (i.e., the darker the pixel, the less skylight it re-
ceives or reflects). The reconstructed images Isky(t) approximate
how the scene would look throughout the time-lapse sequence in
the absence of direct sunlight.

Figure 6: Top: Skylight image. Bottom: Reconstructed sky image.
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Figure 7: Example frames for each dataset (first row) and appearance profiles (second row) of pixels A, B, and C (red channel). In the third
row are the aligned appearance profiles and estimated sunlight basis curves (black). The profiles were aligned and scaled using the estimated
shifts Φi and Wsun for pixels A, B, and C.

5.2 Sunlight Factorization

The reconstructed images Isky(t) are subtracted from the origi-
nal data F(t) and the result is clamped to 0 to form the matrix
Isun(t). Multiplying Isun,i(t) by Si(t) yields the appearance pro-
file of frames when the points are illuminated only by sunlight as
shown in Figure 4(c). Using Isun(t) as the data matrix and S(t) as
the confidence matrix C thus ensures that only the sunlight compo-
nent at every pixel is considered during the factorization. We run
ACLS to solve Equation (2) and compute the basis curve Hsun, the
sunlight image Wsun, and the shifts Φi.

In order to adapt ACLS to handle the time-offsets necessary to im-
plement Equation (2), we modify the iterative update stage of the
algorithm. Specifically, the original algorithm alternates between
phases in which H(t) is held fixed while W is optimized using
least squares, then vice versa (this is an instance of the principle of
expectation maximization in inference). In order to incorporate the
shifts Φi, we shift the entire matrix H(t) by +Φi when updating
Wi and, similarly, shift each row i of F(t) by −Φi during updates
of H(t). Finally, we introduce a third update phase during the it-
eration, in which we update Φi by finding, for each pixel, the shift
that minimizes error. The metric used here is the same as that for
updating W and H, i.e., the confidence-weighted Euclidean error
between the scaled and offset basis curve H(t) and F(t). As with
ACLS, our modified algorithm reduces error at each iteration, and
is guaranteed to converge to a (possibly local) minimum.

Figure 4(c) shows the sunlight basis curve Hsun(t) and its fit to
the input data, and Figure 8 shows the sunlight image Wsun and
the reconstructed image Isun(t). The harsh black shadows in the
reconstructed image Isun(t) are similar to images taken in a vac-
uum without atmospheric light scattering, such as images from the
moon. Figure 8 (bottom) shows the shifts Φ for the sun component.
This image is a good estimate of the partial geometry (normals) of

Figure 8: Top: Sunlight image. Middle: Reconstructed sun image.
Bottom: Shift map.

the scene. If we have time-lapse sequences from the same static
viewpoint for different days, it is possible to recover more than just
this one-dimensional approximation of surface normals.
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Figure 9: Original images (a) of the Square sequence compared to our reconstruction with (b) and without shadows (c).

6 Results

The datasets for our experiments come from online webcams 2. As
shown in Table 1, the sequences are of varying length and resolu-
tions, typically captured at intervals in the range of every 15 sec-
onds to every 5 minutes. All of the datasets were originally com-
pressed. We extracted the individual frames and automatically re-
moved the regions covered by the sky using the sky-mask. All re-
sults in this paper and video were computed without sky. For some
of the results in the paper and the video we composited the sky
regions back into the sequences.

6.1 Reconstruction Quality

Figure 7 shows sample images from four sequences with three pix-
els marked on each. The figure shows the appearance profiles for
the red channel of the pixels over time (similar results are obtained
for green and blue). Similar to Figure 4, the profiles show shad-
owing in the form of discontinuities but otherwise appear similar to
each other. In Figure 7 in the bottom row we show the alignment
of these separate time-varying profiles using the scales Wsun,i and
shifts Φi we estimated in our factored representation for each pixel.
The black curves show the sunlight basis curves for each sequence.
The scaled and time-shifted profiles match the basis curves very
well.

Figure 9 qualitatively shows the accuracy of our reconstruction for
the Square sequence. The reconstruction with shadows accurately
matches the original images. Specific problem areas in this se-
quence are the streets and sidewalks due to parked cars, moving
traffic, and people. Interestingly, our shadow estimation technique
picks up the shadows of moving objects, which are especially vis-
ible in a few of the sequences shown in the accompanying video.

2Data courtesy of: Santa Catalina Mountains, Arizona - Dec 5 2006
(http://www.cs.arizona.edu/camera); Nauvoo Temple. Illinois - Dec 10
2002 (http://deseretbook.com/nauvoo/archive); Yosemite: Half-dome from
Glacier Point - Dec 19 2006 (http://www.halfdome.net/); Tokyo Riverside
Skyline - Jan 08 2007 (http://tokyosky.to/).

In some cases we median-filtered the shadows Ssun(t) temporally
to remove flickering due to moving people, cars, etc. The bottom
row in the figure shows our reconstruction without shadows. It ef-
fectively removes the “ghost” shadows of moving objects and the
large shadow that is visible throughout most of the sequence.

6.2 Error Analysis

Table 1 shows the overall RMS image reconstruction errors for
FTLV that were computed across all temporal frames and spatial
locations. The error is quite large compared to traditional image
and video compression. This is not surprising, since FTLV does
not encode moving objects. To get a better qualitative handle on
the reconstruction error we compare FTLV to principal component
analysis (PCA), a standard matrix rank-reduction algorithm. Simi-
lar to ACLS, PCA decomposes the original spatio-temporal matrix
F into the sum of the mean F̄ and a product of weight matrices W
and basis vectors H. The number of basis vectors determines the
fidelity of the reconstruction.

Figure 10 shows a plot of the PCA RMS reconstruction error versus
the number of PCA terms for each of our sequences. We indicate

Figure 10: PCA RMS reconstruction error vs. number of PCA
terms. The symbol X indicates the RMS error of FTLV.



Dataset # Imgs Resolution RMS Error PCA Terms Raw PCA FTLV w/o FTLV +
Shadows Shadows

Arizona 610 720× 278 14.5% 5 + 1 350 MB 1,118 kB 475 kB 1,665 kB
Temple 590 464× 355 13.7% 2 + 1 278 MB 63 kB 40 kB 541 kB

Yosemite 293 480× 360 10.1% 8 + 1 115 MB 1,040 kB 297 kB 2,289 kB
Tokyo 380 920× 612 15.9% 4 + 1 353 MB 1,200 kB 868 kB 3,601 kB
Square 850 648× 330 12.2% 4 + 1 441 MB 815 kB 765 kB 1,257 kB

Table 1: Datasets and file sizes. Sky pixels were removed from the Raw and PCA estimates for fair comparison with FTLV.

Figure 11: Closeup of a frame in the Arizona sequence. Top: Orig-
inal image. Middle: FTLV reconstruction with 14.5% RMS error.
Bottom: PCA reconstruction with the same error using five terms
plus the mean. Note the blurry shadows in the PCA reconstruction.

the corresponding FTLV error by the symbol X. The number of
PCA terms that are necessary to achieve the same FTLV RMS error
is also shown in Table 1. PCA typically needs more terms (plus the
mean) since FTLV is equivalent to three terms (images). A visual
comparison of the corresponding reconstructed sequences shows
that FTLV is more effective in preserving sharp details, especially
at shadow boundaries (see Figure 11). A reasonable reconstruc-
tion of shadows requires a large number of PCA terms (at least 15
for our datasets). In addition, PCA does not produce a meaningful
description of the data. In particular, PCA allows negative values
in W and H, resulting in a representation whose terms cannot be
edited independently.

6.3 Compression

As can be seen from Table 1, FTLV is a highly compact and efficient
representation for time-lapse sequences. For these comparisons,
we store the skylight, sunlight, and shift images using high-quality
JPEG. The binary shadow functions are stored per pixel. For each
pixel, we store the frame numbers at which shadows start and end
and do LZW compression on these number-pairs. The two basis

curves are stored in ASCII text files. Table 1 shows the file sizes for
raw images, PCA, FTLV without shadows, and FTLV with shad-
ows. The file size of FTLVs is dominated by the encoded shadows.
Of course this is very scene dependent. Scenes with highly complex
shadows (pixels go in and out of shadow many times) have multi-
ple shadow start-end pairs and this is why scenes such as Yosemite
require more storage while Temple or Square require less.

6.4 Editing and NPR

A major benefit of FTLV is that it factors the scene into physically
meaningful components, each of which can be edited to create in-
teresting effects. Edits to the shift image affect surface appearance
by changing their pseudo-normals. An example of this can be seen
in Figure 12, where we show closeups of three frames from the
Yosemite sequence. We added the imprint of the SIGGRAPH logo
to the snow in the foreground by editing the shift map. We also
edited the shadows in that region to keep the logo in sunlight.

Edits to the sunlight image and curve have an effect on surface re-
flectance. Figure 1(d) shows an example of this for the Square se-
quence. We changed the surface appearance of various rooftops by
changing the sunlight curve to be more specular. We changed the
sunlight image to add the SIGGRAPH logo and added windows to
the building in the front by editing the skylight, sunlight, and shifts.
We also selectively removed shadows, for example, for the building
in the background. Note that by simply editing the skylight, sun-
light, or shifts we affected the entire time-lapse sequence. As can be
seen in the accompanying video, the results look visually plausible
and could certainly be improved with more artistic care.

In order to demonstrate the flexibility of our method, we have also
experimented with non-photorealistic effects to generate stylized
images and videos of the input scenes. We first transform the shift
maps Φ into pseudo-normal maps by mapping shifts to angles along
an arc through the sky. In order to slightly add to the plausibil-
ity of the normals, we apply a small shift to the normals based on
the ratio between the computed sky and sun maps (reasoning that
vertical surfaces generally receive less sky illumination than hor-
izontal ones do). While these normals are certainly not accurate,
we nevertheless expect that they are related to the true normals by
some (continuous) function, and they are sufficient as input to ren-
dering techniques such as exaggerated shading [Rusinkiewicz et al.
2006], which seek to emphasize local differences between normals.
We generate our final NPR results by compositing the exaggerated
shading with the sun and sky color maps, as well as (optionally)
the shadow maps. Figure 13 shows results obtained using this tech-
nique for still images, while the supplementary video shows the
result for moving scenes. Note that the computation is temporally
coherent over time, leading to smooth video results (with only sharp
temporal discontinuities due to the motion of shadows).



Figure 12: Edits in the Yosemite sequence to add a logo to the snow. The edits were made in the shift (“normal map”) image, and the results
show plausible time-varying behavior.

6.5 Discussion

As with any least squares factorization approach there are some
practical considerations to keep in mind while applying FTLV to
real-world data. These are closely tied to the behaviour of the fac-
torization and its sensitivity to the various parameters.

6.5.1 Initialization

We have found that in practice FTLV is sensitive to the initial-
ization of the shifts Φ but robust to the initialization of W and
H. We typically initialize Φ with random values in the range
[−(n/2), +(n/2)], where n is the number of frames. This range
may vary from dataset to dataset and is dependent on the distribu-
tion of normals in the scene and the temporal sampling of the data.
For example the Square sequence, with a larger span of effective
normals and temporal sampling, had a larger range. For the Temple
sequence, which has fewer sets of normals, the range was smaller.

Also, while FTLV is robust to small errors in shadow estimation,
drastic errors will corrupt the results. The simple heuristics we use
to compute shadows have worked for most of our datasets. Pix-
els that are always in the shadows are treated as having Wsun =
0 while for pixels that are always in the sun Wsky and Wsun are
estimated with additional constraints based on the sunlight and sky-
light intensities estimated from other pixels.

6.5.2 Computational Costs

Like the original ACLS algorithm and other least squares optimiza-
tions with similarly large amounts of data, FTLV is computationally
intensive. The additional iterations on Φi may be computationally
expensive (especially if the range of values of Φi that we search
over is very large) but in relative terms do not add significant pro-
cessing to the algorithm. Quantitatively, for the Square dataset with
180,000 pixels and 850 frames, our sunlight factorization converges
in about 45 mins on a P4 3.0 GHz with 2 GB of RAM.

6.5.3 Sampling

FTLV performance is also dictated by the temporal sampling of the
input time-lapse sequence. The temporal-sampling limitations on
our algorithms are closely tied to the nature of scene (diffuse scenes
would work with lower sampling, complex reflectances would re-
quire more data points) and camera and image quality (noise, sat-
uration, and compression will corrupt data). In our experiments,
for the Square dataset (which has fairly smooth and clean appear-
ance profiles) we have obtained equivalent results from 60 frames
instead of 850.

7 Conclusions and Future Work

FTLVs are a compact, intuitive, factored representation for time-
lapse sequences that separate a scene into its reflectance, illumina-
tion, and geometry factors. They enable a number of novel image-
based scene modeling and editing applications. The intuitive rep-
resentation enables applications such as shadow removal, relight-
ing, advanced image editing, and painterly rendering. As sophis-
ticated background models FTLVs can be used to model temporal
scene variations and improve tracking. Their compact nature en-
ables compression of large time-lapse datasets.

While our current results factor scenes into single basis curves it is
not difficult to imagine using multiple curves. Our intuition is that
multiple basis curves would relate to different material properties
(e.g., diffuse and specular curves). This will both reduce error and
enable material-based separation of scene elements.

We are currently looking at methods to express images as arbitrary
fractional sums of the sky and sun terms. In future work we would
also like to extend FTLVs to arbitrary illumination, including in-
door scenes, and scenes with participating media, e.g., a time-lapse
sequence captured on a foggy day.

Another limitation is that FTLVs do not handle motion. Moving
objects show up in the residue between original and reconstruction
and could be added back into the sequence. However, to improve
the FTLV factorization it would be beneficial to remove moving
objects first, or to use an initially computed FTLV as a background
model for dynamic object tracking and removal. One could then
try to find a compact representation for dynamic scene elements,
including clouds and the sky.
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Figure 13: Example images for the Yosemite, Temple, Square, and Tokyo sequences. FTLV essentially represents the spatio-temporal video
volume with a set of shadow images (second row) and the skylight, sunlight, and shift images (next three rows). The edited examples (second
to last row) show, from left to right, editing the shift image, relighting, changing reflectances, and removing the skylight. NPR examples are
shown in the last row.


