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Figure 1: An example of selecting poses and transfering them to a 2D character. From an input video, we track the performer’s poses
and cluster them. With our UI, an artist selects pose clusters and uses those clusters as reference for creating a character. Then, our
algorithm automatically drives an animation using pose data from a new performance video.

ABSTRACT
An artist faces two challenges when creating a 2D animated char-
acter to mimic a specific human performance. First, the artist must
design and draw a collection of artwork depicting portions of the
character in a suitable set of poses, for example arm and hand poses
that can be selected and combined to express the range of gestures
typical for that person. Next, to depict a specific performance, the
artist must select and position the appropriate set of artwork at each
moment of the animation. This paper presents a system that ad-
dresses these challenges by leveraging video of the target human
performer. Our system tracks arm and hand poses in an example
video of the target. The UI displays clusters of these poses to help
artists select representative poses that capture the actor’s style and
personality. From this mapping of pose data to character artwork, our
system can generate an animation from a new performance video. It
relies on a dynamic programming algorithm to optimize for smooth
animations that match the poses found in the video. Artists used
our system to create four 2D characters and were pleased with the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IUI ’20, March 17–20, 2020, Cagliari, Italy
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7118-6/20/03. . . $15.00
https://doi.org/10.1145/3377325.3377505

final automatically animated results. We also describe additional
applications addressing audio-driven or text-based animations.
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1 INTRODUCTION
Designing the motion of 2D or 3D characters is a critical part of
creating animated stories. Relative to traditional keyframe-based
workflows, performed animation provides a more convenient way
to specify how characters move. Instead of authoring individual
frames or specifying motion curves, an actor simply demonstrates
the desired movements, which are acquired via video or motion
capture [36] and transferred to the character. For most 3D charac-
ters, the motion transfer is relatively straight forward. Each joint on
the actor typically corresponds to a matching joint on the character,
which allows the continuous motion of the performer to be mapped
directly to the 3D character producing convincing, nuanced anima-
tions. As a result, performance animation is used for a wide range
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of 3D animation scenarios, from feature films to games to special
effects.

In contrast to 3D animation, this paper focuses on a 2D style
traditionally called “cutout animation.” Characters are represented
by layered artwork that is animated through a combination of both
continuous deformations (e.g. an arm bending at the elbow) and
discrete transitions (e.g. a finger point replaced with a thumbs-up,
or an open arm pose replaced with crossed arms) [66]. This style is
prevalent in popular TV shows, such as South Park, The Late Show
[19], Our Cartoon President [54], and streaming content like Twitch
[47] and Final Space Live [28] that include animated avatars. Cutout
animation has also been the subject of recent graphics and HCI
research [60, 66–68]. While traditional cutout animation relies on
keyframes, newly emergent approaches use human performance to
drive animations [19, 67]. Some existing performance-driven tools
transfer face/head motions to 2D characters [1, 10, 50, 68] or convert
audio input to mouth animations [18].

However, no prior 2D animation system supports automatic trig-
gering of arm/hand poses through human performance which sig-
nificantly increases the expressiveness of performance-driven 2D
animation. Directly applying performance animation to 2D charac-
ters is more challenging than the 3D case because of a mismatch
between the degrees of freedom of the actor and character. While the
continuous motion of an actor can theoretically be projected into 2D
and then mapped directly to continuous deformations of the relevant
layers, such deformations produce awkward results for all but the
smallest changes in pose. These continuous 2D deformations can
produce subtle movements, as shown in our results and [22, 46], but
many pose transitions involve larger changes such as a finger point
to thumbs up or crossing arms. As a result, when generating 2D
animations by hand, animators often combine continuous motion
with discrete artwork swaps that represent larger pose changes [52].
Applying this technique in a 2D performance animation workflow
involves two key challenges: 1) at character design time, the artist
must select (and draw) a representative set of poses that cover the
desired range of motions for the character; and 2) at animation time,
the system must carefully time the discrete transitions between the
representative poses based on the movements of the actor.

To address these challenges, we propose a new approach to 2D
performance animation that facilitates the design and animation of
2D characters from reference videos (Figure 1). We start with a
training video of an actor demonstrating the personality and typical
movements of the character. From this video, we analyze the actor’s
poses and provide a pose selection interface that helps an artist
browse and select a set of representative poses to draw. Finally,
given a 2D character with representative poses and a performance
video where the actor demonstrates the desired character motion, our
system automatically generates an animation that transitions between
the appropriate poses via dynamic programming. Since hand and
arm motions are often the most expressive aspects a performance,
our current implementation supports the transfer of upper body
movements to 2D characters.

An important element of our approach is the use of a training
video during the character design process. Not only does this video
help artists select representative poses to draw, it also allows our
system to acquire a mapping from the drawn poses to a set of cor-
responding tracked poses from the training video. We leverage this

mapping to automatically trigger pose transitions based on new
performances and to add subtle continuous motion to the resulting
animations based on the pose variations in the training video.

To evaluate our approach, we recruited four artists to design
and animate 2D characters using our system. All of the animation
examples in our submission were generated based on their designs.
We collected qualitative feedback on their experiences, and their
responses indicate that our pose selection interface helped them
understand the variety of movements in the training video and decide
what representative poses to draw. In addition, we evaluated the
quality of our synthesized animations against manually-authored
results created by a professional 2D animator and the output of two
variations of our animation algorithm. Finally, we demonstrate two
additional applications that our approach supports: audio-driven and
text-based animation.

2 RELATED WORK
Prior work focuses on 3D and 2D performed animations as well as
creating 2D characters.

3D Performed Animation: Many existing techniques have been
proposed for generating 3D animation from performances. The most
common method is through motion capture [36] to control all parts
of the character. In addition, researchers have explored other ways
to synthesize character motion, through analyzing and classifying
performed gestures [49], directly sketching limb movements [57],
and generating gestures from audio features [5, 13, 29, 30, 32, 41,
58] and text [8]. Our work focuses on animating 2D drawn characters
rather than 3D models. Hence, we require different techniques for
mapping human performances to animation.

2D Performed Animation: Prior work in 2D performed anima-
tion presents several different techniques for controlling 2D artwork.
One simple example is mapping the mouth of 2D characters to a
hand opening and closing creating a new version of a sock puppet
with the mixed reality app YoPuppet [23]. Another way is to manu-
ally trigger artwork during a performance [67]. Numerous systems
[1, 10, 50] and previous research [18, 68] focus on automatic head
and mouth animations. Template-based deformation systems allow
for full body movement but are limited to small deformations of the
original template and can not handle larger changes in appearance
such as an open hand to a closed fist [22, 46, 53]. In addition, there
are a variety of methods to animate 2D characters through other
techniques [3, 25, 26, 59]. In contrast, we are interested in handling
large pose changes while automatically animating a 2D character
from an upper body performance.

2D Character Creation: Our 2D characters consist of a multi-
layer representation that defines the relationships between layers.
This representation has been used in previous research and commer-
cial 2D animation systems, including [66] and [1]. In most work-
flows, artists design and create layered 2D characters by drawing
from scratch [20] or by reusing existing static images. Fan et al.
enable the creation of 2D layered characters from multiple still im-
ages of the character [11]. In contrast, we provide a user interface
that leverages an input video to assist artists with the creation of
animated characters.
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Figure 2: Caricatures of Donald Trump from 2D animations. (a) Cartoon Trump giving the State of the Union address. [34]. (b)
Cartoon Trump participating in the GOP debates [9]. (c) Cartoon Trump at a rally [62]. (d) Cartoon Trump watching TV [38].

3 CHALLENGES
Animating a 2D character through performance involves multiple
challenges at different stages of the process.

Capturing Performances: The first challenge is how to capture
performances. Most motion capture systems require specialized
hardware, like UV cameras and tracking markers, that may be in-
accessible or inconvenient for many artists. As a result, we record
performances with monocular video and extract the pose of the
performer through markerless, vision-based pose tracking. This ap-
proach enables artists to easily capture performances using standard
smart phones and digital cameras, or to leverage the plethora of
videos on streaming platforms such as YouTube.

Designing Characters: Another challenge for the artist is how
to encapsulate the personality of a character. When caricaturing a
person for an animation, artistic visions vary widely. Every artist
chooses different aspects of the character to emphasize. For instance
in Figure 2, some artists emphasize Trump’s hair (b,d), other’s his
mouth (c,d) or hands (a). Even with similar poses, such as the arms
open, artists will interpret it differently (Figure 2a,b,c). While the
design of a character’s appearance is part of our workflow to create
a character, we leave the style to the discretion of the artists.

Instead, the challenge that we focus on is the selection of a char-
acter’s poses that best emphasize the artist’s message. Identifying a

key set of poses to draw is hard since the poses must be expressive
enough to cover a range of scenarios and emotions. However, draw-
ing these poses is labor intensive, so we want the set to be minimal
as well. In addition, if the character is modeled after a performer,
the artist may have to carefully watch the performer for some time
to capture the right set of poses. Choosing a representative set of
poses for an animated character is a subjective process motivated by
the aesthetics and creative goals of the artist. Thus, while previous
work on automatic pose selection [2] could provide alternatives to
our specific pose clustering technique, our main goal is to design an
interactive system that assists artists in the selection process. Our
system addresses these problems by proposing a pose-centered video
browsing interface that helps artists identify common poses in the
input video. In principle, the artist could select poses simply by
watching the videos linearly and marking specific frames, instead of
using our clustering based interface. However, this manual workflow
would be cumbersome given that the input videos in our experiments
ranged from 26 to 49 minutes long and included extended periods
where the actor was not visible. Moreover, even after finding the
relevant parts of the footage, the artist may still need to re-watch
sections to determine the most typical and distinct poses.

Generating Animations: When animating, another challenge
is how to transfer human motion to a character. In the 3D world,

Figure 3: System pipeline. (a) The artist obtains an input training video. (b) Acquire pose tracking data from OpenPose [21]. (c)
Process the frame pose data into frame groups. (d) Cluster the poses. (e) The artist selects some pose clusters. (f) The artist designs a
character with the selected poses. (g) The artist finds another character input video of which parts will be animated. (h) Use Openpose
on the new video. (i) Process the frames into frame groups. (j) Segment the video into smaller result parts. (k) Assign frames from the
segments to one of the artist selected pose clusters based on the pose data. (l) Animate the final character.
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motion capture is easily mapped to a 3D character model because
human joints and their movement are directly transferable to the
joints on the humanoid 3D character. However, when transferring
the continuous input of joint movements to the discrete output of
displaying a 2D artwork layer, there is more ambiguity due to a
character’s design.

For example, during the design process, an artist draws a character
with a pose of wide open arms and hands. In addition, they draw
artwork for clasping hands together showing the backs of the charac-
ter’s forearms with fingers intertwined. When animating, a human’s
pose of wide open arms and hands can be directly mapped to the
character’s first pose. With slight human movement, the 2D charac-
ter can copy the movement through deformations. For instance, the
human flaps their arms and the character’s arms deform up and down
as well. However, if the actor suddenly brings their hands down and
clasps them, the question becomes at what point during the human
movement do the separate artwork layers transition. In addition, the
artist only draws artwork for a subset of all possible human move-
ment. So then, we must determine which piece of artwork to switch
to in order to best approximate the current human pose.

4 WORKFLOW
To address these challenges, we propose a new approach for design-
ing and animating 2D characters (Figure 3). In the description below,
we refer to the person designing the character as an artist, and the
person animating the character as an actor or performer. While it
is possible for the same user to carry out both of these tasks, we
distinguish the roles to clarify the different stages of our proposed
worfklow.

4.1 Designing Characters
The artist starts by obtaining a training video of a human performer
demonstrating the range of poses for the character (Figure 3a). This
video may be created by the actor who will eventually drive the
final animation, or if the goal is to create an animated version of
a celebrity, it may be possible to find existing recordings to use
for training. To facilitate pose tracking, the performer in the video
should mainly be facing the camera with their hands in full view as
much as possible.

Next, the artist uses our pose selection interface to identify repre-
sentative poses for the character based on the training video. After
loading the video into our system, the artist sees a set of candi-
date poses extracted from the video (Figure 3e and 4). The system
categorizes poses based on which hands are visible (Both Hands,
Left Hand, or Right Hand) to help artists quickly browse related
poses. In addition, since every pose generally corresponds to several
frames in the video (i.e., poses represent clusters of similar video
frames), our interface sorts the poses based on the cluster sizes, so
that common poses are easy to identify. For each pose, the system
shows a visualization of the extracted joint positions from up to 50
frames within the cluster and a looping sequence of actual video
frames (represented as an animated gif) that map to the same pose.
To explore a candidate pose in more detail, the artists clicks the
Details button to see a new page showing gifs of several different
video frame sequences associated with the pose, sorted based on
their similarity to the “average” pose within the cluster.

Using this interface, the artist selects the desired number of rep-
resentative poses for the character. By categorizing, sorting and
visualizing poses as described above, our interface helps users focus
on promising candidate poses without examining every individual
pose cluster. However, the artist still ultimately has the freedom to
pick whichever poses they decide will best capture the character they
are designing. For most animations, it is useful to have a designated
rest pose that the character returns to whenever the performer is
not explicitly striking a pose. By default, the system labels the first
selected pose as the rest pose, but the artist can override this choice.

Finally, after selecting representative poses, the artist creates a
drawing for each pose cluster (Figure 3f). Our system associates
these drawings with the corresponding poses.

4.2 Generating Animations
Generating a new animation of the 2D character requires a perfor-
mance video where a human actor demonstrates the desired perfor-
mance (Figure 3g). This video can either be recorded by the actor
or obtained from existing footage, just like the training video. Our
system automatically synthesizes an animation that moves through
the representative poses based on the recorded performance (Fig-
ure 3k). While we create a simplified stick figure previz version of
the animation (Figure 3k), the most compelling results are created
by artists (Figure 3l and 9).

5 METHODS
Our approach includes automated algorithms for extracting pose data,
clustering similar poses, and generating pose-to-pose animations.
Here, we describe these methods and explain how they support the
proposed workflow.

Figure 4: The user interface for selecting clusters. Top, the clus-
ters selected by the artist. Bottom, all the pose clusters sepa-
rated by hand type.
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5.1 Extracting Poses
Our pose selection interface and performance-driven animation tech-
nique require analyzing the pose of a human actor in training and
performance videos. Recent work on pose estimation from monoc-
ular video suggests that neural networks can be very effective for
this task [7, 12, 37, 42]. We use the open source library of OpenPose
[21], based on the publications of Simon et al. [55] and Wei et al.
[65], to extract pose information for each video frame (Figure 3b).
Since we focus on upper body performances, we only consider the
(x, y) coordinates and confidence scores for the hand, arm and neck
joints.

5.2 Processing Poses
Given that poses in consecutive frames are typically very similar,
we segment videos into frame groups that represent distinct poses
(Figure 3c). Operating on frame groups significantly reduces the
computational cost of the clustering and frame assignment algo-
rithms described below.

As a first step, we filter out frames with either no detected people
or more than two people. For each frame containing one to two
people, we select the one whose bounding box centroid is closest
to the center of the image as the primary subject. We then compute
a feature vector that encodes the upper body pose of the primary
subject. The dimensionality of the vector depends on the number of
hands that are visible in the frame (i.e., ≥ 75% of the hand joints
are within the image bounds). If both hands are visible and three or
more finger tip joints on each hand are detected with high confidence
(greater than 1%) the frame is a Both Hands pose. If there are three
or more high confidence finger tips for only one visible hand, the
frame is either a Left Hand or Right Hand pose. Otherwise, we
label the frame as having No Hands. As noted earlier, our pose
selection interface organizes the training video into these pose types
to facilitate browsing.

We compute a pose feature vector for all Both Hands, Left Hand,
and Right Hand frames. The feature vector includes the (x, y) values
of each wrist joint relative to the neck joint and the distance from
each finger tip to the corresponding wrist joint. The wrist positions
capture gross arm movements, and the finger distances encode fine-
grained information about the hand shape. We also experimented
with other feature vectors that included individual finger joint angles,
but these suffered from unreliable joint data, projection ambiguities,
and the curse of dimensionality (i.e., too many degrees of freedom).
We found that finger distances provided a compact representation
with sufficient expressive power to distinguish between different
hand poses.

Next, we normalize the feature vectors to account for camera
changes or cuts that make the person bigger or smaller in relation to
the frame. We estimate the scale of the subject in each frame by com-
puting the inter-shoulder pixel distance relative to the frame diagonal
and construct a histogram based on this measure, which represents
the distribution of such scales across the video. To reduce noise, we
smooth the distribution with a Gaussian filter (σ = 5px), as shown
in Figure 5. Then, we identify sets of frames with approximately
the same subject scale by splitting the histogram into sections with
boundaries at the local minima of the smoothed counts. For each
section, we compute a normalization factor by taking the median

Figure 5: A histogram of shoulder pixel distances relative to the
frame diagonal for normalizing the feature vectors. All frames
with good hand data were counted. The red line is the smoothed
distribution used to split the counts into sections. There is a cam-
era shift represented by the gap of distances between 0.21 and
0.25.

inter-shoulder distance and dividing it by the median distance for the
entire video. We then normalize the feature vector for each frame
with the corresponding normalization factor. Sections that have very
low counts (< 1% of all frames) typically arise from quick zooms
or cuts to different people or the subject turning to the side. We treat
these as outliers and label them as No Hands poses.

Once the feature vectors are computed and normalized, we split
the frames into frame groups, which are consecutive frames that
represent a pose. To construct these groups, we visit each frame in
order, adding it to the current frame group until either the hand type
changes or the Euclidean distance between the current pose feature
vector and the first one in the frame group is greater than a threshold
of 60. If either of these conditions are met, we start a new group. We
use the feature vector of the middle frame to represent each frame
group.

5.3 Clustering Poses
Our pose selection interface presents artists with candidate poses that
cover the range of motions in the training video. To compute these
candidates, we cluster the pose feature vectors of all frame groups
for each hand type into sets of similar poses (Figure 3d). We note
that the notion of “similar” here is not well-defined. For instance,
should a pose with open fingers and open straight arms be grouped
with closed fists and open straight arms? Or should the closed fists
and open straight arms be grouped instead with closed fists and
slightly bent arms? Depending on the scenario, either grouping may
be preferred. Since there is no one correct answer, our goal is to
provide a reasonable clustering to help artists select representative
poses when designing a character.

To this end, we experimented with various clustering methods
(DBSCAN, MeanShift and Affinity Propagation) using a range of pa-
rameters and visualized the results using t-SNE [31]. We restricted
our exploration to techniques that adaptively determine the total
number of clusters. In the end, we found that sklearn’s Affinity Prop-
agation [17] (with damping set to 0.51) provided the best balance
between too few and too many clusters. Figure 6 shows example
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clusters and some of the frame groups they contain. For our results,
we had 150 to 300 clusters per character.

5.4 Mapping Performance to Animation
To generate an animation from a given performance video (Fig-
ure 3g), our system automatically maps the video frames to the
representative poses of the character (Figure 3k). In addition, we
introduce a simple technique to add subtle continuous motion to the
animation based on the pose variations from the input training video.

5.4.1 Frame Assignment. As a first step, our system processes
the performance video in the same manner as the training video to
extract frame groups (Figure 3h,i). We then map the sequence of
frame groups to a sequence of representative character poses via
dynamic programming [4] (Figure 3k).

Assignment Energy: Our optimization solves for an assignment
{a1, a2, . . . , an} where n is the number of frame groups in the
performance video, and ai is the assigned pose cluster for frame
group i that minimizes the following energy:

E({a1, a2, . . . , an}) =
m≪n∑
j=1

kL · EL(a
∗
j ) + kP · EP (a

∗
j )

where a∗
j is the jth contiguous run of frame groups with the same

held pose assignment, which we refer to as a segment; m is the
number of segments; EL is a length energy that prevents each seg-
ment from being too short; EP is a pose energy that measures the
similarity of an assigned pose to the set of tracked poses in the corre-
sponding frame groups; and (kL, kP ) are weights that trade off the
importance of the two energy terms.

Length Energy: The length energy applies a quadratic drop off
to penalize segments that are shorter than a threshold ϕL:

EL(a
∗
j ) =


(
(3nj − ϕL)

ϕL

)2

if nj < max(cL, ϕL)

0, otherwise

Figure 6: Three clusters (above) and three example frame
groups from each cluster (below).

where nj is the total number of frames in the segment, and cL is the
average length of all the training frame groups in the corresponding
pose cluster.

Pose Energy: We define the pose energy of a segment as

EP (a
∗
j ) =

nj∑
i=0

d(p(a∗
j ), pj,i)

where pj,i is the extracted pose from the ith video frame of the jth
segment in the assignment; p(a∗

j ) is the pose closest to the assigned
cluster’s centroid; and d(p1, p2) is the distance between two poses.
We compute this pose distance based on the hand types for the two
poses. If they match, then we use the Euclidean distance between
the feature vectors. If they do not match, we set the pose distance
to a constant kD . If the ith video frame does not have a pose (no
people or hands in the frame), then we use the Euclidean distance
between the assigned pose cluster and the rest pose cluster.

Constants: Our frame assignment algorithm includes constants
(kL, kP , kD, ϕL) that control the relative strengths of the energies,
how likely a pose is to switch to a different hand type, and how
short segments should be. As we discuss in the Evaluation section,
we searched over a range of potential parameter values and found
that defaults of kL = 2, kP = 1, kD = 0.7, ϕL = 15 generally
produced the best results.

5.4.2 Continuous Movement. The optimization above gener-
ates a sequence of character poses based on the performance video.
To increase the expressiveness of the resulting animation, we add
continuous movement to the character’s hands for each held pose.

First, we determine the range of hand motions within a cluster
from the training video poses that correspond to each held character
pose. More specifically, we align all the cluster poses spatially based
on the position of the neck joint so that they occupy a shared space
and then compute the convex hull of the wrist joint positions (Fig-
ure 7). Then, we generate a randomized motion path for each hand
by constructing a Bezier curve inside the convex hull. Starting at
the wrist position for the center frame of the cluster, we add Bezier
control points one at a time by translating along a randomly varying
vector. At each iteration, we rotate the vector by a random angle
between -90 and 90 degrees and scale the vector by a sine function
whose amplitude is between 50% and 175% of the square root of the
convex hull’s area. If the resulting vector moves the control point
outside the convex hull, we construct a new random vector until we
obtain one that stays within the boundary. Finally, we deform the

Figure 7: Visualization of continuous movement in clusters. The
pink and purple areas are convex hulls. The green lines are mo-
tion paths.
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artwork by moving a control handle positioned near the character’s
wrist along the motion path [66].

Note that we could also generate similar continuous movements
by attempting to map hand motion from the performance video
directly to the character poses. However, our technique allows us to
generate subtle continuous movements even if the performer does not
move their hands. Moreover, as discussed in the Other Applications
section, our approach can be applied to synthesize continuous motion
in settings where there is no explicit pose data driving the animation
(e.g., using audio or text as input).

5.5 Implementation
Our system is implemented in Python and run on a MacBook Pro,
2.5 GHz Intel Core i7, 16GB DDR3. We use the numpy1 and scikit-
learn2 libraries for processing and clustering algorithms. In addition,
we use Adobe Character Animator as the animation engine for creat-
ing our results [1].

6 RESULTS
To showcase our method, we generated animations of four different
characters that were designed based on famous personalities. Here,
we outline the process for creating those results.

6.1 Input Videos
We searched for existing footage of individual subjects “performing”
in front of a camera to use as training and performance videos. Broad-
casts of presentations and speeches were a convenient source of data
because speakers typically face the camera and move through a wide
range of poses (some more so than others!). In the end, we selected
footage of Anthony Scaramucci, Donald Trump, Hillary Clinton
and Sheryl Sandberg. The videos of Scaramucci are from a White
House Press Briefing (ScarWH, 49 minutes) [39] and the Davos
Conference (ScarDavos, 31 minutes) [15]. Donald Trump’s videos
are from the Arab Islamic Summit (TrumpAIS, 34 minutes) [44]

1http://www.numpy.org
2https://scikit-learn.org/stable

Figure 8: Pose tracked frames from training videos. (a)
Anthony Scaramucci (ScarWH) [39]. (b) Donald Trump
(TrumpAIS) [44]. (c) Hillary Clinton (ClintonNV) [45]. (d) Sh-
eryl Sandberg (SandPent) [63].

Scaramucci Trump Clinton Sandberg
Too many or few people 23% 1% 1% 17%
No Hands 35% 8% 15% 7%
Both Hands 23% (6) 51% (7) 60% (7) 74% (11)
Left Hand 2% (1) 31% (0) 15% (1) 1% (3)
Right Hand 17% (3) 9% (1) 9% (1) 1% (2)

Table 1: Distribution of frame types in each training video and
the number of artist selected representative poses in parenthe-
ses.

and the Davos Conference (TrumpDavos, 16 minutes) [16]. Hillary
Clinton spoke at rallies in Nevada (ClintonNV, 26 minutes) [45] and
Florida (ClintonFL, 24 minutes) [43]. The video of Sheryl Sandberg
is from a presentation at the Pentagon (SandPent, 46 minutes) [63].

We used ScarWH, TrumpAIS, and ClintonNV as training videos
and reserved the remaining footage to extract performance videos.
SandPent was used as both the training and performance video. Fig-
ure 8 shows frames from the training videos which were processed
into frame groups and then clustered. Table 1 shows the distribution
of pose types in the training videos. In most cases, the speaker was
the only person in the frame for the majority of the video. In all of
the videos, both hands appeared in the frame more frequently than
just a single hand.

6.2 Character Creation
We asked four artists to use our system to create 2D characters. First,
the artists chose representative poses for each character using our
pose selection interface. Table 1 shows the distribution of selected
poses across hand types. Then, the artists created the corresponding
artwork for these poses (Figure 10). For Scaramucci and Sandberg,
the artists created the artwork from scratch. For Trump and Clinton,
the artists were given the source artwork for the cartoon versions
of the politicians from The Late Show with Stephen Colbert to
edit [19, 67]. Figure 9 shows the different styles of these characters.

6.3 Segment creation
To create performance videos for our results, we extracted short
segments from the footage that we reserved for generating anima-
tions (Figure 3j). We considered 10 second clips that contained a
single person, which is long enough to convey the personality of
the character but short enough to prevent fatigue when viewed mul-
tiple times in our user evaluations, which we describe in the next
section. In order to cover a range of animated results, we selected
segments with different amounts of movement, which we estimate
as the average standard deviation of the hand-related feature vector
dimensions across all segment frames normalized by the standard
deviation of all performance frames. To ensure that we can compute
this movement score reliably, we only consider clips where 90% of
the frames contain a valid hand pose. After computing the movement
score for all 10 second clips in each reserved piece of footage, we
discard those with scores in the bottom half since many such clips
included almost no movement at all. From the remaining segments,
we chose low, medium and high scoring segments that do not overlap
by more than half of their duration to use as performance videos for
generating animations.
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Figure 9: Characters created by artists. For animations and other details, see our supplemental materials and video. (a) Anthony
Scaramucci ©Diano Lao. (b) Donald Trump∗. (c) Hillary Clinton∗. (d) Sheryl Sandberg ©Raya Ward. ∗Elements from Our Cartoon
President - Courtesy of CBS Television Studios.

6.4 Final Animations
For each chosen segment, we generated a final animation using
our dynamic programming optimization with the parameters kL =
2, kP = 1, kD = 0.7, ϕL = 15. For comparison, we created re-
sults with and without continuous hand movement. Please see our
supplemental materials and video for the animations.

7 EVALUATION
To evaluate our system and assignment algorithm, we gathered quali-
tative feedback from the artists. In addition, we ran surveys exploring
the assignment energy’s parameters as well as comparing the final
animations.

7.1 Artist Study
Four experienced artists, with backgrounds focusing on illustrations
and painting, were recruited to draw the characters. First, we asked
each artist to watch the character’s training video. This process took
between 10 to 30 minutes, with some artists just skimming through
the video since they were already familiar with mannerisms of the
person. Next, artists selected clusters with our UI (Figure 4). Three
out of four artists took 15 minutes or less, and found the process
“easy”, “straightforward”, “enjoyable” and “simple.” Clusters were
selected based on characteristics of the actor, uniqueness, and em-
phasis.

The following step for the artists was to design and draw the
characters. When creating a character from scratch (Scaramucci and
Sandberg), the artists took between five to twelve hours. They spent
most of that time drawing arm and hand poses and found the cluster
summary images helpful. However, artists indicated that drawing the
face was also time consuming. When editing an existing character

(Clinton and Trump), artists took between three to four hours. For
those characters, the artists were able to reuse portions of existing
drawings to match the pose clusters. While these artists did not
iterate on their characters due to time constraints in our study, our
system does allow for iteration when selecting poses and designing
a character.

The artists also filled out a questionnaire regarding their opinions
about their character’s animations. Overall, they thought that the
animations matched the characters’ movements and the continuous
motion added richness by smoothing the transitions between poses.
Given the limited number of poses, they felt that the animations
captured the personality of the character. While the pose animations
matched performance video clips the best, one artist felt that the
audio driven animations (introduced below) looked more natural.
Additional areas for improvement were also mentioned by the artists.
For some of the results, the animations were a little jittery and defor-
mations made the arms and head look uncanny. Causing additional
concern was when the animations transitioned between very differ-
ent looking poses too quickly making the character appear robotic.
If given the opportunity to revise their character, one artist wished to
decouple the left and right hand pose drawings for more expressive-
ness. Two artists mentioned that they would create additional hand
poses for more variation and smoothness.

7.2 Parameter Tuning
To determine the sensitivity of the animation quality to the different
parameters in our energy function, we ran a survey varying the
constants kL, kD, ϕL while keeping the pose energy weight kP
fixed at 1. For kL, the length energy weight, we tested the values
0, 2, and 4. For kD , we tested the values 0.5, 0.7, and 0.9. The ϕL

values, which represent the minimum sequence length, consist of

Figure 10: The artist selected pose clusters (top) and renderings (bottom) for Anthony Scaramucci. ©Diano Lao
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Figure 11: Comparing different types of animation. We deter-
mine the relative rankings from pairwise comparisions by using
the Perez-Ortiz method [48]. They use an inverse cummulative
normal distribution to map probabilities into JOD distances.

5, 15, and 30 frames. When changing one variable, the others were
set to the default values of kL = 2, kD = 0.7, and ϕL = 15. As a
baseline for comparison, we included videos where the audio track
and animation were generated from different performance video
clips.

For the study, we showed the viewers three videos, the 10 sec-
ond performance video clip and two animated results side-by-side.
Since we wanted to understand the impact of the parameters inde-
pendent of the artwork style for a given character, we generated
all animations in a stick figure previz style (Figure 3k). We asked
users “Which animation best characterizes the poses of the person
in the original video?” Each user performed 24 comparisons, four
of which were sentinels consisting of a constant pose for the whole
10 seconds. The comparisons rotate between characters so that the
user does not see a character twice in a row. Within a character, the
parameter comparisons and location on the screen (left or right) were
randomized.

We ran the experiment using Amazon Mechanical Turk (AMT)
[6] with 60 participants. We paid each participant one dollar for
their work, and we collected 4 separate judgments for each indi-
vidual comparison. All of our animations were preferred to the
switched audio baseline. In addition, participants liked shorter se-
quence lengths (ϕL), resulting in more movement during the ani-
mation. However, they preferred animations with some smoothness
measured by kL = 2, 4 to those without it (kL = 0). In addition,
participants liked higher values of kD which correspond to more
closely matched hand pose types instead of switching to a different
type.

7.3 Final Animations
To evaluate the quality of our results, we ran a similar study, with
different participants, with animations using the artist created charac-
ters. We used our system to generate animations with (Pose, motion)
and without (Pose, no motion) continuous hand motion. As baselines,
we created a No smoothing result by setting the length energy weight
kL to zero and a Random pose result by generating a random value

for the pose distance d(p(a∗
j ), pj,i) at every frame. These baselines

did not have continuous motion. We also compared against manually
authored results (Manual) from a professional animator who speci-
fied when to transition between representative poses based on the
input performance video. The animator chose not to use continuous
motion in their results.

To compare the animations to each other, we ran an AMT experi-
ment with the same format as the parameter tuning study described
above. In this study, we collected five separate judgments for each
pair of animations. To analyze the pairwise comparisons, we used
the Thurstone method [61] modified by Perez-Ortiz et al. [48] to
determine the relative rankings of each animation type (Figure 11).

The findings suggest that our animations better characterized the
poses in the video than either of the baselines or the manual versions.
Pose, no motion was preferred with a probability of ∼70% (0.85
and 0.9 JOD) over the No smoothing and Random pose baselines,
and ∼60% (0.6 JOD) over the Manual results. Pose, no motion
was also preferred with a probability of ∼55% (0.15) compared to
Pose, motion. However, participants mentioned that they had trouble
determining the subtle differences between the pose animations with
and without motion.

8 OTHER APPLICATIONS
In addition to generating animations based on performance videos,
our approach supports the synthesis of 2D animations from other
inputs. We have implemented prototypes that use vocal performances
and annotated scripts to drive animations.

8.1 Audio-driven Animations
Using speech to drive animation is a well studied topic [5, 13, 29, 30,
41, 58]. While all of these methods use various acoustics features to
produce continuous 3D movements, we use similar features (prosody,
intensity, timbre) to transition between the drawn poses of a 2D
character.

We develop a prediction network that takes audio samples as input
and generates a corresponding sequence of pose assignments. Once
the artist has selected representative poses with our pose selection
interface, we train the network with the audio track from the training
video. By running our pose-driven animation synthesis algorithm on
the training video, resulting in sequences of representative poses, we
obtain ground truth output for the network. The network architecture
is akin to the audio prosody prediction network presented by Wang
et al. [64]. First, we extract acoustic features from the audio at each
video frame. Three features are extracted using SPTK [14] with a
window size of 1024: intensity in dB, a 13-coefficient MFCC [40]
representing timbre information, and fundamental frequency (F0)
representing the prosody. These features are concatenated together
and serve as the input to the network.

The neural network consists of three convolutional layers and two
LSTM layers. The first convolutional layer is a size-1 convolution of
128 channels that transforms the input features independently into
128 channels. The next two convolutional layers are of size 5 and 256
channels. For the LSTM layers, the first is a bi-directional LSTM
that summarizes the input and the second is uni-directional to which
a fully connected layer is attached at each time step to produce logits
for the final prediction. The logits are passed through a softmax layer
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to output the posterior distribution for each representative pose. A
dropout rate of 20% is added to the LSTM to prevent overfitting.
To train the network, we randomly extract 8–12s training video
segments and use the audio track and corresponding representative
poses as an input-output pair. In addition, an Adam optimizer with a
learning rate of 0.001 is used [27]. After the network is fully trained
with about 50 epoches, we use it to generate pose probabilities for a
new performance audio clip.

For a direct comparison, we split the new audio into “frames”
based on the training video’s frame rate. To assign a frame to a
representative pose, we apply our dynamic programming algorithm
using the pose probabilities from the audio network (which we refer
to as the audio energy) in place of the pose energy in our pose-
driven technique. In particular, we expand our previously defined
assignment energy by adding kA · EA(a

∗
j ), where EA is the audio

energy and kA is the corresponding weight. We define the audio
energy as:

EA(a
∗
j ) =

nj∑
i=0

1− Pi(a
∗
j )

where Pi(a
∗
j ) is the probability from the network of assigning the ith

frame of the jth segment. When using audio to create an animation,
we set kL = 2, kP = 0, kA = 1, and ϕL = 15. The final animations
are available in our supplemental materials.

In addition to acoustic features, we also experimented with lin-
guistic features. We used a speech recognizer to extract words and
timings from the audio. For each training video frame, we compute
the frame position inside a word and the word position inside the
sentence. For example, if a frame is the 3rd frame of a word that
lasts 10 frames long, its frame position is 0.3. We also add a binary
feature to represent whether there is vocal activity at a frame. To
characterize the functionality of a word, we use Google’s word2vec
[35] embedding to transform a word into a real-valued vector. Then,
we concatenated the position information and the word embedding
together to use as the network input. We ran some preliminary ex-
periments comparing animations generated with the acoustic versus
linguistic features and found that the acoustic features generally
produced better results.

8.2 Text-based Animations
Another way to animate characters is to associate words in a script
with specific motions, as demonstrated in the TakeToons system [60].
Our approach makes it possible to augment text-based animations
using continuous motions for each triggered pose. To demonstrate
this idea, we implemented a simple prototype based on TakeToons.
Given a speech recording, we created an annotated transcript that
emphasizes specific words with representative poses of the target
character. We use a forced alignment algorithm [56] to generate
timings for each word in the audio [51] and then generated a cor-
responding animation that triggers the specified pose at the start of
each annotated word. We then hold that pose until the next annotated
word is spoken. For each held pose, we add continuous movement
using the method described earlier in our pose-driven animation
algorithm. For our text-based results, we exaggerated the continuous
movement by doubling the size of the convex hulls that bound the

motion paths for the hands. Please see our supplemental materials
and video for example animations.

9 LIMITATIONS AND FUTURE WORK
While our system works well for a variety of input videos and drawn
characters, several aspects offer opportunities for improvement. First,
when selecting input videos, we prefer those in which the actor
mostly stays stationary and faces the camera. Our system can handle
slight changes in body position or camera cuts to different scenes,
but artists tend to have better selection and assignment of poses
if their characters and camera movements are relatively stationary
(aside from arm and hand motion). While our examples focus on
frontal poses, our approach would also work with other views (e.g.,
profile, three-quarters) provided the performer stays in that orienta-
tion. Handling twists, 3D rotations, and full-body animations would
require extending our pose feature vector and distance computation
to capture the relevant 3D spatial and temporal information. These
are interesting directions for future work.

Second, our system relies on the pose data acquired from Open-
Pose [21]. While OpenPose is highly accurate, it will often fail to
detect hands and fingers in frames that suffer from considerable
motion blur. In such cases, we can only classify the frame as a single
hand or no hands even though there are in fact both hands visible.
This misclassification results in some left or right hand clusters
having frame groups with both hands visible.

When selecting pose clusters, our artists offered other suggestions
for improvement. Some felt that there were too many clusters dis-
played especially since some clusters are visually similar. One artist
thought that the display of selected clusters was insufficient and
wished for a better interface to determine if a cluster that they were
considering was close to another that was already selected. Finally,
when commenting about the quality of animations, artists found that
it was jarring to transition from one pose to another very different
pose. One way to address this concern would be to add another term
into our assignment energy that favors transitions between clusters
that are visually similar.

10 CONCLUSION
We present a system to help artists design and animate 2D characters
based on reference videos of an actor. In particular, our tool assists
artists in choosing representative hand and arm poses to design a
character that encapsulates the personality of the actor. Then, we
automatically trigger those poses to synthesize animations based
on other reference videos, audio input or text. This process enables
both amateurs and professional animators to easily animate the arm
and hand poses of 2D characters. Four artists used our system to
create 2D characters and were pleased with the final automatically
synthesized animations. In addition, users felt that our automatically
synthesized results characterized the personality of the actor in the
reference video better than manually created animations.
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