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Abstract
We introduce a theoretical framework and practical al-

gorithms for replacing time-coded structured light patterns
with viewpoint codes, in the form of additional camera loca-
tions. Current structured light methods typically use log(N)
light patterns, encoded over time, to unambiguously recon-
struct N unique depths. We demonstrate that each addi-
tional camera location may replace one frame in a tempo-
ral binary code. Our theoretical viewpoint coding analysis
shows that, by using a high frequency stripe pattern and
placing cameras in carefully selected locations, the epipo-
lar projection in each camera can be made to mimic the
binary encoding patterns normally projected over time. Re-
sults from our practical implementation demonstrate reli-
able depth reconstruction that makes neither temporal nor
spatial continuity assumptions about the scene being cap-
tured.

1. Introduction

Range imaging has proven useful in a large number of
application areas. Nearly all high quality range estimation
methods use some sort of actively projected light to code
space. These light codes are later observed by cameras and
decoded to determine depth. If a particular system is to ob-
tain a range resolution of 1/Nth of the working volume, then
it will need N codes to uniquely code space. If the method
uses binary codes then log(N) bits of information will need
to be encoded by some method.

Some methods code these log(N) bits of information
temporally using a succession of changing patterns so that
each pixel receives a unique code over time. Unfortunately
this places a temporal coherence constraint on the scene: it
cannot move too fast or successive codes will not fall on the
same scene elements. Other methods code the log(N) bits
of information into a small spatial neighborhood, so that
each point in the scene has a unique coded pattern projected
onto it. Since the pattern is static, fast moving objects can be

measured. Unfortunately, detection of the correct code re-
quires an assumption of surface continuity in a small neigh-
borhood around each pattern. If an object edge or depth
discontinuity breaks the pattern, range cannot be sensed.

In summary, all existing methods are limited in either
spatial or temporal resolution—this limitation is fundamen-
tal to the techniques used to encode and reconstruct depth.
No methods yet proposed have provided a unique coding of
space while requiring neither spatial nor temporal continu-
ity constraints. Where would the bits of information go, if
not into spatial or temporal neighborhoods?

This paper proposes that a unique coding of space can
be induced by a single high frequency projected pattern
and enough appropriately-positioned cameras. Although it
is counterintuitive that a single projected pattern can in-
duce different codes from different viewpoints, it can be
shown using an analysis that replaces the concept of epipo-
lar lines with a new construct called the epipolar segment.
The epipolar segment is a restricted subset of the epipolar
line that covers only the working volume, rather than all
of space. Careful positioning of cameras ensures that the
epipolar segment’s projection onto each camera has a dif-
ferent code. The actual computation of depth is performed
using a variant of existing multibaseline stereo methods that
robustly accounts for occlusion.

This paper makes two specific contributions:

• It proposes a new theory for range imaging that allows
the unique bits of depth information to be precisely
coded using camera viewpoints rather than using time
or space.

• It uses the theory to demonstrate a range imaging system
design that guarantees correct results and that does not
rely on spatial or temporal coherence.

2. Related Work
A large number of methods have been proposed to ac-

quire 3D shape information, and many good surveys ex-



ist [2, 3, 7, 14, 23, 27, 31]. This section discusses several
classes of techniques most closely related to our work.

Temporal coding: Many range estimation methods uti-
lize time-varying patterns of light to robustly recover depth.
Triangulation range scanners are perhaps the most com-
monly used commercial method in this category. For exam-
ple, laser stripe scanners sweep a single plane of light over
a scene [1, 26, 30]. The plane of light is in a unique location
at each time instant, and can be used to recover depth. Vari-
ations include noting that a limited working volume allows
two simultaneous light stripes to be disambiguated [21]. A
number of other strategies for coding space with a time se-
quence of light patterns exist, including: binary codes [22],
gray codes [6, 13], sinusoidal patterns [12], and intensity
ratios [5]. Some of these triangulation methods have been
implemented in hardware and run at real-time rates [15, 20].
There also exist temporal coding methods based on princi-
ples other than triangulation. For example, time-of-flight
imagers sense the phase of a returning light pulse using
a computation based on several measurements over time
[11, 16, 18]. Although some have been implemented at real
time rates, all of the methods in this category fundamentally
require temporal continuity in the scene being imaged.

Spatial coding: Some structured light techniques code
space using a pattern that varies spatially, rather than tem-
porally. Stripe patterns [4], grid patterns [24], and moiré
fringes [32] are examples of methods that project high-
frequency information and use a phase unrolling or line
counting step to track depth change across a surface. Unfor-
tunately, phase unrolling requires integrability and leads to
ambiguities near depth discontinuities. These ambiguities
may be addressed by projecting lower-frequency patterns
that can be uniquely identified [10, 19, 33]. However, this
requires the surface to be continuous on the scale of the pat-
tern. These methods all make assumptions about the spatial
continuity of objects, either locally or globally.

Spatio-temporal coding: Researchers have attempted to
merge the advantages of temporal and spatial coding. These
methods improve temporal coding by reducing the num-
ber of patterns required and improve the accuracy of spa-
tial coding using the temporal information [9, 25, 34, 35].
These systems produce high-quality depth reconstructions
suitable for both animation [36] and high resolution recon-
struction of static objects [8]. All of these methods require
both spatial and temporal coherence.

Multiview reconstruction: Viewpoint coding relies on
placing cameras at multiple locations to reduce ambiguity.
This methodology is usually called multi-baseline stereo by
the machine vision community. A good survey of mod-
ern methods is due to Seitz et al. [28]. With many cam-
eras, the probability that correspondences arise by chance,

hence result in incorrect 3D estimates, can be greatly re-
duced. Our method differs from prior work in that it is
designed to turn this probabilistic argument into a deter-
ministic one: we select camera positions together with an
easily-distinguishable projected light pattern (e.g., alternat-
ing black and white stripes) such that each subsequent cam-
era systematically constrains permissible 3D locations.

Summary and differences from previous work: View-
point coding differs from prior work in two important ways.
As compared to structured light methods, it does not rely on
spatial or temporal coherence, making it suitable for a wider
class of scenes, including those with moving objects. As
compared to multi-baseline stereo, it allows for guarantees
about the resulting surface reconstruction.

3. Viewpoint Coding
Our viewpoint coding approach argues that multiple

camera viewpoints of a scene may substitute for temporal
or spatial (active light) codes. To do so, we develop a cam-
era configuration in which possible depths of points in the
scene deterministically map to different disparities. With
k camera positions, we are thus able to distinguish between
2k depths, in a manner reminiscent of structured-light meth-
ods.

3.1. Framework for Viewpoints as Codes

Epipolar segment: One of the key insights, that allows
camera viewpoints to act as codes, is that the epipolar line
traditionally used to constrain stereo matching is far too
general. The working volume constrains the range of pos-
sible depths within the epipolar line—this constraint is well
known and has been widely used to enhance the efficiency
of stereo matching. In our work, we focus only on the seg-
ment of the epipolar line corresponding to the working vol-
ume, which we call the epipolar segment. Unfortunately, it
has remained common to visualize the entire epipolar line
in diagrams, making reasoning about viewpoint coding dif-
ficult. Visualizing only the epipolar segment clarifies the
actual constraints substantially.

Figure 1, top, shows a visualization of a multiview cam-
era configuration. The epipolar segment of a single projec-
tor pixel is shown in red: it is the intersection between a
ray from the projector P and the working volume. Figure 1,
middle, shows the traditional visualization of the scene from
camera C1. Note that the epipolar line extends across the
entire image and there are several possible matches. Also
shown is the same view from camera C1, together with only
the epipolar segment. It is clear that the matching ambigu-
ity has been substantially reduced. Figure 1, bottom, shows
the views from each of the remaining cameras. Notice that
the epipolar segment extends across a different number of
stripes in each viewpoint.



Figure 1: Top: A 3D visualization of the epipolar segment, the
portion of the epipolar line lying within the working volume. Mid-
dle: The scene as viewed from C1, with a comparison of visualiz-
ing the entire epipolar line and just the epipolar segment. Bottom:
Views from the remaining cameras: note that the projected extent
of the epipolar segment is variable.

Viewpoints as codes: The changing projection size of the
epipolar segment allows different cameras to represent dif-
ferent codes. Figure 2 shows the pixel intensities along the
epipolar segment in each camera view stacked together into
a single image. Each column is one possible surface depth,
and each row can be thought of as the code provided by a
particular camera. The codes due to cameras with smaller
epipolar segments (in this case, C1 and C2 for example),
are mostly low-frequency, since the small number of stripes
in that segment covers the full depth volume. The codes
for further cameras (C3, C4 and C5) are higher-frequency,
since there are many more stripes within the (longer) epipo-
lar segment. This is similar to the different spatial frequen-
cies typically used for temporal binary codes in structured
light.

Note that the codes due to this simple camera arrange-
ment do not provide sufficient uniqueness to unambigu-
ously recover depth, and we see that three different depths
match the pixel color of ’white’ in all camera views. In this
paper, we show that by carefully choosing camera positions,
the codes can be adjusted so that they uniquely code depth,
in a manner analogous to binary time coded stripe patterns
(see Fig. 3, which now has no ambiguities).

Figure 2: The pixel intensities along the epipolar segment as ob-
served in each camera view are stacked together. Each row can be
thought of as a particular code. Note that in this case, the correct
depth is ambiguous because the codes do not uniquely partition
space.

Figure 3: Changing the location of the cameras allows the ob-
served codes to be changed. By choosing the correct camera loca-
tions, a unique coding resembling binary time codes is possible.
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Figure 4: Top: Simplified (parallel projection) configuration for
deriving our viewpoint coding. Bottom: The first camera of our
viewpoint coding scheme is oriented at an angle of tan−1(1/2k−1).
Additional cameras have angles of tan−1(1/2)k−i, for i = 2 . . .k.

3.2. Deriving Camera Placement

Orthographic cameras: In order to derive the required
camera positions, we begin with a simplified arrangement
with cameras that use parallel projection and a scene that is
completely visible from all cameras. We will see later how
our scheme may be extended to relax these assumptions,
accommodating perspective projection and occlusion. We
assume a cubical working volume of N = 2k voxels on each
side, and consider a single epipolar slice, as shown in Fig-
ure 4, top. A light pattern of alternating black and white
stripes of width 1 is projected onto the scene.

A camera with the same view direction as the projected
stripes will, of course, see exactly the projected pattern.
However, a rotated camera will see a distorted view of
the stripe pattern, with the amount of deviation, or dispar-
ity, proportional to the object’s height above the reference
plane. Consider one such camera, with resolution equal to
that of the stripe projector but its view rays rotated by an
angle of tan−1(1/4), as shown in Figure 4, bottom.

With this orientation, the disparity of any point within
the working volume is constrained to be between 0 (for an
object at the reference plane) and 2 (for an object at the

front of the working volume). Since the spacing of identi-
cal (hence ambiguous) stripes is 2, there is never an ambi-
guity in matching the pattern visible from camera 1 to the
known projected pattern. By observing the disparity of a
given projected stripe, we therefore constrain the possible
depth within that column to half the working volume.

In order to further refine the depth within each column,
we add more cameras that allow for greater disparities. In
our example with 8 stripes, we need a second camera at an
angle of tan−1(1/2) and a third with an angle of tan−1(1/1).
These result in maximum disparities of 4 and 8, respec-
tively, hence by themselves would allow for ambiguous cor-
respondences. However, the restrictions introduced by cam-
era 1 on which part of the working volume may be occupied
make the match from camera 2 unambiguous, and the re-
strictions of cameras 1 and 2 constrain the match from the
third camera. Each additional camera, therefore, adds one
additional bit to the accuracy with which depths are recov-
ered, while introducing no additional ambiguity.

Perspective cameras: The above construction is valid un-
der any transformation of 3D space that maps straight lines
to straight lines (which, in turn, re-maps the rays associated
with each camera and projector). The set of mappings with
this property are perspective transformations: mappings ex-
pressible through multiplication by 4×4 matrices in homo-
geneous coordinates. Applying a projective mapping will
therefore turn the parallel (orthographic) projections into
perspective projections, making the configuration realizable
with standard cameras.

Consider the i-th orthographic camera, as derived above.
Its j-th ray intersects the xy plane at some location (xj,yj,0),
but all the rays have the same direction (−1/2k−i,0,−1).
Here we assume that the x direction points towards the right
of the page, z points towards the bottom of the page, and y
points out of the page. In homogeneous coordinates, there-
fore, the camera rays may be written as
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We now search for a perspective mapping that will map
each bundle of parallel rays into a set of rays that intersect
at a single point. Equivalently, we are taking rays that in-
tersect at a “point at infinity,” and moving the intersection
point to be finite. As we will show, the following matrix M
accomplishes the desired transformation:

M =
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To see this, we multiply by the ray equations to obtain:
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Finally, we perform the homogeneous divide, yielding
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So, we see that the rays for camera i, which used to have
a common direction but different origins, have been trans-
formed to have a common origin but different directions.
Considering the set of all cameras, we see that their cen-
ters of projection are all located on the x axis, spaced in a
geometric series. The projector, which corresponded to a
ray direction of (0,0,−1) in the orthographic case, is sim-
ilarly remapped to a standard perspective projector located
at the origin. This configuration is shown in Figure 5. Note
that the cameras may be rotated arbitrarily to ensure that the
working volume is visible.

Camera #3Projector Camera #2Camera #1
x = 1x = 1/2x = 1/4x = 0

������ ������ ������ ���	�	

Figure 5: Schematic of our viewpoint coding configuration with
perspective cameras.

3.3. Occlusion

For general scenes, we must account for the possibility
of occlusion. In this case, we replace the simple correlation-
based multiview correspondence algorithm with a voxel-
carving [17, 29] approach that considers the scene from
front to back. For each voxel, we find its projections into
all the cameras and evaluate whether the data are consis-
tent with its being occupied. Note that unlike with voxel
coloring, in which consistency is evaluated by similarity of
colors from all the camera positions, the consistency check
in our case simply considers whether the projections are
all “white” or all “black.” Because voxels on the front-
most layers are not occluded, their presence or absence can

Figure 6: Screen capture from our simulator. For the selected
point, the simulator displays epipolar line segments for all camera
views (right), and shows the colors seen by each camera for all
hypothesized depths along the ray (bottom). This capture shows
an equidistant camera configuration, resulting in an ambiguous
match for this ray (acceptable matches are marked in red).

be unambiguously determined. For deeper layers of vox-
els, we evaluate whether, given the scene reconstruction so
far, the voxel might have been occluded from any camera
view. If so, we mark the voxel as “shadowed” and do not
attempt to either carve it or mark it as occupied. In this
way, we are guaranteed to obtain a conservative reconstruc-
tion: any voxels we mark as occupied are guaranteed to
contain geometry. This is in contrast to standard multi-view
voxel carving methods, which are only probabilistically cor-
rect (i.e., false correspondences may result in spurious re-
constructed geometry). The effect of performing the space
carving is shown in the following section.

4. Results
Simulator: We have implemented a software simulator
for the proposed viewpoint coding configuration, and used
it to verify that it is possible to obtain high-quality recon-
structions. A screen shot is shown in Figure 6.

We used our simulator to investigate the effects of cam-
era placement on ambiguity. Figure 7 shows the results. In
this experiment, we were comparing the proposed config-
uration to one in which the same number of cameras was
used, but they were equally spaced (this has traditionally
been the most typical camera placement for multibaseline
stereo). In the visualization, green pixels denote unam-
biguous matches while magenta pixels indicate ambiguity.
The equidistant configuration results in many ambiguous
matches, while the proposed method produces almost no



Equidistant Proposed
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Figure 7: A comparison of equidistant camera placement and our
proposed method. Top: Green pixels indicate unique matches,
while magenta denotes ambiguity. Yellow pixels indicate no match
is found (primarily because not all cameras see the point). Bot-
tom: The ambiguous depths in the equidistant configuration effec-
tively lead to multiple copies of the geometry at different depths.
By contrast, our proposed configuration produces an accurate re-
construction. Note that all reconstructions are obtained by local
matches for each pixel separately, and do not use spatial windows
or global continuity.

ambiguity. The ambiguity in the equidistant configuration
is manifested as effectively multiple copies of the geometry
at distinct depths, as opposed to the accurate reconstruction
with our proposed configuration.

A simulator also allows us to analyze the behavior of
our occlusion handling method, since the scene geometry
is known. Figure 8 shows a simple two-plane scene with
a discontinuity. The visualization shows correct matches
in green, incorrect matches in red, and occluded regions in
blue. Without occlusion handling some camera codes are
drawn from the front surface and some codes from the back
surface, resulting in incorrect depths. Occlusion handling
correctly detects the shadow regions (blue) near discontinu-
ities so that they can be excluded from processing.

Real-world data: In addition to the software simulator,
we have experimented with real data, captured by moving a
digital camera to many positions using a translational stage
(Figure 9).

Figure 10 shows an example scene captured and then re-
constructed using this device. We captured images both us-
ing our proposed method and using equidistant cameras. In
each case we show the viewpoint coding. Note that just as
with the synthetic data, equidistant cameras result in ambi-
guity; in contrast, our method yields unique codes.

Figure 11 shows a sample mesh reconstructed using
viewpoint coding, as a re-lit rendering. Note the relatively
low noise and high detail present in the resulting 3D model.

Without With
occlusion handling occlusion handling

Figure 8: Occlusion handling is important for correct reconstruc-
tion. Green pixels indicate correct matches, red pixels incorrect
matches, and blue pixels regions detected to be in shadow. The
yellow pixels represent points for which a depth value was not
found, and are mostly (as expected) at stripe boundaries. Note
that there are many incorrect depths (red points) located in the
shadow region when occlusion handling is not used. With occlu-
sion handling the relevant regions are detected as occluded (blue)
and excluded from depth recovery.

5. Conclusion and Future Work
Viewpoint coding adds a new class of methods to the

known theories of structured light. Previously, unambigu-
ous reconstruction codes could only be encoded spatially or
temporally. Viewpoint coding, in contrast, allows for depth
reconstruction without making any spatial or temporal con-
tinuity assumptions about the scene. Our construction pro-
vides for decoding of N unique depths with log(N) camera
positions.

One consequence of our analysis is that multiple cameras
will allow for “one shot” depth reconstruction. To explore
this, we are investigating the construction of a device with
10 synchronized video cameras and a static pattern projec-
tor. Based on the analysis in this paper, with data captured
using a linear translation stage, we anticipate that such a
rig will permit reconstruction of complex moving objects.
We believe that the lack of temporal and spatial continuity
assumptions will yield high quality for objects that are ei-
ther too fast-moving or too complex to be reconstructed by
current methods that use temporal or spatial coding.

Our examples so far have used exclusively viewpoint
coding. However, it is possible to combine viewpoint cod-
ing with other coding strategies. For example, using stripes
of c different colors it is possible to encode N unique depths
with logc N camera positions. Other combined strategies,
including those combining viewpoint and temporal coding,
are future work.
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