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Abstract

The triplet loss is adopted by a variety of learning tasks,
such as local feature descriptor learning. However, its stan-
dard formulation with a hard margin only leverages part of
the training data in each mini-batch. Moreover, the margin
is often empirically chosen or determined through compu-
tationally expensive validation, and stays unchanged dur-
ing the entire training session. In this work, we propose
a simple yet effective method to overcome the above limi-
tations. The core idea is to replace the hard margin with
a non-parametric soft margin, which is dynamically up-
dated. The major observation is that the difficulty of a triplet
can be inferred from the cumulative distribution function of
the triplets’ signed distances to the decision boundary. We
demonstrate through experiments on both real-valued and
binary local feature descriptors that our method leads to
state-of-the-art performance on popular benchmarks, while
eliminating the need to determine the best margin.

1. Introduction

Efficient image matching is a fundamental problem in
computer vision, robotics, and graphics. Generally, image
matching is a two-step procedure consisting of extracting re-
peatable local keypoints using an interest point detector, fol-
lowed by matching of feature descriptors corresponding to
those points. Traditional pipelines use handcrafted descrip-
tors such as SIFT [15], which has proven successful in a va-
riety of applications. With the development of deep-learning
techniques, however, recent advancements to feature de-
scriptors have been mainly learning-based. These learned
descriptors often achieve higher matching performance than
handcrafted ones, at the same length (e.g., 128 floats, as with
SIFT). Further reduction in storage and matching costs can
be achieved by binary descriptors, which are interpreted
as bit vectors and are compared using Hamming distance
instead of Euclidean distance.

In this paper, we demonstrate that a common architec-
ture (based on L2-Net [29]) and training procedure (based

on HardNet [19]) can be modified to learn not only floating-
point but also binary descriptors. The modified network ad-
vances the state of the art in descriptor performance, but
it also highlights a frequently-encountered problem: the
matching accuracy depends on hyperparameter tuning.

In particular, many well-performing learned descriptors
are trained using the same loss function: a triplet loss that
encourages the distance between a negative pair to exceed
the distance between a positive pair by some margin. The
purpose of the margin is to force the network to update its
weights using the gradients computed from “harder” triplets,
while excluding training samples classified as “easy” by the
margin. While modern approaches improve performance
by incorporating hard negative mining [3, 19] or regular-
ization [13, 38], the effectiveness of training fundamentally
depends on the setting of the margin. Because the optimal
margin is problem- and often dataset-dependent, in practice
the margin is either specified by hand based on an educated
guess or exhaustively tuned at great computational expense.

In this work, we propose a novel triplet loss function
that has three major features: 1) We use a soft instead of
hard margin to fully utilize each mini-batch. 2) The soft
margin dynamically adapts to the current state of training.
3) The method is parameter-free: the two goals above are
accomplished without the need for any user-tunable hyper-
parameters. In short, as opposed to the Static Hard Margin
used in the traditional triplet loss, we think of our method as
an instance of a Dynamic Soft Margin strategy that could
be applied to a variety of learning problems.

The traditional triplet loss makes a binary decision of
whether a triplet should contribute to the gradient, using the
hard margin as a constant threshold. We instead make the
margin soft by using all the triplets in each mini-batch, while
following the simple intuition that “difficult” triplets should
receive greater weight than “easy” ones. In contrast to pre-
vious approaches that use soft margins (such as SVMs with
slack variables), our formulation does not require a separate
user-tunable parameter for the “softness” of the margin. The
dynamic nature of our method is obtained by maintaining
a moving Probability Density Function (PDF) of the differ-



ence of distances between the positive and negative pairs in
each triplet. This may be thought of as the signed distance of
each triplet to the decision boundary. Weights are assigned
based on the integral of this PDF, in essence weighting each
datapoint proportionally to the probability that it is more dif-
ficult to classify than other recently encountered datapoints.
Therefore the weighting function is continuously updated as
training progresses. We summarize the major contributions
of this paper as follows:
• Proposing a novel loss function based on dynamic soft

margin that can serve as a drop-in replacement for the
existing triplet loss without user-tunable parameters.
• Unifying the real-valued and binary descriptor learning

pipelines to adopt the same loss function for training.
• Demonstrating that our approach improves upon the

state of the art for both real-valued and binary descrip-
tor learning.

2. Related Work

There is significant previous work on local features, and
we focus on descriptors that are widely used or have recently
achieved state-of-the-art performance. These are generally
categorized into real-valued and binary descriptors: while
most existing works address either one or the other, we show
that our dynamic soft margin approach improves both.

Real-valued Descriptors: Probably the most successful
handcrafted feature descriptor is SIFT [15], which com-
putes smoothed histograms using the gradient field of the
image patch. Instead of computing the histogram, PCA-
SIFT [11] applies principal component analysis directly
to the image gradient. Recently, learning-based methods
have started to demonstrate effectiveness. Simonyan et
al. [27] formulate feature learning as a convex optimiza-
tion problem. DeepDesc [26] uses paired image patches
and adopts a Siamese network to learn a discriminative
descriptor while performing hard mining to boost perfor-
mance. DeepCompare [37] develops a two-stream network
with one stream focusing on the central part of the image.
TFeat [3] learns the descriptor using a triplet loss and applies
an in-triplet hard mining method named anchor swapping.
More recently, Tian et al. have proposed L2-Net [29], which
adopts a deeper network and designs a new loss function re-
quiring the true matches to have the minimal `2 distances
in the batch. HardNet [19] further simplifies the idea by
looking for hard negatives in each batch and achieves state-
of-the-art performance using a single triplet margin loss. In-
stead of using the triplet margin loss as the proxy, DOAP [6]
directly optimizes the ranking-based retrieval performance
metric and achieves more competitive results using the same
network architecture. Keller et al. [12] propose a mixed-
context loss that combines triplet and Siamese loss, which
performs better than using either one alone. GeoDesc [16]

further leverages geometric constraints from multi-view re-
construction and demonstrates significant improvement on
3D reconstruction tasks.

Binary Descriptors: Although real-valued descriptors
demonstrate good performance and applicability, they ex-
pose challenges to both storage and matching. Popular
real-valued descriptors (such as SIFT) and recent learning-
based descriptors use 128 floating point numbers, or 512
bytes. While the storage requirement could be aggressively
reduced by quantizing the floating point values [32, 35] or
applying principal component analysis (PCA) [35, 10] to
reduce the length of the descriptor, comparing the short-
ened real-valued descriptors still requires computing a real-
valued Euclidean distance. Efficient handcrafted binary de-
scriptors ameliorate these problems by directly building a
binary string using the input image patch. The metric used
to evaluate the distance between two binary descriptors is
the Hamming distance, which is the number of set bits af-
ter performing the XOR operation. Efficient computation
of Hamming distance can exploit specialized instructions
on supported hardware. Popular binary descriptors include
BRIEF [4] and rotated BRIEF used by ORB [24], which
typically rely on intensity comparisons using a predefined
pattern. This significantly lowers the computation cost, al-
though this also implies that these binary descriptors are
less robust against drastic illumination changes. DOAP [6]
demonstrates that a good binary descriptor can also be
learned by optimizing the average precision on the retrieval
task. Some recent real-valued descriptors can be trivially
converted to binary descriptors by taking the sign of each
dimension, and L2-Net has already shown promising results
in generating binary descriptors by doing this. There exist
more sophisticated ways to convert floating-point vectors
into binary strings, such as LSH [5] or LDAHash [28].

Replacing Static Hard Margin: Instead of setting a hard
margin, DeepDesc [26] back-propagates the hardest 1/8 of
samples, which can be interpreted as a Dynamic Hard Mar-
gin. Person re-identification is a related topic that also uses
the triplet margin. Wang et al. [34] apply two separate hard
margins for positive and negative pairs. The margins are dy-
namically adjusted using a hand-crafted function with cross-
validated, but highly unintuitive, hyper-parameters (µ = 8
and γ = 2.1). Their loss function still classifies training sam-
ples by making binary decisions, thus is yet another case of
Dynamic Hard Margin. Hermans et al. [7] use the softplus
function to mimic the soft margin. However, this function
is fixed throughout the entire training session and we view
it as an instance of Static Soft Margin. Moreover, softplus
has an implicit scale hyper-parameter: 1/β · log(1 + exp(βx)),
where β controls smoothness and is 1.0 by default. Sec-
tion 5.6, includes comparisons against these alternatives to
demonstrate the effectiveness of our Dynamic Soft Margin.



3. Learning Local Descriptors
Our goal is to examine the effectiveness of the proposed

Dynamic Soft Margin strategy, and we are motivated by
the application of learning real-valued and binary local fea-
ture descriptors. As background, we first revisit the original
triplet margin loss, together with the network architecture
and hard-negative mining method used by state-of-the-art
methods such as HardNet [19]. Next, we introduce a mod-
ified training procedure that can learn high-quality binary
descriptors.

3.1. Real-Valued Descriptors

A Siamese network with two streams sharing the same
deep architecture and weights is one of the natural choices
for learning a descriptor. Most recent works adopt
L2-Net [29] as the backbone network due to its good perfor-
mance. We also use L2-Net in this work and only replace
the loss function to show the effectiveness of our method.
L2-Net, denoted asF(·), takes an image patch x as input and
produces a k-dimensional descriptor. Given two input im-
age patches x and x′, the distance between them in descrip-
tor space is written asD(F(x),F(x′)), whereD is a distance
metric. For real-valued descriptors, the Euclidean distance
is often used as the distance metric. While evaluating the
Euclidean distances among a large number of descriptors
can be expensive, the computational cost can be reduced if
the feature vectors are unit-length (i.e., ‖F(x)‖ = 1). Since
the Euclidean distance between two unit vectors can be com-
puted using the dot product:

DEuclidean
(
F(x),F(x′)

)
=
√

2 – 2F(x)TF(x′), (1)

it becomes possible to compute the pair-wise distance ma-
trix of a batch of descriptors with a single matrix multiplica-
tion. To leverage this nice property, L2-Net normalizes the
network output into a unit-length descriptor. Given N pairs
of matching image patches, where each pair corresponds to
a unique 3D point in the physical world, HardNet [19] com-
putes a pair-wise distance matrix from the descriptors output
by the Siamese network. The diagonal elements in the dis-
tance matrix correspond to the distances between matching
pairs. HardNet mines the hardest negative for each matching
pair in its row and column from the non-diagonal elements
in the distance matrix. Note that this mining is a different
process from the weighting of triplets by our soft margin, as
described below. For more details, we refer the readers to
the original paper.

If we denote the distance between a matching pair as dpos
and the distance between the corresponding hardest non-
matching pair as dneg, HardNet trains using the standard
triplet margin loss with margin µ = 1.0:

Ltriplet = max(0,µ + dpos – dneg). (2)

The triplet margin loss simply forces the network to learn
to increase the difference between dneg and dpos until the
condition dneg – dpos > µ is satisfied. If µ is set sufficiently

large that dneg – dpos > µ is never satisfied, ∂Ltriplet
∂dpos

= 1 and
∂Ltriplet
∂dneg

= –1, where µ is no longer relevant. Though µ = 1.0
is shown to perform well for HardNet, it remains a question
whether there exists a µ that works better.

3.2. Binary Descriptors

Real-valued descriptors are potentially costly to store
and compute with, due to the fact that they are usually
represented using 32-bit floating-point numbers. On the
other hand, binary descriptors are both more compact to
store and faster to compare (using Hamming distance), and
hence are popular in real-time applications. Unfortunately,
HardNet [19] only addresses real-valued descriptor learn-
ing. Below, we propose how to adapt it for binary descriptor
learning, which is inherently non-differentiable.

At testing time, it is easy to convert a real-valued L2-Net
output to a binary descriptor: we simply use the sign func-
tion to convert the output to a length-k vector of the values
–1 and 1. This reduces the Hamming distance between two
descriptors to a dot product:

DHamming
(
F(x),F(x′)

)
=
(
k – F(x)TF(x′)

) /
2. (3)

Therefore, as with real-valued descriptors, the pair-wise
Hamming distance matrix of a list of binary descriptors can
be computed using a single matrix multiplication.

The gradient of the sign function, however, is undefined
at the origin and zero everywhere else. So, we need a differ-
entiable proxy for training purposes. Therefore instead of
normalizing the output of L2-Net, we use a hyperbolic tan-
gent function (tanh) to compress the output of each element
into the range (–1, 1). During training, we use tanh when-
ever we need the Hamming distance to be differentiable,
and use sign in other cases that require full binarization. For
instance, the descriptors are fully binarized before comput-
ing the distance matrix, because we need to mine the hard
negatives as if the current batch were being tested.

Given the mined hard negatives and the distance metric,
we can still use a triplet loss to learn the binary descriptor.
Selecting an optimal margin becomes even more challeng-
ing this time: the difference between dneg and dpos can be as
large as the maximum Hamming distance, which is the de-
scriptor length k. It is difficult to determine a proper margin
without running a few training/validation sessions. In fact,
we have determined that for k = 256 the optimal margin is
the unintuitive value µ = 32.

4. Dynamic Soft Margin
In this section, we discuss how we replace the triplet mar-

gin loss used by state-of-the-art descriptor learning methods
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Figure 1. Scatter plot of (dpos, dneg) for triplets in one batch (1024
samples), using standard triplet margin loss. The red line is the
decision boundary: dneg is correctly greater than dpos to its upper-
left. The blue dotted lines are potential margins. The (optimal)
margin of 0.375 separates points into two clusters (green and blue),
where the blue cluster is considered “good enough” and is not used
for back-propagation.

with our dynamic-weighted triplet loss. We first analyze the
training behavior of the triplet margin loss and explain with
an example why choosing a good margin is important for
optimal performance. Then, we explain how our method
eliminates the margin while improving performance.

4.1. Behavior of the Triplet Margin Loss

Let us first analyze how the triplet margin loss behaves
when learning a real-valued descriptor. For a unit-length
real-valued descriptor, the largest difference between dneg
and dpos is 2.0 (dneg = 2.0 and dpos = 0). Setting the mar-
gin larger than or equal to 2.0 simply transforms the triplet
margin loss into a basic triplet loss (i.e., without margin),
where no triplet is affected by truncation. In practice, a mar-
gin smaller than 2.0 is expected to improve performance,
since the “easiest” triplets, having larger dneg – dpos, are
not involved in back-propagation. To better understand this
behavior, we take a pretrained HardNet model (trained on
UBC PhotoTourism - Liberty) and visualize all triplets in
a sample batch of data by plotting (dpos, dneg) as scattered
points in 2D (Figure 1).

In the case of a perfect descriptor, dpos is expected to
be smaller than dneg. This corresponds to the region to the
upper-left of the decision boundary shown in red. A straight-
forward approach to optimizeF(·) is to maximize the signed
distance from the point (dpos, dneg) to the decision bound-
ary, which is equivalent to minimizing the basic triplet loss:
Ltriplet = dpos –dneg. The triplet margin loss sets a margin so
that points that are sufficiently far on the correct side of the
decision boundary (shown in blue, for a hypothetical margin
µ = 0.375) are excluded from optimization. By doing this,
we force the network to focus on harder triplets (near to, or
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Figure 2. Varying the margin used by the triplet margin loss. The
network is trained on the Liberty subset of UBC PhotoTourism
and evaluated on the other two subsets. The left and right figures
show the performance on the real-valued and binary descriptors,
respectively. For our results, we keep all other configurations used
by the triplet margin loss and only replace the loss function.

on the wrong side of, the decision boundary) without hav-
ing the gradients influenced by the easy triplets. However,
Figure 1 shows that a margin of 1.0, as recommended by
the HardNet paper, would have almost no effect because all
triplets are still within the margin.

To investigate whether there is a “sweet-spot” for the
margin, we vary it across a wide range and re-train the real-
valued descriptor (always training on Liberty and evaluating
the false positive rate at 95 percent recall – FPR95 – on the
other two subsets of the UBC PhotoTourism dataset [36]).
As demonstrated by the blue curve of Figure 2, left, there in-
deed exists a better choice of margin. As shown in Figure 1,
µ = 0.375 excludes a substantial number of easy triplets and
lets the network focus on the harder cases. Figure 2, right,
shows the corresponding graph for our new binary descrip-
tor. Note that the shapes of the curves are different, and
the optimal margin is problem-dependent. Of course, it is
possible that even better margins could be found at greater
computational cost by increasing the precision of the search.

We conclude that finding the best margin is a non-trivial
job in practice and may require extensive validation. In
the following section, we introduce our dynamic triplet
weighting method, which avoids setting a hard threshold
and weights the triplets in a mini-batch based on the train-
ing status of the network. Results produced by our approach
are displayed as the red dotted lines in Figure 2.

4.2. Dynamic Triplet Weighting

Our approach shares the same motivation as the triplet
margin loss, in that the “harder” triplets in a mini-batch are
more useful for training. In other words, “easy” triplets
should be suppressed in the loss function because the net-
work’s performance on these triplets is already likely to be
saturated. The concept of emphasizing harder training ex-
amples is also the major reason why hard negative mining
has become recognized as vital to good performance in re-
cent learned descriptors.

The key observation of this work is that we can directly
measure how hard a triplet is compared to other triplets in
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Figure 3. Our scheme for Dynamic Triplet Weighting. We com-
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the same mini-batch, by seeing how its signed distance to
the decision boundary (dpos – dneg) compares to the distri-
bution of these distances. To measure this, we would like to
know the Probability Distribution Function (PDF) of signed
distances, which in practice we discretize into a histogram.
To make the aggregated histogram more accurate, we com-
pute dpos – dneg for each triplet, and then linearly allocate
it into two neighboring bins in the histogram. In our imple-
mentation, since a temporally stable PDF is preferred, we
maintain it as an exponentially-decaying moving histogram
(with a weight of 0.1 on each new batch), similarly to other
neural network modules that utilize moving averages (e.g.,
batch normalization [8]). An example of the PDF is shown
in Figure 3, bottom left.

Given the distribution of difficulty in recent batches, the
relative difficulty of a particular triplet corresponds to the
fraction of triplets that have a lower dpos – dneg. This is
just the integral of the PDF, or the Cumulative Distribution
Function (CDF), shown in Figure 3, bottom right. The hard-
est triplet in a mini-batch results in a CDF of 1.0, while the
easiest triplet corresponds to ≈ 0. More generally, a triplet
with a CDF value of k% means that it is empirically “harder”
than k% of triplets within recent batches.

Because these CDF values have an intuitive interpreta-
tion as difficulty, we use them directly as weights. Given
a mini-batch of size N, we define our weighted triplet loss
(without a hard margin) as:

L =
1
N

∑
i

wi · (d i
pos– d i

neg), (4)

wi = CDF(d i
pos– d i

neg). (5)

This loss function automatically rejects “easy” triplets
by assigning them low weights. One may wonder how the
loss function behaves when the variance of dpos – dneg is
very small, so that the CDF is close to a step function. In

fact, when such a case happens, the loss function weights all
triplets nearly equally and the optimization continues. This
is not always possible for the original triplet margin loss
because the optimization would stop when every triplet sat-
isfies dneg – dpos > µ (though this scenario rarely happens
in practice). The red lines in Figure 2 show that our method
consistently leads to better performance than the triplet mar-
gin loss on both the real-valued and binary descriptors.

5. Experiments
We have experimented with three benchmarks: UBC

PhotoTourism [36], HPatches [2], and the Oxford Affine
benchmark [18]. UBC PhotoTourism is a classic patch-
based dataset that is mainly evaluated on the patch verifi-
cation task, which can be quickly computed and is effec-
tive for preliminary analysis of the descriptor performance.
The patch verification task is often not sufficient for estimat-
ing the performance of a descriptor in practical applications
where patch retrieval is a more important task. HPatches
is a more comprehensive benchmark that contains a much
larger collection of image patches and evaluates a descriptor
on three different tasks: patch verification, image matching,
and patch retrieval. The Oxford Affine benchmark contains
image sequences with different types of distortion, which is
useful for understanding the robustness of a descriptor when
the input images are less than ideal.

5.1. Implementation

We adopt a training configuration as similar as possible
to that used by previous work, to ensure that our new loss
function is the major factor in the final results. For train-
ing, we use the UBC PhotoTourism dataset [36]. Each of
its three subsets, known as Liberty, Yosemite, and Notre
Dame, consists of more than 400k image patches, cropped
to 64 × 64 and re-oriented using Difference-of-Gaussians
(DoG) keypoints [15]. We train one model using each sub-
set and test on the other two subsets. We downsample each
patch to a 32× 32 input, which is required by L2-Net. Each
patch is then normalized by subtracting the mean pixel value
and dividing by the standard deviation. Online data augmen-
tation is achieved by random flipping and rotating the patch
by 90, 180 or 270 degrees. The UBC PhotoTourism dataset
assigns each patch with its 3D point ID, which is used to
identify matching image patches. Each 3D point ID is asso-
ciated with a list of patches that are assumed to be matching.
To form a mini-batch of size N for training, we randomly se-
lect N 3D points without replacement and select two patches
for each chosen 3D point.

We use Stochastic Gradient Descent (SGD), with mo-
mentum and weight decay equal to 0.9 and 10–4, respec-
tively, to optimize the network. Inspired by HardNet and
DOAP, the network is trained for 50k iterations, with the
learning rate linearly decaying from 0.1 to 0. The batch



Table 1. Evaluation on the UBC PhotoTourism dataset, demonstrating that both real-valued and binary descriptors trained using our method
outperform the state of the art. Numbers shown are FPR95(%) – lower is better. “+” and “*” denote training with data augmentation and
anchor swapping [3]. DOAP-ST+ represents the DOAP descriptor with a Spatial Transformer [9] to compensate for geometric noise.

Descriptor Length Train → Notredame Yosemite Liberty Yosemite Liberty Notredame Mean
Test → Liberty Notredame Yosemite

Real-valued Descriptors

SIFT [15] 128 29.84 22.53 27.29 26.55
DeepDesc [26] 128 10.9 4.40 5.69 7.0
TFeat-M* [3] 128 7.39 10.31 3.06 3.80 8.06 7.24 6.64

TL+GOR* [38] 128 4.80 6.45 1.95 2.38 5.40 5.15 4.36
PCW [20] 128 7.44 9.84 3.48 3.54 5.02 6.56 5.98

L2-Net+ [29] 128 2.36 4.70 0.72 1.29 2.57 1.71 2.23
CS-L2-Net+ [29] 256 1.71 3.87 0.56 1.09 2.07 1.30 1.76

HardNet+ [19] 128 1.49 2.51 0.53 0.78 1.96 1.84 1.52
DOAP+ [6] 128 1.54 2.62 0.43 0.87 2.00 1.21 1.45

DOAP-ST+ [6] 128 1.47 2.29 0.39 0.78 1.98 1.35 1.38
Ours+ 128 1.21 2.01 0.39 0.68 1.51 1.29 1.18

Binary Descriptors

ORB [24] 256 59.15 54.57 54.96 56.23
BinBoost [31] 64 20.49 21.67 16.90 14.54 22.88 18.97 19.24
LDAHash [28] 128 49.66 51.58 52.95 51.40
DeepBit [14] 256 32.06 34.41 26.66 29.60 57.61 63.68 40.67
L2-Net+ [29] 128 7.44 10.29 3.81 4.31 8.81 7.45 7.02

CS-L2-Net+ [29] 256 4.01 6.65 1.90 2.51 5.61 4.04 4.12
DOAP+ [6] 256 3.18 4.32 1.04 1.57 4.10 3.87 3.01

DOAP-ST+ [6] 256 2.87 4.17 0.96 1.76 3.93 3.64 2.89
Ours+ 256 2.70 4.01 0.93 1.44 3.69 2.98 2.63

size is set to 1024 for all experiments to match the publicly
available implementations of HardNet and DOAP. To facil-
itate future research, we package our implementation as a
standalone PyTorch [21] module.

5.2. UBC PhotoTourism

Each of the UBC PhotoTourism subsets includes a test
split containing 100k pairs of image patches, with half of
them being true matches and the rest being false matches.
We adopt the commonly used false positive rate at 95%
true positive recall (FPR95) to evaluate how well the pro-
posed descriptor classifies patch pairs. We compare with
a collection of existing real-valued descriptors including
both handcrafted (SIFT [15] and root-SIFT [1]) and learned
(DeepDesc [26], TFeat [3], GOR [38] PCW [20], L2-
Net [29], HardNet [19], DOAP [6]). GeoDesc [16] is not
evaluated because it is trained on a custom dataset. We
also compare against existing binary descriptors including
ORB [24], BinBoost [31], LDAHash [28], DeepBit [14], L2-
Net [29], and DOAP [6]. The results are shown in Table 1.
Our approach outperforms all existing methods under the
same configuration. DOAP-ST+ uses a larger input (42×42)
to augment DOAP+ with the Spatial Transformer [9], which
noticeably improves the performance by correcting geomet-
ric noise. Note that our method also surpasses DOAP-ST+

in most cases even without the Spatial Transformer. Com-
pared to HardNet, our method automatically produces better
performance that otherwise would have required fine-tuning
the margin, or even manually adjusting the margin at differ-
ent stages of training.

5.3. HPatches

The recently-introduced HPatches benchmark of Balntas
et al. [2] evaluates descriptors in a more sophisticated set-
ting. Different amounts of geometric noise are introduced
into the test image patches, which are then categorized as
“Easy”, “Hard” or “Tough”. HPatches evaluates a descriptor
on three different tasks: patch verification, image matching,
and patch retrieval. For a more detailed description of the
tasks, we refer the readers to their paper.

Figure 4 compares descriptors trained with the proposed
method and top-performing real-valued and binary descrip-
tors. As is common practice, learned descriptors are eval-
uated using a model trained on the Liberty subset of the
UBC PhotoTourism dataset, with data augmentation. For
all descriptors, we do not apply the ZCA normalization that
is originally used in HPatches. HardNet does not come
with a binary version and we simply take the sign to obtain
HardNet-b+. It is not surprising to see that both the real-
valued and binary descriptors learned using our loss func-
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Figure 4. Verification, matching and retrieval results. Colour of the marker indicates EASY, HARD, and TOUGH noise. The type of the
marker corresponds to the variants of the experimental settings (see section 6.2). Bar is a mean of the 6 variants of each task. Dashed bar
borders and + indicate ZCA projected and normalised features.

difference in performance for EASY and TOUGH geometric
distortions, as well as for the illumination changes, is up to
30%, which shows there is still scope for improvement in
both areas.

The performance of deep descriptors and SIFT varies
across the tasks although +DDESC [30] is close to the top
scores in each category, however it is the slowest to cal-
culate. In matching and retrieval, ZCA and normalisation
bring the performance of SIFT to the top level. Compared
to some deep descriptors, SIFT seems less robust to high
degrees of geometric noise, with large spread for EASY and
TOUGH benchmarks. This is especially evident on the patch
verification task, where SIFT is outperformed by most of
the other descriptors for the TOUGH data.

The binary descriptors are outperformed by the origi-
nal SIFT by a large margin for the image matching and
patch retrieval task in particular, which may be due to its
discriminative power and better robustness to the geomet-
ric noise. The binary descriptors are competitive only for
the patch verification task. However, the binary descriptors
have other advantages, such as compactness and speed, so
they may still be the best choice in applications where ac-
curacy is less important than speed. Also +TF perform rel-
atively well, in particular when considering their efficiency.

Post-processing normalisation, in particular square root,
has a significant effect. For most of the descriptors, the nor-
malised features perform much better than the original ones.

Finally, patch verification achieves on average much
higher mAP score compared to the other tasks. This can
be seen mainly from the relatively good performance of the
trivial MSTD descriptor. This confirms that patch verifica-
tion task is insufficient on its own and other tasks are crucial

in descriptor evaluation.

7. Conclusions

With the advent of deep learning, the development of
novel and more powerful local descriptors has accelerated
tremendously. However, as we have shown in this paper, the
benchmarks commonly used for evaluating such descriptors
are inadequate, making comparisons unreliable. In the long
run, this is likely to be detrimental to further research. In or-
der to address this problem, we have introduced HPatches,
a new public benchmark for local descriptors. The new
benchmark is patch-based, removing many of the ambi-
guities that plagued the existing image-based benchmarks
and favouring rigorous, reproducible, and large scale exper-
imentation. This benchmark also improves on the limited
data and task diversity present in other datasets, by consid-
ering many different scene and visual effects types, as well
as three benchmark tasks close to practical applications of
descriptors.

Despite the multitask complexity of our benchmark
suite, using the evaluation is easy as we provide open-
source implementation of the protocols which can be used
with minimal effort. HPatches can supersede datasets such
as PhotoTourism and the older but still frequently used Ox-
ford matching dataset, addressing their shortcomings and
providing a valuable tool for researchers interested in local
descriptors.
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difference in performance for EASY and TOUGH geometric
distortions, as well as for the illumination changes, is up to
30%, which shows there is still scope for improvement in
both areas.

The performance of deep descriptors and SIFT varies
across the tasks although +DDESC [30] is close to the top
scores in each category, however it is the slowest to cal-
culate. In matching and retrieval, ZCA and normalisation
bring the performance of SIFT to the top level. Compared
to some deep descriptors, SIFT seems less robust to high
degrees of geometric noise, with large spread for EASY and
TOUGH benchmarks. This is especially evident on the patch
verification task, where SIFT is outperformed by most of
the other descriptors for the TOUGH data.

The binary descriptors are outperformed by the origi-
nal SIFT by a large margin for the image matching and
patch retrieval task in particular, which may be due to its
discriminative power and better robustness to the geomet-
ric noise. The binary descriptors are competitive only for
the patch verification task. However, the binary descriptors
have other advantages, such as compactness and speed, so
they may still be the best choice in applications where ac-
curacy is less important than speed. Also +TF perform rel-
atively well, in particular when considering their efficiency.

Post-processing normalisation, in particular square root,
has a significant effect. For most of the descriptors, the nor-
malised features perform much better than the original ones.

Finally, patch verification achieves on average much
higher mAP score compared to the other tasks. This can
be seen mainly from the relatively good performance of the
trivial MSTD descriptor. This confirms that patch verifica-
tion task is insufficient on its own and other tasks are crucial

in descriptor evaluation.

7. Conclusions

With the advent of deep learning, the development of
novel and more powerful local descriptors has accelerated
tremendously. However, as we have shown in this paper, the
benchmarks commonly used for evaluating such descriptors
are inadequate, making comparisons unreliable. In the long
run, this is likely to be detrimental to further research. In or-
der to address this problem, we have introduced HPatches,
a new public benchmark for local descriptors. The new
benchmark is patch-based, removing many of the ambi-
guities that plagued the existing image-based benchmarks
and favouring rigorous, reproducible, and large scale exper-
imentation. This benchmark also improves on the limited
data and task diversity present in other datasets, by consid-
ering many different scene and visual effects types, as well
as three benchmark tasks close to practical applications of
descriptors.

Despite the multitask complexity of our benchmark
suite, using the evaluation is easy as we provide open-
source implementation of the protocols which can be used
with minimal effort. HPatches can supersede datasets such
as PhotoTourism and the older but still frequently used Ox-
ford matching dataset, addressing their shortcomings and
providing a valuable tool for researchers interested in local
descriptors.
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difference in performance for EASY and TOUGH geometric
distortions, as well as for the illumination changes, is up to
30%, which shows there is still scope for improvement in
both areas.

The performance of deep descriptors and SIFT varies
across the tasks although +DDESC [30] is close to the top
scores in each category, however it is the slowest to cal-
culate. In matching and retrieval, ZCA and normalisation
bring the performance of SIFT to the top level. Compared
to some deep descriptors, SIFT seems less robust to high
degrees of geometric noise, with large spread for EASY and
TOUGH benchmarks. This is especially evident on the patch
verification task, where SIFT is outperformed by most of
the other descriptors for the TOUGH data.

The binary descriptors are outperformed by the origi-
nal SIFT by a large margin for the image matching and
patch retrieval task in particular, which may be due to its
discriminative power and better robustness to the geomet-
ric noise. The binary descriptors are competitive only for
the patch verification task. However, the binary descriptors
have other advantages, such as compactness and speed, so
they may still be the best choice in applications where ac-
curacy is less important than speed. Also +TF perform rel-
atively well, in particular when considering their efficiency.

Post-processing normalisation, in particular square root,
has a significant effect. For most of the descriptors, the nor-
malised features perform much better than the original ones.

Finally, patch verification achieves on average much
higher mAP score compared to the other tasks. This can
be seen mainly from the relatively good performance of the
trivial MSTD descriptor. This confirms that patch verifica-
tion task is insufficient on its own and other tasks are crucial

in descriptor evaluation.

7. Conclusions

With the advent of deep learning, the development of
novel and more powerful local descriptors has accelerated
tremendously. However, as we have shown in this paper, the
benchmarks commonly used for evaluating such descriptors
are inadequate, making comparisons unreliable. In the long
run, this is likely to be detrimental to further research. In or-
der to address this problem, we have introduced HPatches,
a new public benchmark for local descriptors. The new
benchmark is patch-based, removing many of the ambi-
guities that plagued the existing image-based benchmarks
and favouring rigorous, reproducible, and large scale exper-
imentation. This benchmark also improves on the limited
data and task diversity present in other datasets, by consid-
ering many different scene and visual effects types, as well
as three benchmark tasks close to practical applications of
descriptors.

Despite the multitask complexity of our benchmark
suite, using the evaluation is easy as we provide open-
source implementation of the protocols which can be used
with minimal effort. HPatches can supersede datasets such
as PhotoTourism and the older but still frequently used Ox-
ford matching dataset, addressing their shortcomings and
providing a valuable tool for researchers interested in local
descriptors.

Acknowledgements Karel Lenc is supported by ERC
677195-IDIU and Vassileios Balntas is supported by
FACER2VM EPSRC EP/N007743/1. We would like to
thank Giorgos Tolias for help with descriptor normalisation.

89.06%

88.43%

88.37%

85.30%

81.90%

79.51%

65.12%

58.53%RootSIFT

SIFT

DDesc

TFeat-M*

L2Net+

DOAP+

HardNet+

Ours+ 53.25%

52.76%

51.36%

43.98%

32.64%

28.05%

27.22%

25.47%SIFT

RootSIFT

DDesc

TFeat-M*

L2Net+

DOAP+

HardNet+

Ours+ 61.72%

60.65%

60.64%

53.73%

39.83%

39.40%

33.56%

31.98%SIFT

RootSIFT

TFeat-M*

DDesc

L2Net+

HardNet+

DOAP+

Ours+

87.11%

86.79%

84.88%

81.69%

66.86%

66.67%

60.15%

Patch Verification mAP [%]

ORB

BBoost

LDAHash

L2Net-b+

HardNet-b+

Ours+

DOAP-b+ 45.69%

43.51%

39.66%

31.95%

15.54%

15.33%

14.78%

Image Matching mAP [%]

BBoost

ORB

LDAHash

L2Net-b+

HardNet-b+

DOAP-b+

Ours+ 55.12%

53.73%

49.01%

42.89%

22.95%

22.45%

18.85%

Patch Retrieval mAP [%]

ORB

BBoost

LDAHash

L2Net-b+

HardNet-b+

DOAP-b+

Ours+

Figure 4. Evaluation on the HPatches dataset [2]. The evaluation is carried out on the “full” split of HPatches. The patch retrieval task is
evaluated with the maximum amount of distractors (same setting used in the original HPatches paper). Top row: real-valued descriptor
comparison. Bottom row: binary descriptor comparison. While both HardNet and DOAP perform well in easy cases, our descriptor is
more robust in tough cases, leading to state-of-the-art performance overall.
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Figure 5. Evaluation on the Oxford Affine dataset, for binary (left) and real-valued (right) descriptors. All are trained on the UBC Liberty
subset with data augmentation, except the models suffixed with “++”, which are trained on the union of UBC PhotoTourism and HPatches.

tion perform well on the patch verification task, which is
consistent with our observation on the UBC PhotoTourism
dataset. On the more challenging image matching and patch
retrieval tasks that require the descriptor to be more distinc-
tive, our descriptors outperform all existing methods.

5.4. Image Matching on the Oxford Dataset

In real image matching scenarios, images may undergo
diverse distortions including geometric transformations,
blurring, illumination changes, and JPEG compression. In
order to verify whether the descriptors learned with our
method are vulnerable to a particular type of distortion, we
further evaluate the image matching performance using the
Oxford Affine Dataset [18], which contains all the above-
mentioned transformations. In this dataset, homography
matrices are provided to help verify correspondences. We
choose the Harris-Affine detector [17] to extract keypoints
from the images and crop image patches using a magnifi-
cation factor of 6. We strictly follow the public evaluation
protocol [18]. The matching scores are reported in Figure 5.
The result shows that our descriptors can withstand various
type of distortions presented in this dataset and achieve state-

Table 2. Evaluation on two image retrieval engines — VisualIn-
dex and Hamming Query Expansion (HQE). SA: single assign-
ment. MA: multiple assignments. +: model is trained on the
UBC-Liberty subset with data augmentation. ++: model is trained
with the union of UBC PhotoTourism and HPatches datasets.

Method
Oxford5k Paris6k

Visual
Index

HQE
(SA)

HQE
(MA)

Visual
Index

HQE
(SA)

HQE
(MA)

RootSIFT 67.19 80.99 83.60 66.40 79.32 80.36
HardNet+ 73.07 84.58 85.42 67.82 87.34 88.35
HardNet++ 71.01 84.57 85.44 68.96 87.19 88.45

Ours+ 72.92 84.29 85.94 67.63 87.83 88.54
Ours++ 73.80 85.43 86.42 71.66 88.52 89.24

of-the-art results. Also note that our descriptor trained with
the union of UBC PhotoTourism and HPatches outperforms
HardNet trained with the same data.

5.5. Image Retrieval

Local feature descriptors are also often deployed for im-
age retrieval. We have evaluated our method on two image
retrieval engines: VisualIndex [33] and Hamming Query



Table 3. Comparing existing alternatives to Static Hard Margin
with our Dynamic Soft Margin.

Method Dynamic Soft UBC HPatches (mAP %)

FPR95 Verification Matching Retrieval

Real-valued Descriptors

softplus [7] 7 3 1.20 89.00 52.84 60.72
Wang [34] 3 7 1.18 88.88 52.63 60.36
Hardest 1/8 [26] 3 7 2.19 85.82 46.74 56.51
Ours 3 3 0.95 89.06 53.25 61.72

Binary Descriptors

softplus [7] 7 3 2.73 86.35 45.45 54.23
Wang [34] 3 7 2.76 86.37 45.60 54.19
Hardest 1/4 [26] 3 7 3.09 85.58 43.24 52.97
Ours 3 3 2.31 86.79 45.69 55.12

Expansion [30], with default settings. As is common prac-
tice, we use the Oxford5k [22] and Paris6k [23] datasets
for evaluation. The vocabulary is learned independently —
when evaluating on the Oxford5k dataset, the vocabulary is
learned with descriptors extracted from the Paris6k dataset,
and vice versa. In Table 2, we report the mean average pre-
cision (mAP). Note that our method trained using all data
(Ours++) consistently outperforms the HardNet counterpart.

5.6. Ablation Studies

To be consistent, we again use the models trained on
the Liberty subset of UBC PhotoTourism in the following
experiments. FPR95 is evaluated on the other two subsets.

Existing Alternatives to Static Hard Margin: In Sec-
tion 1, we have discussed three previous attempts to replace
the undesired static hard margin. Recall that none of them
is both dynamic and soft like ours. Since these baselines
are either originally proposed in a different context (e.g.,
person re-identification [34, 7]) or with a different learning
scheme (e.g., contrastive loss with two-stage training [26]),
we re-implement and adapt these methods into our pipeline
to ensure a fair comparison. Table 3 shows the results on
both UBC PhotoTourism and HPatches. Our dynamic-soft
strategy outperforms all baseline methods. Training the bi-
nary descriptor with the hardest 1/8 of triplets [26] could
not converge in our experiment, likely because 1/8 is too
selective, hence we use 1/4 instead.

Different Ways to Construct the PDF: In the approach
described above, we weighted samples based on a moving
PDF of dpos – dneg, mainly because it is well-correlated with
how “hard” a triplet is. In a more general context, we be-
lieve that any variable that effectively reflects the “hardness”
of a triplet can be used to build the PDF. For example, we
observe from Figure 1 that the variation of the visualized
points mainly happens along the dpos axis, whereas the vari-
ation along the dneg axis is smaller. This implies that in-
stead of maintaining the moving PDF of dpos – dneg, using
a PDF of dpos could also work well, while we would expect

Table 4. Comparing different ways to construct the PDF.

PDF built from UBC HPatches (mAP %)

FPR95 (%) Verification Matching Retrieval

Real-valued Descriptors

dpos 0.98 89.10 52.93 61.37
dneg 1.20 88.55 53.15 60.36
Gaussian 1.07 89.05 52.95 61.38
dpos – dneg 0.95 89.06 53.25 61.72

Binary Descriptors

dpos 2.30 86.93 45.81 55.19
dneg 3.02 85.58 45.21 53.27
Gaussian 2.33 86.72 45.68 54.86
dpos – dneg 2.31 86.79 45.69 55.12

a PDF of dneg to be less effective. We also observe that
Figure 3 suggests that the PDF is approximately Gaussian,
and might be summarized by its mean and variance. This
indicates that we can potentially use a parametric PDF to
replace the histogram representation that we currently use
and save extra memory and computation. We have therefore
explored simply maintaining a running mean and variance
of dpos – dneg, and then weighting triplets based on the an-
alytic Gaussian CDF, which may be computed in terms of
the standard erf function. The comparisons are shown in
Table 4, from which we observe that building the PDF from
dneg indeed leads to the worst performance. As expected,
dpos is as good an indicator as dpos – dneg, suggesting that
positive samples with larger dpos are more useful for train-
ing: this may be thought of as “hard positive mining.” Ap-
proximating the PDF with a simple Gaussian distribution
is also feasible, but with a small sacrifice in performance,
suggesting that the actual distribution is non-Gaussian.

6. Conclusion
In this work, we observe that the traditional approach of

manually setting a margin for triplet loss usually leads to
sub-optimal results. The “hard” nature of the margin uses
samples inefficiently, while keeping the margin constant ig-
nores the improvement in the network during training.

We instead propose a “dynamic soft margin” strategy
that automatically assigns lower weights to datapoints that
are too “easy” for improving the network, at each stage of
training. The key insight is that the relative “hardness” of
a triplet can be inferred from the moving PDF of the dif-
ference of distances. Using the CDF computed from this
PDF as a weight causes the network focus on harder triplets.
Our method can be applied to both real-valued and binary
descriptor learning, leading to state-of-the-art performance.
Future work includes generalizing the proposed method to
other similar domains where empirical margins are being
used. For instance, the field of face verification and recog-
nition [25, 7, 39] also leverages the triplet loss, and could
potentially benefit from our approach.
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Multiple-kernel local-patch descriptor. arXiv preprint
arXiv:1707.07825, 2017. 6

[21] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
Desmaison, Luca Antiga, and Adam Lerer. Automatic dif-
ferentiation in PyTorch. In Advances in Neural Information
Processing Systems, 2017. 6
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