
Painting with Triangles

Mark D. Benjamin
Princeton University

Stephen DiVerdi
Google

Adam Finkelstein
Princeton University

Figure 1: Left: A vector painting made in our system exhibits both smooth gradients painted by soft brushes as well as infinitely sharp
boundaries painted by hard brushes. Middle: The painting is represented by a planar triangle mesh. Right: Closeup showing the bottom of
the letter B reveals both the sharp boundaries on the white region and a smooth gradient from blue to green in the background.

Abstract

Although vector graphics offer a number of benefits, conventional
vector painting programs offer only limited support for the tradi-
tional painting metaphor. We propose a new algorithm that trans-
lates a user’s mouse motion into a triangle mesh representation.
This triangle mesh can then be composited onto a canvas containing
an existing mesh representation of earlier strokes. This representa-
tion allows the algorithm to render solid colors and linear gradients.
It also enables painting at any resolution. This paradigm allows
artists to create complex, multi-scale drawings with gradients and
sharp features while avoiding pixel sampling artifacts.

CR Categories: I.3.4 [Computer Graphics]: Graphics Utilities

Keywords: triangle mesh, digital painting, vector graphics

1 Introduction

All computer painting programs must store data through rasteriza-
tion or vectorization. However, traditional computer painting pro-
grams take inputs of the same type as the stored data. For example,
programs like Adobe Photoshop and GIMP allow a user to paint
how he would on a physical medium. By letting the mouse act as
a brush, a user may color individual pixels on the screen. By con-
trast, programs like Adobe Illustrator and Inkscape let a user paint
using geometric primitives such as lines and Bézier curves. The
program then stores these geometric primitives in order to render
the drawing. Although using vector graphics is likely less intuitive,
it has some distinct advantages including a compact representation,
infinite resolution, and easier manipulation.

In this paper we introduce a system which uses a different represen-
tation than traditional raster or vector graphics. The system uses a

triangle mesh to store the data of the painting. Since triangles are a
geometric primitive used in vector graphics this approach achieves
the same advantages traditional vector graphics have. However, the
representation allows the user to paint with vector graphics without
dealing directly with the underlying implementation.

In order to paint in our program the user simply drags his mouse on
the screen to make strokes akin to the process in a raster graphics
program. Upon mouse-up the stroke is converted to our underlying
triangle mesh representation. In this way a user may paint using
vector graphics without worrying about the representation.

This procedure allows painting at any scale. A user can make
large strokes while zoomed out and then zoom in to make fine
details. All of this can happen without loss of quality since the
data is stored using triangles instead of pixels, which can represent
sharp boundaries at any orientation. Furthermore, the use of
smooth shading when rendering the triangles allows for vector
representation of gradient effects. We take advantage of this feature
to create soft, airbrush-like strokes, which are difficult to create in
vector drawing software.

To transform a user’s mouse inputs to a triangle mesh, our system
uses a combination of rasterization and marching squares to find
stroke contours. From the contour it performs a Delaunay trian-
gulation and then merges this triangulation of the new stroke with
the triangle mesh of the existing canvas. This process yields a new
canvas with the combined strokes.

The system reduces the barrier to creating vector graphics by en-
abling a painting-like interface, with support for sharp and smooth
edges. This in turn allows artists to focus on the painting and not
the way in which they paint, while still getting the benefits of vector
graphics. We demonstrate our method by creating digital paintings
with a range of effects and resolutions, including zoom factors of
up to 500,000:1 which implies an effective resolution equivalent to
an image with more than 1017 pixels.

2 Related Work

Previous work has focused on converting images into vector graph-
ics to take advantage of the efficient storage, easy editing, and
infinite resolution it provides. For example the method of Lecot



Figure 2: Example smooth stroke triangulation. Blue segments are
boundary edges, and small blue squares denote mesh vertices.

and Lévy [2006] minimizes an energy function to segment an im-
age into a number of regions that are bounded by cubic splines
and filled with solid colors or gradients. A different approach by
Lai et al. [2009] automatically creates gradient meshes with sup-
port for holes. Our work builds on the representation introduced by
Liao et al. [2012], who showed that a photo can be converted into a
triangle mesh. They demonstrated that natural images can be con-
cisely represented by triangles, using mesh simplification, and that
various image editing operations can be applied in this representa-
tion, including an abstraction technique similar to that of DeCarlo
and Santella [2002]. In principle, one could create a digital paint-
ing in a conventional program and then use one of these approaches
to convert to a vector representation. In contrast our paper shows
how to paint directly in this representation, offering several advan-
tages including efficiency and the ability to handle imagery with
enormously higher effective resolution.

Other work has proposed novel vector graphic data structures.
For example Frisken et al. [2000] introduced Adaptively Sampled
Distance Fields (ADFs), which specify a signed distance function
to a surface in 3D (or a curve in the plane). Rendering the shape
requires sampling the function to determine whether or not a pixel
is on the shape. A quadtree accompanies the distance function to
specify where higher sampling rates are necessary. The method of
Bremer et al. [2001] further describes how ADFs can be created
and used. However, it remains unclear how ADFs might be used
in a general painting program where strokes with solid colors and
gradients are composited on top of one another.

There have been a few projects that enable painting directly with
vector data. Most similar is the work of DiVerdi et al. [2012; 2013],
which uses many polygonal paint splats to create a watercolor-like
effect. These arbitrary polygons are costly to render however, and
“smooth” effects are only created via many overlapping transparent
polygons, which results in a very large amount of geometry. The
method of Ando and Tsuruno [2010] also uses a dynamic vector
representation for their 2D fluid simulation to create marbling
patterns stored as Bézier silhouettes. They developed a simulation
that adaptively updates the Bézier to maintain nice contours, but the
complexity of the document quickly grows too large to compute
interactively. Finally, Asente and Carr [2013] implemented a
feature in Adobe Illustrator to create contour gradients from shapes,
which fill the shapes with small patches of linear gradients to
create a bevel-like effect. Contour gradients can be used to control
opacity to create soft strokes, but each stroke must be stored as
a separate (aggregate) object rather than a single flattened canvas
representation.

Another line of research has explored entirely new ways of painting.
Orzan et al. [2008] introduced diffusion curves – a new painting
technique where artists specify edges and colors for those edges.
Their system then solves a Poisson equation to diffuse the colors
between boundary conditions specified at the edges. Similarly
the method of McCann and Pollard [2008] lets artists paint in the

Figure 3: Color arcs. Orange lines are boundary edges, and
together with black lines form the triangle mesh. Each point is
given one or more color arcs which store the color of triangle
corners in that angular range. Points in the middle row have red
arcs on top and blue below, yielding triangles with those colors,
separated by a hard boundary.

gradient domain. Both of these approaches yield creative new
aesthetic ranges beyond what is straightforward in the traditional
pixel-based painting model. Nevertheless, they represent a new
painting metaphor for the artist, rather than a vectorized version
of the conventional digital painting approach familiar to artists.

Work has also been done in multi-resolution painting using raster
graphics. Early work with Pad++ by Bederson and Hollan [1994]
explored the possibility of having an infinite resolution canvas.
However, rather than a painting program, this work focused on
creating an interface builder for developers. The method of
Berman et al. [1994] stores image information in a quadtree so
that different parts of the image can have different levels of de-
tail. This means the image effectively has an infinite level of de-
tail, yet since it is stored in raster form there are still limitations.
For example a stroke painted at coarse detail will still look blurry
when zoomed in. The strokes are limited to the resolution they
are painted at. Similarly the method of Carr and Hart [2004] also
allows the development of multi-resolution images using rasters,
and as such suffers from the same limitations. One way to re-
duce blurriness in raster images of sharp features is proposed by
Ramanarayanan et al. [2004]. By seprately storing where impor-
tant boundaries are, their system can avoid excessive interpolation.
However, such a method requires creating such a data structure with
those stored boundaries. Another multi-resolution approach by Per-
lin and Velho [1995] uses procedural textures to avoid any funda-
mental limit on resolution. Although useful, generating procedural
textures can be difficult for artists.

Our work builds on these findings. However, our goal is to en-
able artists to create vector graphics through standard painting tech-
niques without having to consider the underlying representation.

3 The Canvas Model

The data necessary to render the painting resides in the canvas.
However, the canvas contains more than just a triangle mesh,
and understanding the underlying data structures is important for
understanding the rest of the algorithm.

3.1 Triangle Mesh

When a user paints, he generates points that are stored on the
canvas. These points are connected to form a triangle mesh. In
every triangle the vertices are colored to either produce a solid
color or a linear gradient. In fact a given point that is part of
multiple triangles can take on different colors in each triangle. Note



Figure 4: A close look at a gradient stroke. The blue edges are
boundaries where the points have gray color arcs as shown. The
purple edges are boundaries where the points have white color
arcs. This gives triangles connecting the two boundaries a linear
gradient from gray to white.

that although the points are persistent as the canvas is updated,
the triangles are not. That is, triangulation of the mesh points is
not unique, and different, equivalent triangulations may be used
throughout the painting process. Thus, we refer to them as “mesh
points” rather than “vertices” (which implies a particular graph
structure).

3.2 Boundary Edges

Although the triangles may change over time, they must abide
by constraints we call boundary edges, each of which connects
a pair of points and specifies that no triangle can cross it. Like
mesh points, boundary edges are persistent. So as new triangles
are created by the triangulation algorithm, they may never cross a
boundary edge. This partially restricts the set of valid triangulations
of the points. Figure 2 shows boundary edges for a soft stroke.

3.3 Color Arcs

Since triangles are not persistent they cannot store color data.
Storing colors in points works well when the color is the same for
all triangles connected to that point. However, when a point lies
on a sharp boundary it may take on different colors in triangles on
either side of the boundary. The need for the same point to take
on different colors in different triangles lead to the development of
color arcs (see Figure 3).

A color arc has three components: a start direction, an end direc-
tion, and a color. Determining the color of a vertex in a given tri-
angle requires two steps. First, the vector from the point to the
centroid of the triangle is calculated. Second, the color arc is found
which contains this vector. Containing the vector means one must
turn clockwise from the starting direction to reach it and counter-
clockwise from the ending direction. The point takes on the color
of the arc in which the vector from the point to the centroid resides.

A point may have more than one color arc, and they must satisfy
three conditions. First, they must be disjoint. Second, they must
cover all 2π radians around the point. These first two conditions
ensure that for any triangle a point will take on exactly one
color. Third, the start and end vectors must align with boundary
edges. This condition makes all colors and gradients emanate from
boundaries.

Figure 5: Left: A hard stroke is rasterized, the contour is found,
and a triangle mesh is generated. Right: A soft stroke is rasterized
in two different shades of gray, two contours are found, a triangle
mesh is generated with a boundary separating the inner and outer
parts of the stroke.

3.4 Rendering

Once the triangle mesh has been generated it is simple to render. In
each triangle the vertices take on a given color based on their color
arcs and the centroid of the triangle. If the three vertices in the
triangle take on the same color value then the triangle will be flat
shaded. If instead the vertices take on different color values then
there will be a gradient over the triangle.

Since the conditions on color arcs make colors emanate from
boundaries it is easy to create regions (e.g. a brush stroke boundary)
containing either a solid color or linear gradient. A region will
have a solid color (e.g. a hard brush stroke) if the boundaries
that surround it all take on the same color. If instead a region is
surrounded by two boundaries, one which has a given color and the
other which has a transparent version of that color then there will
be a linear gradient in that region between the two boundaries (e.g.
a soft brush stroke). Figure 4 shows the color arcs on such a soft
stroke.

4 Triangulating Strokes

Here we consider how to convert a user’s cursor motion into a
triangle-mesh representation of their stroke. This is done in two
steps. First, the stroke is rasterized and the contour is extracted
from the raster. Second, the contour is converted into points and
boundaries and triangulated.

4.1 Converting Strokes to Contours

A set of contours define the outline of a stroke. For simply
connected strokes, those without holes, one contour describes the
whole stroke. However, strokes with holes, such as a circle or
figure-eight, will have more than one contour. Converting a user’s
mouse motion into a set of contours requires two steps. First,
the user’s mouse movements are captured by a set of polygons
which can be rendered to yield a rasterized version of the stroke.
This rasterization happens at the resolution of the current window.
Therefore whatever the artist sees on the screen is the basis for the
vectorization. Second, to obtain the contours the stroke is rasterized
in black and marching squares [Lorensen and Cline 1987] is used
to extract iso-contours of 50% gray. This returns a very dense set of
points, which we reduce through a pruning process to get a sparse
but accurate representation of the contour. The pruning procedure



Figure 6: The figure on the left shows an empty canvas with a
number of points and boundaries defined along the edges to provide
the initial triangulation. The figure on the right shows how a stroke
is composited onto the empty canvas. Blue edges are boundary
edges. Red edges form the triangle mesh with the blue edges.

walks around the contour to form an approximating polygon P ,
greedily eliding vertices whenever they lie within a small threshold
distance of P . We use a threshold of 0.5 pixels at the current zoom
level, which works well empirically.

4.2 Converting Contours to Triangles

Now that we have the contour we need to create a triangulation
for the stroke. First we consider the case of a hard brush, which
contains a single contour (Figure 5-left). Points on the contour
describe the shape of the stroke, while the adjoining segments
describe its boundary. A triangle mesh must contain all the
points and stay within the boundaries. For example, a concave
contour like the outline of the letter C should not contain triangles
inside the concavity, since such triangles would be outside of
the boundary. These boundaries will prove to be crucial when
compositing a stroke onto the canvas. We perform constrained
Delaunay triangulation on the given set of points and boundaries
using Shewchuk’s implementation [2002], and the output is a mesh
that approximately represents the drawn stroke.

4.3 Soft Strokes

The above procedure converts a hard brush stroke into a triangle
mesh. A more challenging case is converting a soft brush stroke
with linear gradient into a triangle mesh. A soft stroke has two
components, an inner hard stroke and an outer gradient stroke.
Since the triangles in the inner and outer parts of the stroke must
be colored differently, none of the triangles may cross the boundary
between the hard and soft regions.

This representation needs a slightly different procedure. The user’s
mouse motion is captured in two sets of polygons. The first set
describes the outer soft stroke and the second set describes the inner
hard stroke. Next the outer stroke polygons are rendered in 50%
gray and the inner stroke is rendered in black. This means the
boundary of the outer stroke is the 25% gray iso-contour and the
boundary of the inner stroke is the 75% gray iso-contour.

Again, using marching squares these contours are extracted and
then pruned. The boundaries and points derived from the contours
are triangulated as in Section 4.2. The resulting mesh represents the
soft stroke where no triangle crosses the boundary between the soft
and hard regions of the stroke. Points on the contour of the inner
stroke will have color arcs with the stroke color, while the points on
the contour of the outer stroke will have transparent color arcs. This
gives all triangles connecting the inner and outer strokes a linear
gradient as seen in Figure 4. Figure 5-right shows the process for
triangulating soft strokes.

Red Over 
White

Red Over 
Blue

Clear Over 
Blue

Clear Over 
White

Red

PurpleBlue

White

Figure 7: Left: A red stroke is composited over a blue stroke. An
intersection point is inserted in the center and four color arcs must
be determined. Right: The four colors are resolved as the four
combinations of the red stroke’s color arcs composited over the blue
stroke’s color arcs.

5 Compositing Strokes

Once the stroke has been converted to triangles by the above
procedure it is necessary to composite the stroke onto the canvas.
This is accomplished in two steps. First, the points and boundaries
from the triangulation of the stroke are added to the canvas and a
new triangulation is found. Second, the color arcs for the old and
new points are updated. We also discuss the challenge intersecting
boundaries pose for the algorithm, as well as a technique to reduce
the number of triangles that are retriangulated on the canvas.

5.1 Adding Points to the Canvas

Every canvas begins with an initial set of points distributed along
the edges. These points have boundaries connecting them. These
points are originally part of a number of triangles which divide the
canvas.

In the simplest approach, the points and boundaries from the new
stroke are added to the list of points and boundaries already stored
on the canvas. These points and boundaries are all triangulated
using constrained Delaunay triangulation as in Section 4.2, to
produce a new mesh (Figure 6). The new mesh contains all of
the points of the old and new strokes. Since boundary edges
form constraints in the triangulation, stroke edges are preserved.
This means that no triangle will cross the boundary of a stroke.
Without this constraint, it would be impossible to correctly color
the triangles since they would straddle color arcs.

5.2 Determining Colors

Once a new mesh is formed the color arcs of the new and old points
must be computed. All color compositing is done with regular
RGB alpha blending. The color arcs for new points depend on two
values, the color of the stroke and the color of the canvas at that
point. The points on a hard stroke will have two color arcs. One arc
describes the inside of the stroke, which takes the color of the stroke
composited over the color of the canvas at that point. The other arc
describes the outside of the stroke, which is just the color of the
canvas at that point. The points on a soft stroke will each have one
color arc. The color arc for points on the inner contour is the color
of the stroke composited over the color of the canvas at that point.
The color arc for points on the outer contour is the color of canvas
at that point (because the outer edge of the soft stroke is completely
transparent). This arrangement produces a linear gradient across
the triangles separating the inner and outer contours.

The color arcs for old points remain unchanged, unless part of the
new stroke covers it. In this case the colors in each arc must be



A

B

A

B

C

D

A

B

C

D

A

B

A

B

C

D

A

B

C

D

A

B

A

B

C

D

A

B

C

D

Figure 8: Left: A blue stroke is composited over a red stroke. Point A is covered by the the blue stroke and point B is on top of the red stroke.
Middle: New color arcs are determined. Both of A’s color arcs are composited with the blue stroke which turns red to purple and transparent
to blue. Similarly both of B’s color arcs are composited on top of the red stroke which turns blue to purple and transparent to red. Two
intersection points C and D are added. Their color arcs are determined by examining neighboring points. Right: A new triangle mesh is
generated to preserve boundaries. Note that triangles in the intersection will be purple.

replaced with the stroke color composited over the old color of the
arc. If the new stroke is soft then the color at the location of the
old point must be determined through bilinear interpolation before
compositing.

5.3 Intersection Points

When the constrained Delaunay triangulation is computed for a set
of points with intersecting boundary edges, it must insert a new
point at the intersection of the edges (otherwise at least one triangle
would have to cross a boundary). These points are introduced with
no color information, whereas the final colors for all of the other
points in the mesh have already been determined.

An intersection point lies on two boundaries and therefore has four
boundary edges emanating from it. To determine the colors of
an intersection points requires knowing the colors associated with
other points on the boundaries. For both boundaries, we search
both directions to the first point with color data. Note this may
not be the first point on each side, since this intersection point
may be adjacent to other intersection points also without color
data. For both boundaries, the colors in the color arcs are linearly
interpolated. This yields four average colors, two from the new
stroke boundary and two from the old stroke boundary. The colors
from the new stroke are composited over the colors from the old
stroke to yield four new colors, one for each region defined by
the boundary intersections (see Figure 7). For an example of how
color arcs are determined for both intersection and regular points
see Figure 8.

5.4 Finding Modified Points

As described so far, our retriangulation procedure has two substan-
tial drawbacks. First, it processes many points that do not need con-
sideration which is inefficient. Second, since it acts on the whole
canvas, local modifications may have global effects. Instead our ap-
proach is to determine which triangles can remain unchanged and
which triangles need to be included in the re-triangulation (see Fig-
ure 9). To accomplish this a static grid is generated and all of the
cells that contain a triangle from the new stroke are marked. The
set of triangles from the old triangulation that intersect these grid
squares are found. The set of edges from these triangles that do
not intersect these grid cells form a ring around the area of our new
triangles. The edges in this ring become constraints in the triangu-
lation. All of the points and constraint edges from the old triangu-
lation are included as well as the points and constraint edges from
the new triangulation. Triangulating these points and edges gives
the new geometry for the modified area and has no effect on any
other part of the canvas. Therefore, the old triangles from the rest

of the canvas can be reused, and their union with the new triangle
mesh represents the new canvas.

6 Results and Discussion

Paintings made with our system in a range of visual styles are
shown in Figures 1 and 11–14. The images shown in Figure 12
reveal a drawing with an extreme zoom range up to 524,000:1,
for an effective resolution equivalent to an image with more than
1017 pixels. At this zoom level our renderer begins to suffer from
artifacts at the limits of single floating point precision; this could
be ameliorated by switching to double-precision. Nevertheless,
this range far exceeds limits imposed by existing vector graphics
software such as Adobe Illustrator, which has a maximum zoom
ratio of 64:1. Furthermore, our ability to make paint strokes of
smooth gradients in a flat vector representation (e.g., Figure 1) is
unique.

Next we consider how the complexity of the algorithm grows both
in time and geometry. The results from this analysis and our
experience with the system have lead to a number of observations.

6.1 Complexity

To find the growth rates of the algorithm we performed two
experiments. First, the program drew fifty random strokes without
zooming. Next, the program drew fifty random strokes with random
zoom level for each stroke. Geometry grows fastest when many
strokes are composited on one another. When not zooming, strokes
must cover the same area of canvas over and over. This results in
more geometry and therefore takes longer to render. The zooming
case explores different areas of the canvas and therefore results
in less overlapping geometry. This situation should result in less
complex geometry and therefore take less time.

Figure 10a shows the zooming case grows linearly while the non-
zooming case appears to grow quadratically. This is expected since
in the non-zooming case every new stroke has the chance to overlap
all of the old strokes. Therefore each new stroke does not just
add a constant amount of geometry, but due to intersections with
previous strokes extra intersection points are added. This results in
a linear increase in the amount of geometry per new stroke, yielding
a quadratic growth rate overall. However, in the zooming case each
stroke rarely overlaps previous strokes, and therefore intersection
points are rarely added. In this case the geometry increases by a
constant amount per stroke, which yields a linear growth rate.

Figure 10b gives a similar result for the cumulative time strokes
take to render. Both the zooming and non-zooming cases grow non-
linearly over time. However, the non-zooming case takes longer for



Figure 9: An example of how our system determines which trian-
gles to save and which to retriangulate. Blue lines represent the
boundaries of old strokes, orange lines are the boundaries of the
new stroke, red lines are the triangles that will be reused, and pur-
ple lines define the area that needs to be retriangulated. The purple
lines are edges of triangles that intersect the new stroke. Since they
interesect the new stroke they are no longer valid and must be retri-
angulated. All other triangles on the canvas can be reused.

the reasons described. For example, the first ten strokes in both
cases take about 2 seconds to render, while the last ten strokes
take about 20 seconds in the non-zooming case and 7 seconds in
the zooming case. It is not unexpected that even the zooming case
grows non-linearly since even though the geometries involved are
not becoming very complicated, the geometry of the entire canvas is
increasing linearly and must be considered even if the entire canvas
is not re-triangulated.

This suggests that canvas simplification is of great importance. The
case that it is most likely to be helped is the non-zooming case with
complex geometry. When lots of strokes overlap there is usually
extra geometry that does not add much detail to the drawing. By
removing this extra geometry the algorithm should achieve a steady
growth rate.

Beyond reducing the complexity of the geometry, the speed of the
algorithm might be improved by utilizing the GPU more heavily.
For example, Nehab and Hoppe [2008] demonstrate an approach for
using GPUs to speed up rending of more traditional vector graphics.

6.2 Stability

While Shewchuk’s implementation [2002] of Delaunay triangula-
tion is impressively robust, there are still certain pathological ge-
ometries that can cause it to fail. Specifically, long skinny triangles
and vertices that are too close together seem to trigger triangula-
tion failures. Detecting these situations and fixing them, or even
better modifying the geometry construction to avoid them, would
solve this problem. For example, identifying if a new vertex is too
close to an existing one, and if so, merging them. Another example
is to subdivide long edges to reduce the incidence of skinny trian-
gles. The impact these solutions would have on processing time is
something that needs to be explored.

6.3 Performance

Performance is measured on a 1.8 GHz Core i5 MacBook Air with
8GB of RAM and an Intel HD 4000 graphics card. The current im-
plementation uses Python and PyOpenGL. Python’s performance
is slower than a lower level implementation in C++ would be. The
preview rasterization of a new stroke on the canvas is interactive

0	
  

5000	
  

10000	
  

15000	
  

20000	
  

25000	
  

30000	
  

0	
   10	
   20	
   30	
   40	
   50	
   60	
  

N
um

be
r	
  o

f	
  T
ria

ng
le
s	
  

Number	
  of	
  Strokes	
  

(a) Number of triangles

0	
  

50	
  

100	
  

150	
  

200	
  

250	
  

300	
  

350	
  

400	
  

450	
  

500	
  

0	
   10	
   20	
   30	
   40	
   50	
   60	
  

Cu
m
ul
a&

ve
	
  R
en

de
r	
  T

im
e	
  

Number	
  of	
  Strokes	
  

(b) Rendering time

Figure 10: For paintings of 50 random strokes, the left graph
shows the number of triangles in the canvas as of stroke x, and
the right graph shows the cumulative render time of the painting.
The blue points are the non-zooming case, while the red points are
the zooming case.

with no lag. However, the actual process to take a stroke from ras-
terization to triangle representation on the canvas can be slow. On
a blank canvas, strokes take less than one second to process. How-
ever, on a canvas with lots of geometry a stroke that overlaps that
geometry can take several seconds to render. Some of this could
be alleviated by a carefully optimized implementation. However,
there are many calculations necessary for the old points affected
by the new stroke and the points associated with the new stroke it-
self. Since these geometries can become arbitrarily complicated (in
pathological cases), these calculations can take arbitrarily long.

6.4 Simplification

No matter how good the implementation, the fact that paintings
can become arbitrarily complicated as more and more strokes are
added means there must be some way to simplify the mesh. In
most situations where many strokes overlap one another, most
of the geometry is redundant. For example, when an opaque
stroke is laid down on top of a complex geometry, that complex
geometry no longer has any useful information since the outline of
the opaque stroke completely defines it (all vertices are the same
color). Furthermore, even with translucent or feathered strokes, a
large enough number of composited strokes may produce complex
geometry that does not add much to the visual appearance of the
canvas. Some of this geometry can be reduced without noticeable
changes. To accomplish this, our proposed simplification algorithm
would identify a vertex that can be removed via an edge collapse
by measuring the change the collapse would cause in the image.
The change is computed as the magnitude of the color shift and
the translation of a boundary. If these deltas are below a threshold,
then the collapse can proceed. This process could be done when
a stroke is added to the canvas, or continually in a background
thread to avoid increasing apparent latency. Though we have
yet to implement this simplification algorithm, it is important to
ensure a painter can continue to iterate on a painting without the
program becoming too slow. Finally we note that Liao et al. [2012]
demonstrated that this kind of simplification can be effective at
reducing mesh complexity, at least for natural imagery. In their
case they were working on an offline process for the entire image,
whereas our problem needs to be interactive on mouse-up (or as a
background thread) but fortunately only needs to operate on regions
of the mesh that have changed during recent painting.

7 Conclusion and Future Work

Our system enables a user to paint like they would in a raster
graphics program to create vector graphics. The core element is
a triangle mesh representation of the painting. We have created an



Figure 11: This drawing uses about 70 strokes, resulting in 9030 triangles.

Figure 12: This single painting shows an extreme zoom; the final closeup image is at zoom level 524,000:1.

Figure 13: Two more example paintings exploring different styles.



Figure 14: This painting shows soft and hard strokes at a variety of scales. Middle and right images are zoomed in.

algorithm to convert a user’s mouse motions into a triangle mesh,
and then composite it onto the preexisting mesh containing the
previous strokes.

Aside from the simplification challenge described in Section 6.4,
there are a number of other interesting areas for future work,
including:

Curved boundaries. In our implementation, curve boundaries
are represented as polylines. We believe it would be relatively
straightforward to modify these boundaries to be represented by
higher-order curves, for example a Catmull-Rom spline passing
through the vertices of the mesh. This would offer higher-quality
paths for the same sampling rate, but would require subdividing the
path at rendering time based on the image resolution. Today such
operations can typically be performed on graphics hardware with
little impact on runtime performance.

Geometric operations. Because the underlying representation
is vector in nature, it should robustly support warping and other
geometric operations. It should also be easy to provide other
kinds of useful tools to the artist like a “smoothing brush” which
could locally adjust the geometry and/or the colors to soften a
region. Finally, it would be interesting to offer this kind of painting
interface on non-planar canvasses, for example allowing an artist to
paint directly onto a manifold representing a shape in 3D.

References

ANDO, R., AND TSURUNO, R. 2010. Vector fluid: A vector graph-
ics depiction of surface flow. In Non-Photorealistic Animation
and Rendering, 129–135.

ASENTE, P., AND CARR, N. 2013. Creating contour gradients
using 3D bevels. In Computational Aesthetics, 63–66.

BEDERSON, B. B., AND HOLLAN, J. D. 1994. Pad++: A zooming
graphical interface for exploring alternate interface physics. In
User Interface Software and Technology, 17–26.

BERMAN, D. F., BARTELL, J. T., AND SALESIN, D. H. 1994.
Multiresolution painting and compositing. In SIGGRAPH, 85–
90.

BREMER, P. T., PORUMBESCU, S. D., KUESTER, F., JOY,
K., AND HAMANN, B. 2001. Virtual clay modeling using
adaptive distance fields. Tech. Rep. CSE-2001-7, University of
California, Davis.

CARR, N. A., AND HART, J. C. 2004. Painting detail. In
SIGGRAPH, 845–852.

DECARLO, D., AND SANTELLA, A. 2002. Stylization and
abstraction of photographs. ACM Trans. Graph. 21, 3 (July),
769–776.

DIVERDI, S., KRISHNASWAMY, A., MĚCH, R., AND ITO, D.
2012. A lightweight, procedural, vector watercolor painting
engine. In Interactive 3D Graphics and Games, 63–70.

DIVERDI, S., KRISHNASWAMY, A., MĚCH, R., AND ITO, D.
2013. Painting with polygons: A procedural watercolor engine.
IEEE Trans. Vis. Comp. Graph. 19, 5 (May), 723–735.

FRISKEN, S. F., PERRY, R. N., ROCKWOOD, A. P., AND JONES,
T. R. 2000. Adaptively sampled distance fields: A general
representation of shape for computer graphics. In SIGGRAPH,
249–254.

LAI, Y.-K., HU, S.-M., AND MARTIN, R. R. 2009. Automatic
and topology-preserving gradient mesh generation for image
vectorization. ACM Trans. Graph. 28, 3 (July), 85:1–85:8.

LECOT, G., AND LÉVY, B. 2006. ARDECO: Automatic region
detection and conversion. In Eurographics Symposium on Ren-
dering.

LIAO, Z., HOPPE, H., FORSYTH, D., AND YU, Y. 2012. A
subdivision-based representation for vector image editing. IEEE
Trans. Vis. Comp. Graph. 18, 11, 1858–1867.

LORENSEN, W. E., AND CLINE, H. E. 1987. Marching cubes:
A high resolution 3D surface construction algorithm. In SIG-
GRAPH, 163–169.

MCCANN, J., AND POLLARD, N. S. 2008. Real-time gradient-
domain painting. ACM Trans. Graph. 27, 3 (Aug.), 93:1–93:7.

NEHAB, D., AND HOPPE, H. 2008. Random-access rendering
of general vector graphics. ACM Trans. Graph. 27, 5 (Dec.),
135:1–135:10.

ORZAN, A., BOUSSEAU, A., WINNEMÖLLER, H., BARLA, P.,
THOLLOT, J., AND SALESIN, D. 2008. Diffusion curves: A
vector representation for smooth-shaded images. ACM Trans.
Graph. 27, 3 (Aug.), 92:1–92:8.

PERLIN, K., AND VELHO, L. 1995. Live paint: Painting with
procedural multiscale textures. In SIGGRAPH, 153–160.

RAMANARAYANAN, G., BALA, K., AND WALTER, B. 2004.
Feature-based textures. In Eurographics Symposium on Render-
ing, 265–274.

SHEWCHUK, J. R. 2002. Delaunay refinement algorithms for
triangular mesh generation. Comp. Geom. Theor. App. 22, 1–
3 (May), 21–74.


