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Abstract

Geometry acquisition and processing have become increasingly popular in computer graph-

ics and vision, with demand for high-quality models driven by advances in 3D printing,

realistic real-time renderings of 3D avatars in video games, digital libraries for historical

objects etc. In this thesis, we focus on techniques to produce and process detailed geometry

including acquisition of real world objects, processing and fusing the captured data, and

synthesizing new surfaces from existing ones.

First, we summarize a 2D acquisition technique called photometric stereo to capture

high resolution surface details. As a validation step, we solve a misalignment problem for

photometric datasets. After the dataset is validated, the surface normals can be computed

using one of the photometric stereo algorithms. In order to decide which algorithm to use,

we present a synthetic photometric benchmark to evaluate various algorithms for different

scenarios.

To produce a detailed surface in 3D, we propose an approach to combine a rough 3D

geometry with detailed normal maps obtained from different views. We begin with unaligned

2D normal maps and a rough 3D geometry, and automatically align each normal map to

the 3D geometry. Next, we map the normals onto the surface, correct and seamlessly blend

them together. We then optimize the geometry to produce a high-quality 3D model.

Next, we introduce a semi-automated system to convert photometric datasets into

geometry-aware non-photorealistic illustrations of surface details that obey the common

conventions of epigraphy (black-and-white archaeological drawings of inscriptions). This

system is composed of rectification of the surface normals to correct camera perspective,

segmentation of the inscriptions from the background, classification of the inscription based

on carving technique, and stylization of the inscriptions in various styles.

Finally, we present an algorithm for realistically transferring surface details (specifically,

displacement maps) from existing high-quality 3D models to simple shapes that may be

created with easy-to-learn modeling tools. Our key insight is to use metric learning to find a
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combination of geometric features that successfully predicts detail-map similarities on the

source mesh, and use the learned feature combination to drive the detail transfer.
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Chapter 1

Introduction

The demand for high-quality 3D models has been increasing in the last few decades. For

instance, thanks to the advances in 3D printing technology it is possible to duplicate objects

with under millimeter precision – see Figure 1.1a. Now the bottleneck is to capture or

create the level of detail with the same precision. Video gaming industry is also getting

better everyday. They can render highly complicated scenes in real-time, however again the

bottleneck is the content creation. As shown in Figure 1.1b, 3D characters with sophisticated

surface details are popular in video games and filming industry and they are all created

manually by 3D artists. Depending on the complexity of the model, nowadays the cost of

a single 3D model varies from a few hundred dollars to a thousand dollars. Another field

which benefits from the advances in digital capturing techniques is cultural heritage. Many

museums have been digitizing their artefacts by using 3D scanners, gigapixel computational

imaging, or various other photometric techniques. Figure 1.1c demonstrates an example of

reflective transformation imaging (RTI) which is a photometric technique to capture surface

colors as well as some geometric information such as surface normals. RTI data later can be

used for various applications such as re-lighting the object, enhancing the details, changing

the reflectance etc. Additionally, thanks to the advances in digital data storage technologies

1



(a) 3D Printing (b) 3D Avatar (c) Cultural Heritage

Figure 1.1: (a) Microfabrica additive manufacturing technology can achieve under millimeter

precision. (b) A 3D avatar with fine details. (c) RTI representation used by cultural heritage

practitioners for preservation and visualization.

in the last few decades, the cost and space to store terabytes of data decreased dramatically.

In turn, we can store captured surfaces in high resolution at low costs.

We can summarize some of the challenges encountered by the industries mentioned

above in three categories: (i) capturing high-resolution data in 2D and/or 3D, (ii) processing

the high-resolution data, and (iii) creating (synthesizing) new high-resolution 3D models.

Capturing. Both 2D and 3D scanning technologies are faced with a trade-off between

object size and resolution. For example, among many 3D scanning technologies as sum-

marized in Chapter 3, laser scanners such as NextEngine and Matter & Form have higher

resolutions around 0.1-0.5 mm however they have limited maximum object sizes around

20x20x20 cm. In addition, to reconstruct a complete 3D model one need to combine all the

scans from different views and this will result in the loss of some details depending on the

accuracy of the alignments.

Among photometric techniques, Light Stage [113] uses a variant of 2D active scanning

technique, photometric stereo, to estimate both diffuse and specular surface normals. This

setup can capture faces with a resolution high enough to capture skin pores. However, it
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is a fixed-sized setup which makes it harder to adapt to capture objects with varying sizes.

Moreover, It is expensive to build such a light dome and it occupies a lot of space.

Nehab et al. [130] propose a unified acquisition system that captures both rough 3D

geometry via a temporal stereo triangulation scanner and normal maps via photometric

stereo. Since they share the same camera for both captures, 3D positions and the normal

map are perfectly aligned. However, again it is a fixed-sized setup, limits the size of the

object to be captured and it is not flexible to adapt for different object sizes.

In this thesis, Chapters 2 and 3 propose solutions to problems in capturing high-quality

surfaces by optimizing the existing technology and combining various technologies to

achieve higher quality than either one alone.

Processing. Extracting meaningful information from either 2D or 3D data has been studied

extensively. For example, line drawings from RGB images or 3D surfaces are one of the

most popular problems [86, 180, 77, 46, 80, 96]. However, previous work suffers from

low signal-to-noise ratios. For rough surfaces with shallow depths or noisy colors, those

methods usually fail to differentiate between the surface bumps and the actual information.

In Chapter 4, we convert the wealth of information from the captured high-resolution data

into interpretable concise representations.

Synthesizing. The number of 3D models available online is tremendous however the

number of high-quality 3D models freely available is severely limited. That is why, designers

are usually forced to generate models by hand for many applications such as realistic

renderings for furniture catalogs, 3D environments for CGI, video games etc. 3D artists

usually resort to highly sophisticated modeling tools such as ZBrush [136] and physical

simulators to generate realistic looking 3D contents. However, those tools require highly

trained artists and even so it takes a lot of manual work to create a single model. There are

various works in the literature focusing on content generation using procedural modeling [71]

however they are usually tailored for specific tasks such as generating trees, terrains etc. and
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cannot be applied to different types of objects. On the other hand, Mertens et al. [120], Lu

et al. [109], and Chen et al. [38] try to transfer surface colors from one model to another

with some geometric supervision to generate 3D models with a similar appearance to the

existing ones, which can be adapted to apply to surface details. However their methods are

not sophisticated enough to fully capture the relationship between the surface details and

the underlying geometry. In Chapter 5, we propose creating new contents with realistic

appearance by transferring surface details from existing 3D models with high-quality details

to low resolution 3D models.

1.1 Contributions

We summarize the main contributions of this thesis on surfaces with details in four categories:

• Capturing and Validation: One of the most common method of capturing high

resolution surface details is active shape from shading (photometric stereo). To obtain

the highest quality normal maps from those datasets, however, we need to validate the

data and align them if necessary. We leverage having multiple images by constructing

a spanning tree and aligning images with similar illumination to each other as opposed

to aligning each image to a single target image. We also analyze the behavior of

various photometric stereo algorithms under varying different factor and propose

an iterative least squares approach for general purpose photometric stereo problem.

(Chapter 2),

• Data Fusion: 3D scans are usually sufficient to capture overall coarse-scale shape of

a surface, however difficult to obtain at extremely high resolutions. On the other hand,

normal maps are easily obtained at high resolution using photometric stereo even

though they do not provide reliable information about the coarse shape. In order to

obtain high resolution 3D models, we propose a pipeline to combine a coarse geometry

from the 3D scans and fine surface details from the normal maps. The advantage of
4



this pipeline is that it does not require any initial alignment or resolution/precision

compatibility between the 3D scan and the normal maps (Chapter 3),

• Illustration: Normal maps contain a wealth of information about fine surface details

which is why we also use them to analyze nearly flat surfaces with fine details and con-

vert them into geometry-aware non-photorealistic (NPR) illustrations. Specifically, we

focus on rock faces with ancient carved or scraped off inscriptions which are located

in a desert, constantly under strong sunlight, making capture challenging. Another

challenge is to attenuate the noise caused by surface roughness and weathering which

causes undesirable results for previous NPR techniques. We propose segmenting the

foreground to discard the noise by using a graph-cut algorithm. We find that using

both the surface geometry and the color information gives better results than using

only one of them, (Chapter 4),

• Realism: Even though there are many 3D models available online for free they usually

lack of fine details which give realistic appearance to them. We propose using few

available data with fine details to increase the number of such models by transferring

its details to a wide variety of low-resolution 3D models. Our key insight is to use

metric learning to find a relationship between the coarse-scale geometry and the fine

details, and use this relationship to drive the detail transfer from the high-resolution to

low-resolution 3D models, (Chapter 5).
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Chapter 2

High-fidelity Surface Detail Acquisition

This chapter focuses on capturing and recovering surface orientations from the variations

of the observed intensity of an object under different illuminations – also known as photo-

metric stereo. Since this approach provides per pixel orientations, by using a digital-SLR

camera we can obtain scans with higher resolution than other 3D scanning technologies

such as LIDAR, Kinect, and laser scanners. In this chapter, we first visit the photometric

stereo algorithm, then propose a method to validate and correct any misalignments in the

photometric datasets, and finally analyze the effects of several factors such as ambient illu-

mination, inter-reflections, material etc. on various photometric stereo algorithms including

a new general purpose photometric stereo algorithm using iterative least squares.
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2.1 Photometric Stereo

Photometric stereo is an active range acquisition technique which requires multiple images

of the same object from a fixed camera position under varying light directions. The simplest

formulation of the surface orientation recovery from images assumes that the surface is

Lambertian, meaning that the outgoing radiance is the same from all directions. Given a

single light source in each image and a fixed camera position, we can formulate this problem

as:

Iij = ρiNi · Lj (2.1)

where Iij is the observed intensity at pixel i under light direction Lj , and Ni and ρi are

the surface normals and albedo at pixel i, respectively. Given at least three images, I , and

their associated light directions, L, we can solve for N and ρ with the linear least squares

approach. However, in most cases more images are necessary for better estimation because

of outliers such as self-shadowing, specularity, and image noise. If the light directions, L,

are unknown, one can estimate them by solving a Generalized-Bas-Relief (GBR) ambiguity

problem with the constraint of surface integrability [190].

Capture Setup. All the photometric datasets presented in this thesis are captured with a

setup similar to the method proposed by Toler-Franklin et al. [161]. Specifically, a series of

digital-SLR images of the object are captured with a fixed camera position, and a hand-held

flash is moved around the object to obtain different light directions as shown in Figure 2.1a.

A black cloth can be used to shade the object and the camera for outdoor captures. Several

mirror (chrome) and white diffuse spheres, which will be used to estimate the light directions

and intensities on each image later, are placed next to the object. Also, one image with no

flash is taken at the beginning of each capture session, which will be subtracted from all

other images with flash to remove ambient lighting as much as possible. We also built a

small light dome 15 centimeters in diameter with 12 LED lights evenly spaced. As shown in
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(a) Hand-held flash (b) Light Dome

Figure 2.1: Photometric capture setups with (a) a hand-held flash and (b) a mini light dome

with fixed light positions (Left: the light dome is attached to the camera lens, Right: light

positions inside the dome).

Figure 2.1b, the dome can be attached to the camera lens and very portable. The advantage

of a light dome is that since the light positions are fixed we can calibrate for the lights once

and use them for all datasets, however we can use this mini light dome for small objects (a

few centimeters wide) only. After the photometric datasets are captured, we use a variant of

the photometric stereo algorithm [182] to estimate surface normals and the true albedo from

those images – see the iterative least squares approach in Section 2.3.5 for details.

A Taxonomy of Photometric Stereo. Photometric stereo (PS) algorithms can be divided

into two categories: calibrated and uncalibrated, based on the availability of information

about the illumination conditions. In the same fashion, one can call algorithms (un)calibrated

based on other factors such as BRDF, shadow maps, and possibly geometric priors; however

we use lighting conditions as the main factor to categorize the algorithms, because it has

the biggest effect on the accuracy of the recovered surface orientations, as we discuss

in Section 2.3. We can list the sub-factors that shape the PS algorithms can also be

broadly categorized: illumination, material, outliers, and geometry. We sub-categorize
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the (un)calibrated PS algorithms based on those factors bellow. A more comprehensive

survey can be found in [5].

2.1.1 Calibrated Photometric Stereo (CPS)

For calibrated photometric stereo, acquisition setup can be designed for different purposes

with following options:

• Fixed light positions with respect to the camera. For example, light stage [177] or light

domes [117] with built in lights and camera(s) on it are commonly used techniques to

capture photometric data. They are robust in terms of acquisition of the light direc-

tions/positions and repeatability. Drawbacks of these setups are: they are expensive, hard

to maintain, take a lot of space, and are not easily scalable.

• Hand-held light sources, with calibration objects such as chrome spheres used to estimate

light position and diffuse white spheres to measure the intensity and the color of the light

source [162]. This setup supports mobile light sources as opposed to the fixed lights in

light domes.

• The light emitters can be modeled as point sources or as area lights. While LED lights

usually act as a point light sources, a flash of a camera behaves as an area light source

that emits almost parallel light rays.

Illumination. Instead of a single light source per frame, Brostow et al. [31] used 3 colored

light- red, green, blue- to perform fast dense-normal recovery on video sequences. Abrams

et al. [2] used the outdoor day-light images by using the sun as their light source which

requires calibrations based on the time of the day and the day of the year in a similar way

to Ackermann et al. [4]. Other than a point or a directional light source, Ma et al. [114]

proposed using a polarized spherical gradient illumination so that they only need 4 images

to recover the surface normals.
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Material. Hertzmann and Seitz [73] used a known geometry (sphere) in the scene with the

same material of the object to create a normal lookup table. However, in real-life it is hard to

find or create these calibration objects. By assuming that most objects are composed of a few

fundamental materials, Goldman et al. [60] proposed solving the normals for a few BRDFs

with varying weights per pixel. Tan et al. [157] assumed that the surface is composed of

micro-facets instead of assuming Lambertian surface per pixel to recover higher resolution

normals than the original images.

Outliers. Drew et al. [49] handled shadows and specularity by using radial basis function

interpolation. Chandraker et al. [36] proposed an algorithm to segment different shadows

regions. On the other hand, Wu et al. [184] assumed that the outliers are sparse so they

optimize for a low-rank observation matrix plus a sparse outlier matrix.

Geometry. Basri and Jacobs [12] suggested to use a 9D linear subspace using spherical

harmonics to map the per-pixel surface properties of convex Lambertian objects.

2.1.2 Uncalibrated Photometric Stereo (UPS)

Uncalibrated photometric stereo does not require any special setup other than a fixed camera

position and varying illumination.

Illumination. Zhou and Tan [195] solved uncalibrated PS by adding some constraints on

the light configuration even though the light positions are not known.

Material. Alldrin et al. [8] assumed that the number of distinct albedos is low, and they

solve the generalized bas-relief (GBR) ambiguity by minimizing the entropy of the albedo

distribution. Under the Lambertian assumption, Favaro and Papadhimitri [54] exploited

maximal Lambertian reflections to solve the GBR ambiguity. Shi et al. [146] clustered
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the pixels to leverage the strong correlation between the surface normals and the intensity

profiles of pixels.

Outliers. Tan et al. [158] leveraged the non-Lambertian reflectance components to solve

the Generalized-Bas-Relief (GBR) ambiguity. Similarly, Chandraker et al. [37] used the

inter-reflections on the non-convex surfaces to solve the GBR ambiguity. Mukaigawa et

al. [128] proposed using the photometric linearization by introducing a classification-based

criterion for specular and diffuse reflections, and cast and attached shadows.

Geometry. Basri et al. [13] solved for the GBR ambiguity by using only a few images

under the assumption of observed objects’ being convex. Queau et al. [138] used total

variation regularization to solve for a piece-wise smooth surface. Yuille and Snow [190]

showed that the surface integrability constraint reduces the GBR ambiguity to a problem

with 3 unknowns.

2.2 Alignment of Images with Varying Light Directions

In this section, we focus on alignment of photometric datasets (high-resolution images taken

with a fixed camera under different light directions). Although the camera position is largely

fixed, there might be some misalignment due to perturbations to the camera or to the object,

or the effect of optical image stabilization, especially in long photo shoots. Based on our

experiments, we observe that feature-based techniques outperform intensity-based ones

for this problem. We found that SIFT [107] and SURF [14] provide very reliable features

for most cases. For feature-based approaches, one of the main problems is the elimination

of outliers, and we solve this problem using the RANSAC framework. Furthermore, we

propose a method to automatically detect the transformation model between images. The

datasets that we focus on have around 10-100 images, of the same scene, and in order

to take advantage of having many images, we explore a graph-based approach to find
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the strongest connectivities between images. Finally, we demonstrate that our alignment

algorithm improves the results of photometric stereo by showing normal maps before and

after alignment.

2.2.1 Introduction

Image alignment is one of the first steps for most computer vision and image processing algo-

rithms. Image fusion, image mosaicing, creation of panoramas, object recognition/detection,

photometric stereo and enhanced rendering are some of the examples in which image align-

ment is a crucial step. We can define the problem as the process of overlaying images of

the same scene under different conditions, such as from different viewpoints, with different

illumination, using different sensors, or at different times. In this section, we focus on the

alignment of multiple images of the same scene under varying illumination.

In the literature, there are many works on image alignment, and most of them aim to

solve a specific problem. For example, algorithms for medical image alignment mostly

use intensity values of the image, while object recognition algorithms usually try to find

some descriptive salient features. In short, the structure of the algorithm is shaped by the

specifications of the problem itself.

We focus on aligning images of the same object under different light directions, keeping

other conditions almost the same. This section presents the following contributions:

• Evaluation of which approaches to image alignment are most stable under different

illumination,

• Progressive solution for more and more complex image transformations, to use the least

general (and hence most robust) model necessary for good alignment,

• Simultaneous alignment of multiple images using spanning trees of image graphs,

• Demonstration of the effect of the image alignment on photometric stereo.
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Figure 2.2: Misaligned images are aligned with our graph-based alignment method so that

they can be used in various applications such as photometric stereo. Left to Right: images

before and after alignment, and normal maps calculated from them.

            (a)                                                (b)

         (c)                                               (d)                        

Thursday, December 6, 12

Figure 2.3: Effect of image stabilization (IS). (a) A sample image from the textile dataset.

(b), (c), (d) Closeup images showing the effect of image stabilization, red lines are placed

on the same locations to show the misalignments between two frames caused by IS.

(a) (b) (c) (d)

Figure 2.4: Closeup images from the panel dataset, (a) and (b), and the skull dataset, (c)

and (d). Different light directions might cause different cast shadows (a, b, and c), moving

specular highlights (a, and d), and different visible edges with different sharpness (all).
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The image datasets that we focus on are usually used as inputs to other applications,

such as polynomial texture mapping (PTM) [116], shape and detail enhancement [53],

photometric stereo and enhanced rendering [115] etc. For example, PTM takes several

images taken from the same view point but under different light directions, and constructs

the coefficients of a bi-quadratic polynomial per texel. These coefficients are used later to

reconstruct the surface color under varying light directions. Although the camera and the

object in the capture setup should be kept still, sometimes there might be some misalignment

between images because of perturbations to the camera/object in the scene or the effect of

optical image stabilization. For example, Figure 2.3 shows some misalignments caused

by image stabilization. Therefore, image registration is necessary to make sure that input

images are well aligned.

However, many techniques in the literature are either only partially invariant to illumina-

tion change or not invariant at all [196]. For images taken under different light directions,

the main problem is the non-linear illumination change, which is not trivial to deal with

because different light directions may lead to cast shadows, moving specular highlights, local

changes in brightness on the image, or even the loss of some information (e.g, if the light

direction is perpendicular to a geometric edge on the object, it might not be recognizable on

the image; or a texture edge might not be visible if it is in shadow), Figure 2.4 illustrates

these problems. In early experiments, we observed that pixel-based methods such as nor-

malized cross correlation, L2 difference of intensity values, pixel dot product etc. fail to

find correct alignments for our datasets most of the time. It is because pixel-based methods

rely on intensity values only, and these are very unreliable under non-linear illumination

changes. That is why, in this section, we focus on feature-based methods.

In this section, we first summarize some image registration algorithms in the literature.

Then we explain our approach to solve the matching problem for images taken under

different illumination. Finally, we show results demonstrating the necessity of the image

alignment on photometric stereo.
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2.2.2 Related Work

Image registration (alignment) is transforming a source image to the coordinate system of

the reference image. Images may be taken either at different times, from different views,

under different lighting, or with different sensors. Researchers have been working on the

image registration problem for decades to solve alignment problems in various fields such

as medical imaging, remote sensing, image fusion, panorama, change detection, recognition

etc.

Brown [34] published a very broad survey on image registration techniques in 1992.

More recently, Zitova et al. published another survey paper in 2003 including more recent

works on image alignment [196]. In 2006, a tutorial for image alignment and stitching was

published by Szeliski [153].

The many algorithms for image alignment can be broadly categorized as pixel-based

or feature-based. Pixel-based methods use intensity values directly: for example they may

rely on normalized-cross-correlation and its variants, similarity measures using pixel dot

products or L2 distance. Matching, fitting and validation steps are calculated simultaneously

for a preselected transformation model [196].

For template matching, Kaneko et al. proposed the selective correlation coefficient,

which is very similar to cross-correlation (CC), but it extracts a correlation mask-image

differently than CC. They used increment sign correlation to extract the mask, and the mask

is enhanced with four-pixel majority rule [84], [85]. Silveira et al. proposed a method for

real-time visual tracking. They modeled the illumination change and image motion by

solving a second-order optimization problem minimizing the intensity difference based on

illumination and image motion models [147]. By using only the strongest image gradients

with a pyramidal refinement strategy, Eisemann and Durand align flash and no flash images

[51].

One of the well known pixel-based algorithms in computer vision and graphics is optical

flow, proposed by Lucas and Kanade [110]. It assumes constant flow in a local neighborhood
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and solves optical flow equations by least squares. Optical flow and its variants have been

used to solve image alignment problems in various works [87], [94], [11], [18]. To find only

translational misalignment, Ward proposed median threshold bitmaps in image pyramids for

hand-held photographs with varying exposures [173].

Feature-based algorithms consist of three main blocks: salient feature extraction, feature

matching, and estimation of the transformation. Various types of feature detection algo-

rithms have been proposed throughout the years such as line, contour, and region detectors.

However, salient feature points are easier to deal with than lines, contours or surfaces.

The Harris corner detector [68] has been used for many years to detect corner-like points.

Recently, feature descriptors became more popular because of their distinctive and invariant

natures. The Scale-Invariant Feature Transform (SIFT) was proposed by Lowe in 2004;

since then, it has been used widely because of its shift and scale-invariance and its distinctive

descriptors [107]. Furthermore, Lowe showed that SIFT shows high performance on object

recognition. Later on, Brown and Lowe used SIFT on unordered panorama images for

stitching, together with the RANSAC framework for outlier elimination and a probabilistic

model for verification [35]. Tang et al. similarly used a variant of SIFT with RANSAC

to align medical microscopic sequence images [159]. It is shown in [171] that the same

approach (SIFT and RANSAC) works well for multi-modal image registration-aligning

infrared to visible images. Bay et al. proposed a similar but faster approach to SIFT called

Speeded Up Robust Features (SURF) [14]. Winder et al. introduced another configuration

to compute salient feature descriptors and presented comparisons to SIFT [178], [179].

For feature matching, the least efficient method is brute force comparison of L2 distance

between feature descriptors. If the number of features is large, such as for object recognition,

k-d trees or similar data structures can be used to speed up the search [35]. Even if a highly

distinctive descriptor is used, there might be some false matches called outliers, and a

randomized framework to eliminate outliers called RANSAC is often preferred because

it works with up to fifty percent outliers [57]. Mikolajczyk et al. published comparisons

16



of steerable filters, PCA-SIFT, differential invariants, spin images, SIFT, complex filters,

moment invariants, and cross-correlation for different types of interest regions [122]. Also

an intensive survey on local invariant feature descriptors can be found in [165].

As a hybrid of feature- and pixel-based methods, normalized cross-correlation is used

with a Harris-Laplacian detector in [192] to make NCC rotation and scale invariant.

2.2.3 Single-Target Image Alignment

Image alignment is a correspondence problem of mapping one image to another. In this

subsection, we explain the single-target alignment algorithm in three parts: feature extraction,

feature matching, and transformation models.

Feature Extraction.

Although invariance to geometric deformation, and shift and scale invariance to illumination

are explored well in previous work, there is no feature extraction algorithm which is invariant

to non-linear illumination changes such as varying light direction. We therefore explore a

number of feature detection algorithms on our datasets, with the aim of discovering which

ones perform best in the presence of large-scale lighting changes.

Normalized Harris Corner Detector. Intuitively, we expect that many corner-like fea-

tures in an object’s texture can be precisely localized regardless of illumination. We therefore

begin by exploring the performance of the Harris corner detector. Unfortunately, while

this detector is invariant to shifts in brightness (since it is based on the gradient), it is not

invariant to multiplicative changes in brightness. As a result, this detector is highly sensitive

to illumination, and extracts more corner points in bright regions. We therefore explore a

normalized Harris corner detector, based on a structure tensor that is normalized by the local
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image intensity:

C =

 ∑
W g(i, j)Ix(w)2

∑
W g(i, j)Ix(w)Iy(w)∑

W g(i, j)Ix(w)Iy(w)
∑

W g(i, j)Iy(w)2


∑

W g(i, j)I(w)2
(2.2)

where W is the interest window around each pixel, (i, j) are pixel offsets within the window,

g is a 2D Gaussian filter, w is the global pixel location, and I(w) is the image intensity at

that pixel.

SIFT. The Scale-Invariant Feature Transform (SIFT) is a scale- and rotation-invariant

local feature detector proposed by Lowe [107], and used for many computer vision problems

since then. There are several works showing its robustness in the literature [122], [134],

[91]. SIFT consists of four main steps: scale-space extrema detection, accurate key-point

localization, orientation assignment, and calculation of a key point descriptor.

In the first step, candidate interest points are detected by finding extrema over scale and

image space. The second step refines the interest points’ locations by fitting a 3D quadratic

function to the scale-space function, which is approximated by the Taylor expansion. In

the third step, each feature point is assigned a dominant orientation, which is detected by

finding the maximum of the local orientation histogram around the feature point. In the

final step, a descriptor vector is calculated for each feature point. This descriptor is built by

concatenating local orientation histograms of 4x4 sub-windows of a 16x16 window around

the feature point. Further details of SIFT can be found in [107].

SURF. The Speeded-up robust feature (SURF) detector proposed by Bay et al. [14], is

also a scale and rotation invariant local feature detector which is partially inspired by SIFT.

Its main purposes are to be computationally less expensive and to be as distinctive as

SIFT. In order to speed-up the computations, SURF uses integral images and box-filter

approximations to the second derivative of Gaussian.
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Method selected by Ground-truth error for:

progressive algorithm Translation Tr+Rot Tr+Rot+Sc Affine Projective

Translation 0.13 0.25 0.33 0.38 15.7

Translation+Rotation 6.26 0.23 0.23 0.44 4.7

Translation+Rotation+Scale 17.7 2.64 0.43 0.56 4.7

Affine 14.5 2.94 1.13 0.47 2.1

Projective 18.4 2.5 1.01 0.55 0.23

Table 2.1: Average ground-truth alignment errors in pixels for image collections in Figure 2.9.

The progressive algorithm selects the method shown at left in each row and it automatically

picks the transformation type giving the lowest error.

Comparison of Feature Extraction Methods. In Figure 2.5, the repeatability of features

on a typical dataset is explored for the three different types of feature detectors above. The

repeatability ratio between the target (t) and the source (s) images is formulated as follows:

R =
Number of fpi’s

Total number of features
(2.3)

where fpi = {feature pair i |
√

2 ≥‖ (xs(i), ys(i))− (xt(i), yt(i)) ‖}.

It is obvious that, despite the improvements of normalization, the Harris corner detector

is outperformed by SIFT and SURF on this dataset, and indeed we find that this behavior

generalizes across many different types of images. As a result, we use SIFT as the feature

extractor throughout the rest of the section.

Feature Matching

The naive way to match feature points is to calculate the Euclidean distance between feature

descriptors and compare them. Another approach is to calculate the ratio of Euclidean

distance to the closest neighbor and to the second closest neighbor and eliminate the ones
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which have high ratio, because a low ratio implies that it is a correct correspondence with

high probability. For tasks which require searching a large feature database, such as object

recognition, special data-structures such as k-d tree or search strategies are used. For

example, [107] uses the Best-Bin-First (BBF) search algorithm, which returns the closest

neighbor with high probability. The BBF is a variant of k-d tree, using a priority queue

based on closeness, and it terminates after a specific number of neighbors are explored.

In this subsection, we use exhaustive search on Euclidean distances, but we apply a

constraint on the distance between the locations of feature points on the image plane, because

we have assumed the deformation between images will be small, so corresponding points

cannot be very far away from each other (we use 128 pixels as threshold).

Transformation Models

To calculate a transformation matrix for given feature mappings, the transformation type has

to be selected first. We consider several classes of transformations, of increasing numbers

of degrees of freedom (DOF): translation only (2 DOF), translation and rotation (3 DOF),

similarity (4 DOF), affine (6 DOF), and projective or homography (8 DOF).

The projective transformation model is the most generic among all, which is why it is

commonly used, especially if the type of deformation is not given a priori. However, this

generality comes at a price, since incorrect correspondences and even small errors in feature

point localization can result in significant errors in the transformation.

Progressive Transformation Model. Selection of the transformation model determines

the number of degrees of freedom, and thereby the constraints on the transformation matrix.

When the deformation type on input images is not known in advance, the projective transfor-

mation model is commonly chosen. However, when there is only a translational difference

between two images, for example, the estimated transformation will be more erroneous
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Figure 2.5: Left: Two images from the skull dataset. Right: Repeatability ratios of different

feature detectors on this dataset. (First image is selected as the target image.)
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Figure 2.6: (a-c) Images 1, 11, and 12 in the dataset. (d) Percentage of the correct feature

matches, as well as image similarities (inverse of normalized and scaled L2 differences of

low-resolution images) for the panel dataset. Image 12 is the target image.
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Figure 2.7: Alignment errors in pixels (in log scale) for each image. Single-target alignment,

SPT, and MST for panel (a) and skull (b) datasets. The sum of alignment errors are indicated

in the legend.
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than it would be if a translational model were selected, because of localization error on the

feature extraction step.

In order to obtain maximally accurate and robust estimates of the transformation, we

propose a progressive model to select a deformation type automatically, similar to the model

selection algorithm proposed by [163]. In particular, we use the following algorithm inspired

by RANSAC:

Algorithm for progressive transformation
repeat

• For each transformation model, from translational to projective:

– Estimate the transformation matrix by fitting the least squares on feature

matches in a RANSAC framework, store the number of correspondences which

agree with the estimated matrix (inlier).

until the maximum number of inlier matches is smaller than the predefined threshold, τ :

Select the final transformation: the one with the maximum number of inlier correspon-

dences.

The reason why this approach works is the presence of localization error on the feature

point locations. Otherwise, if all feature points were localized perfectly, we would expect to

get the same results for different transformation models. In Table 2.1, average single-target

alignment errors for different types of transformation models are shown. We observe that,

in a majority of cases, the progressive algorithm picks the transformation model giving the

lowest ground-truth pixel error.

2.2.4 Graph-Based Image Alignment

So far we have explored single-target image alignment, but aligning all images in the dataset

to one target image does not give good results for all cases. In particular, it is inevitable to

get badly aligned results when images in the dataset have a lot of geometrical variations and
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less texture, such as images in the skull dataset, because different light directions will result

in different shadows, varying local gradients, and thereby different local image features. For

example, Figure 2.6 shows the number of correct matches between one fixed target image

(Image 12) and the remaining images in the dataset. We observe that the more similar the

illumination condition, the higher the number of correct matches.

Based on experiments such as this, we conclude that it is possible to leverage the

availability of multiple images by not attempting alignment to a single target. Instead, we

formulate multi-image alignment as finding a spanning tree in a graph in which each vertex

V represents an image and each edge E represents similarity. For efficiency, it is desirable

to have the edge weights easily computable. Fortunately, as shown in Figure 2.6, simple

L2 image difference (on down-sampled images) is highly correlated with the number of

correct feature matches. We may therefore use low-resolution L2 similarity as a proxy for

feature similarity when constructing our graph. Also, we observed that this proxy gives

higher weights for image pairs with close light positions.

One way of visualizing the similarities between images quantitatively is Laplacian

Eigenmaps [15]. This is a spectral clustering technique used to solve the dimension reduction

problem. It takes an affinity matrix whose elements are the Euclidean distance between

corresponding images. Its optimal solution is the eigenvector corresponding to the second

smallest eigenvalue. Figure 2.8 shows the eigenvectors corresponding to the second and

third smallest eigenvalues for the skull dataset of 36 images.

Minimum Spanning Tree vs Shortest Path Tree

Once we have constructed an image similarity graphG, we are left with the task of extracting

a subset of edges on which to perform full image alignment. (Of course, including more

than the minimum subset of edges and combining the results with least squares could reduce

error, but also increases sensitivity to bad correspondences, and is not explored in this thesis.)

We compare two algorithms for extracting a spanning tree:

23



Figure 2.8: Spectral analysis on image similarities for the skull dataset. Each dot represents

an image and located based on the second and third eigenvectors of the Laplacian Eigenmaps

for the skull dataset (36 images). MST-edges are shown with black arrows, the first node is

the root node of the MST.

• A minimum spanning tree (MST) is the one which has the smallest total weight among

all possible spanning trees of G. We use Prim’s algorithm [137] to construct the MST.

• A shortest path tree (SPT) with root vertex v is the spanning tree of G containing all

shortest paths from v to other vertices. Dijkstra’s algorithm [48] can be used to construct

an SPT from a connected graph.

Figure 2.7 shows alignment errors (on a logarithmic scale) for single-target alignment,

SPT, and MST. We observe that graph-based methods typically outperform single-target

alignment. Total alignment errors are indicated in the legends, and for the skull dataset we

observe that the total single-target alignment error (130 pixels, 3.7 pixels per image) is far

from acceptable. On the other hand, MST gives roughly 0.5 pixel error per image for the

same dataset. For the panel dataset, alignment results for each approach are very close to

each other (about 0.3 pixel error per image) because this dataset is feature-rich, texture-rich,

and the object has a flat surface. On the other hand, the skull dataset is more challenging
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and MST outperforms both single-target and SPT in this dataset. Although it is not very

clear that MST always performs better than SPT, we use MST for the tests in the Results

section, because MST outperforms both single-target and SPT in the most challenging case

that we have (skull dataset).

2.2.5 Results

In Figure 2.9, the test results on different datasets for three different algorithms (single-target

alignment with homographic transformation type, single-target alignment with progressive

transformation, graph-based alignment with progressive transformation type) are demon-

strated. Three test cases are formed: i) datasets with ground truths: images on the original

datasets are perfectly aligned and images are manipulated randomly (transformation types,

from translation only to homographic, and manipulation amounts are set randomly); ii)

datasets with gold standard: the original datasets have misalignments and they are aligned

by manually selecting correspondences to calculate the gold standard; iii) experimenting on

the number of key-points on each image in the dataset. In the table, the third column is the

average number of key-points on images in a dataset, the fourth column is the pixel reso-

lutions of images in the dataset, and the subsequent columns show average and maximum

alignment errors for the three algorithms. Alignment error for a given estimated matrix (E)

and the ground truth matrix (G) is calculated as follows:

e =
1

4

∑
i=1,2,3,4

||G−1Epi − pi|| (2.4)

where the pi are the four corner points of the image. The reason for calculating the alignment

error on the corner points is that the maximum error will appear on the corners for the

transformation types that we consider.

We observe that single-target alignment fails when the projective transformation model

is assumed for large collections. On the other hand, the progressive model mostly gives
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8 paper1032 / Alignment of Images Captured Under Different Light Directions

Alignment Errors (in pixels) Running-Time (in secs)

Projective Progressive MST-Progressive Key calc Single- Graph-

Dataset #Images #Points Resolution Avg. Max Avg. Max Avg. Max /image target based

Ground Truth: Perfectly aligned images are randomly manipulated (ranging from only translation to homographic manipulations) to create test sets.

36 430.7 1190x980 45.47 113 2.197 13.4 0.5957 1.87 1.7 3.9 2.2

19 1748 2184x1456 43.19 245.3 6.676 32.87 1.351 3.081 4.1 9.6 8.2

49 1073 1728x2592 71.04 284.4 0.5062 1.507 0.6031 1.571 1.8 7.4 10.0

64 572.6 2184x1456 27.73 186.4 0.5868 4.11 0.9675 2.304 1.4 8.3 8.1

36 1153 1312x864 29.25 88.99 0.6456 2.612 0.8497 2.281 1.8 9.5 7.1

42 488.4 1024x1024 29.66 102.5 2.309 15.47 1.655 6.451 5.6 6.2 5.2

34 986.7 2184x1456 47.74 286.5 3.46 38.84 1.698 3.732 14.1 19.0 14.7

Gold Standard: it is acquired by manually aligning images

47 873.3 1728x2592 105.6 406.4 0.8966 2.096 0.9756 1.73 1.6 7.5 7.9

4 1206 2592x1728 13.61 46.68 1.148 2.143 1.277 2.658 27.53 1.15975 1.10477

Experiment on the number of key-features

68 4569 2799x1868 87.63 499.3 0.5423 1.333 0.6249 1.56 3.2 51.6 66.0

68 489.3 2799x1868 104.6 484.3 1.052 5.943 0.9628 3.335 5.2 11.6 11.1

Table 2: Test results for different datasets.

submitted to EUROGRAPHICS 2014.

Figure 2.9: Test results for different datasets.

successful results. The graph-based method using MST and progressive transformation

leads to the alignment error of 0.5-1.5 pixels on average, while the single-target alignment

algorithm results in alignment error of 0.5-7 pixels on average. And the graph-based

algorithm works robustly on very challenging datasets such as the first and second collections

in Table 2.9. While the maximum error is unacceptable on most of the datasets when the

single-target alignment is used, the graph-based method gives acceptable results.

We also show the effect of the alignment on photometric stereo in Figure 2.2 by demon-

strating the normal map before and after alignment. On the first three examples, it is obvious

that the details cannot be recovered with photometric stereo if they are not well-aligned.

And in the last row, we observed that misalignment causes embossing effect on moderately
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RGB Image Ground Truth Misaligned Ground Truth Aligned
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Sample Image Normal Map
for Ground Truth

Normal Maps for
Misaligned dataset

Normal Maps for
Ground Truth

Normal Maps
after Alignment

MSE: 0.004 MSE: 0.0003

MSE: 0.026 MSE: 0.01

MSE: 0.005 MSE: 0.0009

MSE: 0.001 MSE: 0.0002

Table 3: Effect of alignment on photometric stereo.The first column shows example images from each dataset, the normal
maps calculated on either ground truth or gold standard dataset are shown on the second column. The third, fourth and the
fifth columns demonstrate close-up images of the normal maps calculated on misaligned, ground truth and aligned datasets
respectively. The close-up regions are indicated with a red square on each normal map on the second column. Mean square
errors(MSE) between normal maps for aligned and ground truth datasets and between normal maps for misaligned and ground
truth datasets are indicated under the close-up images.

Table 2.2: Effect of alignment on photometric stereo. The first column shows example

images from each dataset, the normal maps calculated on either ground truth or gold standard

dataset are shown on the second column. The third, fourth and the fifth columns demonstrate

close-up images of the normal maps calculated on misaligned, ground truth and aligned

datasets respectively. Mean square errors (MSE) between normal maps for aligned and

ground truth datasets and between normal maps for misaligned and ground truth datasets

are indicated under the close-up images.

flat surfaces. Also, mean-square errors (MSE) between ground truth and each normal map

are indicated under each closeup image. We observed that image alignment improves the

MSE at least ten times.
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2.3 An RGBN Benchmark

In the previous section, we presented an algorithm to verify the captured photometric dataset

and correct it if misalignments are present. Now we will focus on algorithms that use

photometric datasets and how to evaluate them.

In addition to the photometric stereo, a variety of algorithms use photometric datasets

(an object or scene captured with fixed camera but varying illumination). Evaluating these

algorithms is frequently challenging because of the lack of ground truth on the one hand,

and insufficiently realistic and varied synthetic datasets on the other. In this section, we

present a synthetic benchmark for applications and justify it by comparing to real-life objects

and their rendered models. Additionally, we introduce a system that allows the user to

create scenes by combining arbitrary 3D models, materials, and light configurations. The

system outputs physically-based renderings as well as dense ground-truth maps of quantities

such as normals, height map, BRDF specifications, and albedo. We present a number of

synthetic datasets, and we provide a few photometric datasets of real-life objects. This

section demonstrates that real objects can be simulated well enough so that the conclusions

about accuracy drawn from our synthetic datasets match those based on real objects. It also

demonstrates a use case for this RGBN benchmark: the evaluation of photometric stereo

algorithms. We investigate the causes of errors in several photometric stereo algorithms, and

propose a variant that iteratively estimates shadowing.

2.3.1 Introduction

Photometric datasets have been used by various applications in computer vision and graphics

including BRDF acquisition [60], photometric stereo [181], (non)photo-realistic rendering,

illumination representations such as polynomial texture mapping [117], linear image sub-

spaces [12], and digitization of cultural heritage. Despite the fact that photometric datasets

are used in a variety of fields, the literature lacks a realistic benchmark with ground truth.

28



This may be due to the fact that it is tedious to create a benchmark that (1) is based on

real-world data with ground truth, and (2) contains several versions of the same scene,

with one parameter (e.g., noise level, lighting configuration, material, etc.) varied while

everything else is kept constant.

We propose a synthetic but realistic (physically-based) and validated (against ground-

truth data) benchmark for evaluation of photometric algorithms. Each benchmark dataset

includes a collection of images of a scene under different lighting, together with ground-truth

surface normals, height map, BRDF attributes, and albedo. The datasets are organized into

“experiments,” in which one parameter of the scene is varied while others are kept constant.

There are two major benefits to using synthetic data for our benchmark. First, the ground

truth available with each dataset is real ground truth. An alternative would have been to use

real images, but obtain “ground truth” using, say, a 3D scanner. This has a major problem:

the precision and the calibration of the scanning system, alignment of partial scans to form

the whole model, and alignment of the 3D model to the photometric data are all sources of

error in the “ground truth” geometry or normal maps. Even with high-precision scanners,

the user of the benchmark might not know whether the biases introduced in the “ground

truth” might favor some algorithms over others.

The second major benefit of using synthetic data is that it is possible to isolate the effects

of noise, lighting, materials, etc. By conducting “experiments” in which individual factors

vary in isolation, users of the benchmark are able to make more precise conclusions about

the relative strengths and weaknesses in the algorithms they are evaluating.

There are also two potential drawbacks to using synthetic data, and we have attempted

to mitigate them. First, the renderings might not be realistic. To accurately simulate as

many light-transport phenomena as possible, we generate the benchmark images using

Mitsuba Renderer [79]. Mitsuba Renderer is a physically-based rendering tool that supports

various surface materials, subsurface-scattering, glittering effects etc. It also takes all global

illumination into account during rendering.
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Even with a physically-based renderer, there may be a concern that conclusions about

algorithms based on synthetic images might not match those based on real-world images.

Therefore, to justify the use of synthetic data, we conduct an experiment comparing the

error patterns of a photometric stereo algorithm on several real objects and their 3D scanned

models in Section 2.3.4.

In addition to the benchmark itself, we provide a flexible but simple user interface that

allows users to create their own datasets while controlling variables such as light configura-

tion, light intensity, noise level, amount or characteristics of ambient lighting. Finally, we

explore one of the applications of the benchmark: evaluation of various photometric stereo

algorithms. Photometric stereo is the general name of the algorithms that try to estimate

surface properties, most notably normal maps and surface color, from multiple images under

varying illumination.

In summary, our main contributions in this section are:

• A new calibrated photometric stereo algorithm which estimates the surface normals and

the albedo with an iterated least squares method by updating “pixel confidence” values

(Section 2.3.5);

• An example usage of the proposed benchmark: evaluation of various photometric stereo

algorithms (Section 2.3.5).

2.3.2 Related Work

In the literature, there are several publicly available photometric datasets under different

illuminations. For example, [7], [73], [183], [4], [185], and [162] provide photometric

datasets that they used in their work. However, there is no precise ground truth for these

datasets to enable quantitative comparisons between algorithms.

The most relevant benchmark there exist is proposed by [1] . In their work, they present

a robotic system to capture single-view images of an object under varying illuminations
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as well as a 3D scan via a structured-light scanner. They use the 3D scans to generate the

ground truth, however the 3D point cloud is not dense in order to form a high quality and

accuracy depth map or normal map. Another disadvantage of this benchmark is the limited

number of lights per view (20 LED lights in a planar arrangement) and it is not possible to

expand the benchmark by other users.

Other related benchmarks are for intrinsic image algorithms, published by Grosse

et al.[65] and Bell et al.[16]. The datasets in these benchmarks are a subset of all the

photometric datasets we focus on this section. For intrinsic image estimations, they only

need one image as the input data and to create ground truth Grosse et al.[65] captured

10 more images, while Bell et al.[16] used crowd-sourcing to obtain the ground truth. In

summary, these benchmarks provide one image as input and relative shading and reflectance

per scene, as opposed to the dense ground truth data for normal map, material, and height

map provided by our benchmark.

For other applications in computer graphics/vision, there are several reputable bench-

marks. For example, Scharstein and Szeliski published a comprehensive benchmark on

two-frame stereo [144], and subsequently a number of works used their system and datasets

to validate their work. A benchmark for 3D object segmentation was presented by [39], and

[118] published a database for 2D image segmentation. One common property of all these

benchmarks is that they are manually created. In the literature, there are not only real-world

datasets which are manually labeled by users, but also some synthetic benchmarks. The most

recent benchmark which proposes using synthetic datasets is for 3D surface reconstruction

[19].

The importance of a well-prepared benchmark is undeniable. When a field lacks of a

reference to compare different approaches, not only the users but also the researchers in

the field have difficulties to determine the best approach/algorithm for their problems. As

a result, some problems such as photometric stereo do not have consensus best-of-breed

solutions, even though they are well-studied. We believe that a benchmark with high
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precision will help us to understand the problem better and explore the reasons why some

algorithms actually fail.

2.3.3 Benchmark Overview

Our system is designed to create realistic photometric data along with their corresponding

ground truth from arbitrary 3D scenes. We use the Mitsuba Renderer [79] to produce

photo-realistic renderings. We also capture a few real-world objects to use in justification of

the synthetic datasets.

Synthetic Data

In this subsection, we introduce the process of synthetic dataset creation from a single

viewpoint under different illuminations. Although our system is designed for single-view

photometric data, it can be used for multi-view photometric data applications, such as [72],

without any modification.

The production of the synthetic benchmark is composed of two parts: i) creation of an

arbitrary scene, ii) producing the photometric data and ground truth.

User Interface. We provide a simple user interface to create scenes for our benchmark.

Although general modeling packages, such as Blender, could be used for this, our interface

is customized to produce photometric data: it provides fewer options than a package such as

Blender, and it can create variations of the same scene automatically.

The user interface is customized to create arbitrary scenes from 3D models.The user

can set each object in the scene, and assign either preset materials or her own material

specifications (limited to the materials supported by the Mitsuba Renderer). These materials

can be as simple as diffuse single-color albedo or as complex as human skin with both

texture and subsurface scattering.
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Figure 2.10: Some rendered scenes from the benchmark.

Images and Ground Truth Data. We produce two types of output: photometric

data and ground truth data. Photometric data consists of physically-based renderings

of the scene under various light directions are produced by Mitsuba Renderer [79].

A typical light configuration is shown on the left; however

the user can turn on/off different light-rings and right/left

hemispheres, as well as change the number of lights and the

radius of the light dome.

While the resulting renderings include a great deal of

global illumination complexity, see Figure 2.10., it is our

goal to understand the extent to which that complexity affects the estimation of normals or

other photometric quantities. For this reason, we output a set of “clean” ground truth images

consisting of:

• Normal Map: Per pixel-surface normals are produced as RGB images, using an embed-

ding that maps [−1..1] to [0..255] in each channel.

• Depth Map: Euclidean distance in 3D from the camera center to the surface for rays

passing through each pixel is saved as floating-point EXR images.

• BRDF: Diffuse RGB albedo per pixel is rendered using the Mitsuba Renderer’s utility

functions. For non-Lambertian materials, the full BRDF specifications can be obtained

from the scene files.
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• Light direction/position per image: For a directional light model, light directions are

saved in camera coordinates. For a point light source model, light positions are saved in

camera coordinates.

Real-world Data

One potential concern about a synthetic benchmark is that it might not capture the full

complexity of real-world images. Therefore, despite the limitations of scanned 3D data,

we perform a real-world evaluation to indicate the plausibility of our synthetic benchmark.

We captured several objects using the same setup as [162]: fixed camera on a tripod and

a hand-held flash. We took around 36 images per object and one image without flash to

compensate for the ambient lighting. We also scanned all the objects with a NextEngine

laser scanner to obtain a 3D model, and use this to extract ground truth data.

2.3.4 Justification of the Synthetic Data

To verify that we can simulate a real-life object, we conducted an experiment that compares

photometric stereo results of a real dataset to one created synthetically. First, we pick an

object with a single color and relatively diffuse surface but fairly complicated geometry,

as shown in Figure 2.11.a. We obtain photographs of the object, and obtain “ground truth”

from a scanned 3D model. The latter is created by scanning the object with a NextEngine

laser scanner, aligning partial scans with ICP, and reconstructing a final mesh with the

Poisson surface reconstruction algorithm [89]. The resolution of the voxel size for surface

reconstruction is 0.25 mm, and the image resolution is set accordingly to have a similar

resolution. We would like to point out that because of the imperfections and smoothing

effects in the reconstruction algorithm, the final 3D model lacks many of the high-frequency

details of the real object.

For material acquisition, a flat region of the object, which is the bottom of the object

in this case, is photographed with an X-rite color checker as shown in Figure 2.12. A
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(a) Real object (b) Blur image (c) Synthetic (d) Real Object: 14.4

(e) Real (f) Smoothed (g) 3D model (h) Synthetic Object: 13.1

Figure 2.11: Verification of the synthetic dataset: (a) Photograph of the real object, (b)

Gaussian filtered image of (a), (c) Rendering of the 3D model of the object, which is scanned

with a NextEngine laser scanner. (e), (f), and (g) are the normal map estimated from real

photos, smoothed real normal map, and the ground truth respectively. (d) and (h) show the

angular error distribution of the normal maps recovered from the real photographs and the

synthetic renderings respectively. Normal maps are estimated by linear least squares with

shadow/specularity thresholding, and average angular errors are indicated under each plot.

Figure 2.12: Albedo acquisition of the Penguin: An X-rite color-checkerboard is used for

color calibration and albedo estimation.
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color profile is extracted from the calibration board and the image is corrected accordingly.

Assuming that the object has a single color, we average the color values on the flat region,

which is manually selected, of the object. This way, a single color value is obtained for

the Penguin. To determine the specularity and roughness of the object, we experiment

with varying materials and parameters on the Mitsuba Renderer to get the most realistic

image. We use the roughplastic material with the diffuse reflectance of RGB(225,226,228),

specularity of 0.4, and 0.1 roughness.

A ground truth normal map of the object is created as follows: the normal map of the

object is estimated from the real photographs, the 3D model is aligned to the normal map

estimated from the real photographs by using the alignment algorithm in [20], and the

normals of the 3D model are rendered in the aligned camera coordinates as shown in Figure

2.11.d, and f.

Since the 3D model does not have very high-frequency details because of the smoothing

effect of the reconstruction, the estimated normal map of the real object is smoothed, as

shown in Figure 2.11.e. Since we do not know how much the reconstruction introduces

smoothing to the 3D scan, we determine the amount by comparing the rendered object in

Figure 2.11.c to the real photographs smoothed with different amounts. In Figure 2.11.b the

closest blurred photograph to the rendered image is shown. The plots in Figure 2.11.g and h

show the angular errors in normal maps recovered from the real photographs (2.11.e) and

the synthetic renderings (2.11.f). The average angular errors are comparable: 14.4 and 13.1

in degrees, respectively. The error distributions over the z- component of the ground truth

normals also demonstrate a very similar pattern. Therefore, we conclude that we can create

synthetic benchmarks which are comparable to real-life scenarios.

For the rest of the section, we will use only synthetic data for evaluations unless otherwise

stated.
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2.3.5 Evaluation of Photometric Stereo

In this subsection, we conduct various experiments on several photometric stereo algorithms.

These experiments are designed to reveal the effects of various factors such as image noise,

shadows, inter-reflections, uncompensated ambient illumination, material type, and number

of images. We evaluate the following photometric stereo algorithms:

Calibrated Photometric Stereo (CPS):

1. (Lsq) We implemented a least-squares minimization with outlier rejection based on

hard thresholds for shadows (40 in the range of [0, 255]) and specularity (254 in the

range of [0, 255]) [181],

2. (RPCS) Low-Rank Matrix Completion and Recovery [184]: solves the problem of

recovering a low-rank matrix with both missing and corrupted entries, which models

all types of non-Lambertian effects such as shadows and specularities,

3. (Iter Lsq) Motivated by the sensitivity of the simple least-squares algorithm to shadow

estimation, we propose an iterative weighted least-squares minization that repeatedly

assigns per-pixel confidence values to each image (initially based the intensities in

all observed images), computes normals and albedos using those confidences, then

updates the confidences based on whether the pixel values agree with (Lambertian)

re-renderings of the estimated normals and albedos.

4. (HSH) Hemispherical harmonics [49]: proposes a robust version of PTM [117] by

identifying both specular and shadow pixels and then modeling their contribution,

separately or together, using a radial basis function interpolation.

Uncalibrated Photometric Stereo (UPS):

1. (SCPS) Self Calibrating Photometric Stereo [146]: automatically determines a ra-

diometric response function and resolves the generalized bas-relief ambiguity by

37



analyzing color/intensity profiles in the RGB and irradiance-time domains – we have

tested on only a few cases,

2. (LDR) Lambertian diffuse reflectance [54]: solves the generalized bas relief ambiguity

by exploiting points where the Lambertian reflection is maximal,

3. (Entropy) Entropy minimization [8]: proposes a new prior on the albedo distribution

that the entropy of the distribution should be low,

4. (TV) Total Variation [138]: solves the GBR ambiguity by performing a total variation

regularization on both the estimated normal field and albedo.

We conduct experiments on the following isolated factors:

• Uncompensated ambient illumination;

• Inter-reflections: tested on cones with the same radius but varying heights;

• Material: tested on materials of different combinations of diffuse, specular, subsurface

scattering, and textured materials;

• Number of images: tested on different number of images ranging from 3 to 36;

• Image noise: tested by adding artificial Poisson image noise to renderings;

• Light-ring position: tested by changing the height of the light ring over the dome;

• Amount of shadows: tested on a wave shape with different depths;

• Surface roughness and specularity.

Median values and standard deviations of angular errors per experiment are shown in

Figure 2.3.5 for both CPS and UPS algorithms. We mark the best results with blue. We

draw the following conclusion from these statistics:
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Figure 2.13: Evaluations: Angular error statistics (median values and standard deviations)

of estimated normal maps for various experiments. Errors are measured in degrees.

(a) Global Illumination (b) Direct Illumination (c) ‖(a)− (b)‖ (d) CPS low-freq error

Figure 2.14: (a) and (b) show the rendered images with and without global illumination.

(c) is the difference image between (a) and (b). (d) is the low frequency component of the

angular error of the normal map calculated with iterative least squares method. (Difference

images are scaled for better visualization.)

39



• In general, CPS algorithms outperform UPS algorithms in all experiments as expected,

which implies that the illumination conditions have the greatest effect on the PS algo-

rithms;

• Among the CPS algorithms, our iterative method either outperforms or performs as well

as the others;

• Among the UPS algorithms, LDR produces less error than other methods on average,

while TV is more robust to variations in the isolated factors, producing less standard

deviation in errors;

• Inter-reflections and shadows are the factors that have the strongest influence on the errors.

These two factors are hard to separate in the experiments even though we tried to have

a minimum amount of self-shadowing in inter-reflections experiment by adjusting the

light positions accordingly; however it is unavoidable to get rid of the self-shadowing

completely and vice versa;

• On the other hand, image noise and surface specularity have the least effect on errors in

the PS algorithms;

• Increasing the number of images is only important up to a point for each algorithm, which

varies between 5 and 10 images;

• The material type or the surface roughness, although tested on a limited subset, does not

affect the normal estimation as much as shadows or inter-reflections.

Furthermore, we do error analysis over normal-z distribution and in frequency domains

as follows:

Error Distribution over Normal-z Direction. In Figure 2.15, we show average errors

in both normals and albedo on 3 datasets for various CPS and UPS algorithms mentioned

above. The x-axis of the plot is the z-component of normal vectors, while the y-axis is the
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average angular error for portions of the surface having a normal with that z-component. As

the z-component approaches 1, the surface approaches facing to the camera. The histogram

of z-components is shown with the blue curve (legend on the right y-axis). The first row

shows an image from the datasets, while the 2nd and 3rd rows are angular and albedo error

curves for calibrated photometric stereo algorithms, respectively. The last two rows are the

error plots for uncalibrated photometric stereo in the same fashion. Total average errors and

the valid pixel ratios (some algorithms fail to estimate normals/albedo at some parts of the

objects) are indicated in the legends per algorithm from left to right. The conclusion of this

test is that there is a high correlation between the error and the angle between the camera

and the true surface normal.

Frequency Domain Analysis. We also analyze the frequency distribution of errors, and

separate the low-frequency and high-frequency errors. Low-frequency and high-frequency

error images for normal maps are calculated as follows:

D = abs(Ngt −Ne) (2.5)

L = cross bilateral filter(D,Ngt) (2.6)

H = abs(D − L) (2.7)

where Ngt is the ground truth normal map, Ne is the estimated normal map, and L and H are

the low and high frequency components of the error respectively.

In Figure 2.14, the penguin is rendered with and without global illumination, shown

on the top row. We observe that the difference of these two images resembles to the low-

frequency component of the angular errors as shown in the bottom row. We do not show

the high-frequency component of the angular error here because it is not as interesting,

high-frequency errors concentrated around the silhouette of the objects. Given that the

object has a diffuse material, the difference between global and direct illuminations is mostly

caused by inter-reflections evidenced by the concavities being the areas with the biggest
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Dataset

Pear Turtle Penguin

Angular
Error

for
CPS

Albedo
Error

for
CPS
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for
UPS
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Figure 5. Angular and albedo errors for selected objects (pear, turtle, penguin): x-axis is the magnitude of the z component of normal
vectors [0,1]; y-axis is the angular or albedo errors. The thin blue curve shows the histogram of the z- component of normal vectors in
the ground truth normal map, and the second y-axis on the right side of each plot is the number of pixels for each histogram bin. In the
legends, total average errors and ratio of the valid pixels are indicated from left to right respectively for each algorithm .

shape from sun position. In Proceedings of the 12th Euro-
pean conference on Computer Vision-Volume Part II, pages

357–370. Springer-Verlag, 2012. 4

[3] J. Ackermann, F. Langguth, S. Fuhrmann, and M. Goesele.

Figure 2.15: Angular and albedo errors for selected objects (pear, turtle, penguin):

x-axis is the magnitude of the z component of normal vectors [0,1]; y-axis is the angular

or albedo errors. The thin blue curve shows the histogram of the z- component of normal

vectors in the ground truth normal map, and the second y-axis on the right side of each plot

is the number of pixels for each histogram bin. In the legends, total average errors and ratio

of the valid pixels are indicated from left to right respectively for each algorithm.
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difference. Thus, we can conclude that the low-frequency errors are dominated by global

illumination which is not accounted for by the algorithms.

2.4 Conclusion and Future Work

In this chapter, we first visited the photometric stereo algorithm and provided a taxonomy.

Secondly, we proposed a feature-based framework to align images of the same object

exposed to light from different directions. We showed that total alignment error for a dataset

can be reduced by a graph-based approach rather than single-target alignment. Also, we

demonstrated the importance of the image alignment by showing how much our algorithm

improves the results of photometric stereo. The obvious limitation of this method is caused

by feature detectors because they are not invariant to non-linear illumination changes.

Even though they can handle small illumination changes, there is no guarantee that feature

locations and descriptors will be consistent for large changes. In particular, lack of texture

and geometry variations results in less reliable salient features. In future work, in order to

cope with unreliable image features, surface geometry (normal-maps) can be included to

feature descriptors iteratively. For badly warped images, we can allow the user to add some

hard constraints, such as selecting a few control points on target and source images.

Finally, we presented an RGBN benchmark including a number of synthetic datasets

along with an interface which enables the user to create arbitrary scenes and a few photo-

metric datasets of real-life objects. We will make all the code and the data available online

with the hope that researchers will make use of this benchmark in the future. We think

that a synthetic benchmark would be very useful to understand which algorithms, using

photometric data, work better under which conditions. Although we discussed that the

synthetic datasets are comparable to the real ones, they are limited by the physically-based

rendering system. Even though the today’s rendering machines are very powerful and

capable, they have limitations. For example, Mitsuba Renderer cannot simulate the wave
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properties of light, does not account for polarization, and the accuracy of any rendering

system relies on the underlying floating point computations [79]. We also did not intend

to create a benchmark with all the varieties but we would like to let it grow by accepting

submissions from other users of our interface. We hope that our evaluations inspire improved

photometric stereo algorithms that are robust to many types of effects. While our iterative

least-squares photometric stereo algorithm provides a first step by exhibiting increased

resistance to shadowing, both the calibrated and uncalibrated cases would benefit from

targeted improvements based on the test cases we have developed as part of this benchmark.
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Chapter 3

3D Surfaces with High-quality Details

In the previous chapter, we visited some techniques to acquire high-resolution surface details

and propose methods on how to achieve the best quality from those datasets. In this chapter,

we focus on capturing surfaces with details in 3D. We first review some 3D acquisition and

surface reconstruction techniques, then present a complete system to enhance rough 3D

geometry with multiple high resolution normal maps.

3.1 3D Surface Acquisition & Reconstruction

Geometry acquisition has become increasingly popular in computer graphics and vision,

with demand for high-quality models driven by advances in 3D printing, realistic real-time

renderings of 3D self-avatars in video games, digital libraries for historical objects etc. In

this section, we will visit several surface acquisition and reconstruction techniques that are

also used to capture 3D models shown later in this chapter.

3.1.1 Acquisition Systems

In the literature there are various types of technologies for range acquisition such as contact-

based scanners [74], volume scanning systems (MRI, CT, ultrasound) [67], sonar [170],

45



radar [139], optical systems [21], seismic survey [25] etc. In this thesis, we focus on optical

shape acquisition systems which can be broadly categorized into two: passive and active

systems.

Passive range acquisition systems do not interfere with the scene while scanning the object

as opposed to the active systems. Passive methods are also known as Shape from X where X

can be motion, stereo, shading, texture, focus – see [154] for further details.

Active scanning systems interfere with the scene by sending a signal to the object and

measuring its response. These systems can be sub-categorized into three:

1. Time-of-Flight systems, such as Light Detection And Ranging (LIDAR) [55] and

the second version of the Microsoft Kinect sensor, determine the distance between

the device and an object by sending a laser pulse to the object and measuring the

amount of time which takes the laser pulse to reach to the target and come back

to the sensor, as shown in Figure 3.1a. These systems have the accuracy of a few

centimeters because of the fact that it is hard to measure the travel time of light in

small distances. Which is why they are usually preferred to measure larger distances

such as room-sized objects and buildings.

2. Triangulation method is the most common way of measuring the distance of an

object. Triangulation-based laser scanners are composed of two main parts: a laser

emitter to shine the object and a camera to localize the laser dot where the laser beam

hits the object as shown in Figure 3.1b. This configuration then forms a triangle

among the source of the laser beam, the point where the laser beam hits the object,

and the camera. The distance between the camera and the laser emitter, d, is fixed and

known, as well as the angle, α, between the laser beam and the line between the laser

emitter and the camera. The angle on the camera corner, θ, can also be calculated

based on the pixel location. Those three known values then form a unique triangle

46



Las
er

Pul
se

Detector
Time 

difference

(a)

Laser 

Emitte
r Camera! "

d

(b)

Figure 3.1: Basic setups for (a) time-of-flight and (b) triangulation-based laser scanners.

and allow us to compute the exact location of the laser dot where the laser beam hits

the object.

Another form of triangulation-based systems is structured-light scanners which project

multiple stripes at the same time to speed up the scanning process. Using multiple

stripes at a time raises a correspondence problem which is usually solved by using a

time-coded light pattern such as gray-coded patterns [143].

3. Active Shape from X methods are the variants of the passive acquisition systems

which are usually modified by projecting a known texture or pattern, such as checker-

board, onto the object [154]. Another form of active shape from X is the photometric

stereo which requires fixed camera and object positions while a single light source

moves around the object – see Chapter 2 for details.

3.1.2 Surface Reconstruction

The need for a separate surface reconstruction step stems from the fact that an entire 3D

model typically cannot be acquired in one sweep. To acquire a complete 3D model we

need to capture the object from multiple views for example with one of the techniques

mentioned in the previous section. Even though the camera poses of each scan can be
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estimated with some calibration technique, in practice, alignments between different scans

are not usually perfect. The most common algorithm used for aligning range scans to

each other is iterative-closest-point algorithm and its variants [142, 32]. Once all the scan

from different views are aligned, one of the surface integration technique can be used to

fuse all the scans to obtain a single model. One of the most common surface integration

algorithm uses a volumetric representation, accumulates weighted signed distance function,

and extracts an isosurface from the volumetric grid [44]. Another technique formulates the

surface reconstruction from oriented points as a Poisson problem [89, 90]. A basic pipeline

for 3D model acquisition including texture acquisition and parametrization can be found in

the work proposed by Bernardini and Rushmeier [22].

3.2 Combining Multiple Normal Maps with 3D Surfaces

In this section, we introduce an approach to enhance rough 3D geometry with fine details

obtained from multiple normal maps. We begin with unaligned 2D normal maps and rough

geometry, and automatically optimize the alignments through a 2-step iterative registration

algorithm. We then map the normals onto the surface, correcting and seamlessly blending

them together. Finally, we optimize the geometry to produce high-quality 3D models that

incorporate the high-frequency details from the normal maps. We demonstrate that our

algorithm improves upon the results produced by some well-known algorithms: Poisson

surface reconstruction [89] and the algorithm proposed by Nehab et al. [130].

3.2.1 Introduction

3D surface acquisition is a critical problem in various fields as we discussed in the previous

section. However, producing detailed geometry requires not only precise acquisition devices,

but also a pipeline of processing steps including registration of multiple views (since an

entire 3D model typically cannot be acquired in one sweep) and merging of different scans.
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This section presents a high-quality reconstruction pipeline that combines data from two

different sources: a rough 3D model obtained with an active (laser-stripe or structured-light)

scanner and a few 2D normal maps calculated by a photometric stereo algorithm.

The motivation for combining these two kinds of data is strong. Normal maps are easily

obtained at high resolution using active shape from shading (photometric stereo). They

can contain a wealth of information about the fine details of a surface, but suffer from low-

frequency bias. 3D scans, in contrast, are difficult to obtain at extremely high resolutions,

but they contain all of the information about the topology and overall coarse-scale shape of

the surface.

Although direct reconstruction of a 3D surface from normal maps is possible, in practice

the results are far from satisfactory because of bias present in low frequencies, noise, and

insufficient constraints among disconnected patches. This problem was addressed by the

work of Nehab et al. [130], which proposed combining the low-frequency components

of the geometry with the high-frequency details of the normal maps. However, that work

assumed perfect alignment between the 3D geometry and a single 2D normal map. Also,

their optimization for full 3D models (as opposed to height fields) is an approximation that

forces the surface to be locally planar, resulting in over-smoothing of high-frequency details.

In this section, we present a complete system to enhance rough geometry with multiple

detailed normal maps. The pipeline consists of four main steps:

1. Acquisition of 3D rough geometry, as well as extraction of 2D normal maps from images

under varying light directions with respect to the object;

2. Alignment of the normal maps to the rough geometry without any initial alignment;

3. Blending of multiple normal maps to produce a seamless normal field over the surface;

4. Optimization of the 3D surface to incorporate high-frequency details from the normal

maps.
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This pipeline takes two types of inputs (multiple 2D normal maps and coarse 3D

geometry), and produces an enhanced 3D model. The advantage of this system is that it

requires neither initial alignment nor resolution/precision compatibility between different

data types.

Main contributions of this pipeline are four-fold:

• A new feature detector tailored for normal maps;

• An algorithm to align 2D normal maps to a 3D surface by iteratively minimizing dissimi-

larity of normals;

• Seamless mapping of the aligned 2D normal maps to the 3D geometry;

• A method for combining the original 3D positions with the mapped normals.

3.2.2 Previous Work

Registration. Pairwise alignment has been a common problem in many research areas

such as computer vision/graphics, medical imaging, robotic vision, etc. The types of

input signals can be varied, and can include 2D images (visible/infrared image, x-ray,

magnetic resonance imaging, computed tomography , positron emission tomography etc.)

and/or 3D geometry (point clouds, range maps, or surface meshes). Registration of different

combinations of these input types has been studied in the literature, but there is little previous

work addressing the problem of aligning normal maps to rough 3D surface geometry.

Surface normals are frequently used for R3 ⇔ R3 registration in various works [100, 129,

124]. Several papers explored invariant features and motion estimation for small nonrigid

deformations between 3D models [82, 83, 102, 101, 104]. Wang et al.[172] proposed a

method to register 3D face template to normal maps by selecting 8 points manually and

deforming it to the generic model. All of these works showed that normal-guided registration

is more robust than others.
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The closest related problem to ours is that of aligning color images to geometry. Viola

and Wells [169] and Corsini et al. [43] proposed such methods based on mutual information.

While these techniques could be adapted for normal maps, both of them assume that the

details in the 3D model are similar to those in the images. In our case, however, we accept

rough 3D geometry as input and develop a method of reliable alignment to (possibly warped)

normal maps.

Blending. Pérez et al. [135] proposed using the Poisson equation to blend two images

seamlessly, and Chuang et al. [42] extended it to blending multiple texture images on a

3D object using the Laplace-Beltrami operator. Li et al. [103] also used Poisson blending,

after recovering reflectance and global illumination. We extend these kinds of methods to

blending normals, observing that the low-frequency bias in normal maps should be corrected

before blending.

Combining 3D positions and normals. Nehab et al. [130] proposed a linear formulation

to combine the high-frequency details of normals and low-frequency shape from 3D posi-

tions. However, their acquisition setup used the same camera to capture both range scans

and normal maps (using photometric stereo [182]). That is why they assumed that their

different data types were perfectly aligned, and they did not take missing parts or holes in

the 3D positions into account. However, the condition of perfect alignment between the

two different types of data cannot always be satisfied, as when 3D surface and normal maps

are acquired using completely independent devices. Building upon the work of Nehab et

al. [130], our system does not require or assume any alignment or similar resolution between

the 3D positions and the normal maps.

Yu et al. [189] proposed an approach to improve the quality of normal maps and

consequently the geometry acquired with MS Kinect. They try to enhance the quality of the

normals which is calculated from 3D data (depth); while we do not focus on that problem,
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rather we assume that we have normal maps with higher quality than the geometry and use

that extra information to improve the geometry.

A more general method for combining positions and normals is provided by Poisson

surface reconstruction [89, 90]. This is a generic surface reconstruction algorithm that

takes a point cloud with corresponding normals as input. However, if the accuracies and

resolutions of the positions and normals are different, Poisson surface reconstruction often

generates a smoothed result, as shown later in the chapter.

3.2.3 Data Acquisition

Both synthetic and acquired data are used for the experiments in this section. Creating the

synthetic dataset begins with a ground-truth 3D model of the armadillo, and the followings

are generated:

• 2D normal maps: We render normal maps from multiple views and save the viewing

directions for evaluation;

• Rough 3D model: We smooth the original 3D model with a Gaussian filter of σ =

4×(average edge length).

Real data acquisition uses two separate capture setups:

• 2D normal maps: We use the acquisition technique described in Chapter 2 to obtain

each normal map;

• 3D geometry acquisition: Of the many sensors available on the market for 3D acqui-

sition, see Chapter 3.1, we experiment with two very different ones. First, we use a

relatively high-resolution NextEngine scanner, which is based on laser stripe triangula-

tion. We follow the steps in [33] to reconstruct the surface. Secondly, to explore even

lower-resolution geometric input, we have also experiment with Kinect [121] – Skanect

[132] software is used to reconstruct the surface from the captured data.
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3.2.4 Alignment

Unlike other common alignment work-flows such as ICP [23, 41] which start with a user-

provided rough initial alignment , we design a 2-step alignment algorithm to have a fully

automatic system: i) estimation of an initial alignment via a feature-based algorithm , ii)

iterative refinement by minimizing the dissimilarity between 3D surface normals and the

normal map.

Initial Alignment. Inspired by SIFT [106], we design an adapted feature (nSIFT), which

detects scale-invariant feature points and computes feature descriptors on normal maps.

Denoting the normal map byN(x, y) and the x, y components of it byNx(x, y) andNy(x, y)

(which are embedded in R and G channels), we first construct a Gaussian scale space for

Nx(x, y) and Ny(x, y). In order to detect stable keypoint locations in the scale space, we

approximate the scale-normalized Laplacian of Gaussian as follows:

σG(x, y, σ) ∗ ∂Nx(x, y)

∂x
+ σG(x, y, σ) ∗ ∂Ny(x, y)

∂y
(3.1)

where G(x, y, σ) = 1
2πσ2 e

−(x2+y2)/2σ2 . Similar to [106], keypoints are detected by looking

for local extrema in the 3 × 3 neighborhood at the scale-space. The orientation of each

keypoint is assigned by the x and y components of the normal at that point and the descriptor

is obtained by computing a 3D spatial histogram of the normals in the neighborhood of

each keypoint, rotated by its orientation (Figure 3.2). Since the real normal map has more

details than the rendered normal map we first smooth the real normal map by a Gaussian

kernel of σ = 3; and during feature matching, we only use features detected in higher scales

(with larger σ) of the real normal map to reduce false positive matches. After computing

the matches among features using the nearest neighbor matcher, we use the RANSAC

framework [56] to eliminate outliers. We also incorporate the location of feature points
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relative to the center of the model’s bounding box to further eliminate outliers. The algorithm

summarizes our feature-based alignment.

Algorithm Feature-based Rough Alignment
Input: 3D model M , real normal map N , view sphere V , sample rate r.

repeat

Sample V at rate r to obtain set of viewpoints Vr

∀ viewpoint v ∈ Vr

Nv = rendered surface normals of M from v

Find N ’s nearest neighbor N∗v by nSIFT

Feature matching in RANSAC framework

V ← N∗v ’s neighborhood, r ← 2r

until ‖ N - N∗v ‖ < τ

Refinement. Inspired by ICP [23, 41], we propose an iterative alignment algorithm that

begins with a rough alignment between a 2D normal map and 3D model and improves the

registration by minimizing an energy function. To evaluate the energy function, we

transform the 3D model given some candidate alignment, then render it into image space

using the projection matrix of the normal map. The mesh is colored based on its normal

map (transformed by the rotational portion of the alignment transform), so that the rendered

image allows us to determine the mesh normal Nm that is mapped to each pixel (i, j). We

then evaluate the dissimilarity between those mesh normals and the corresponding normals

Nimg from the normal map:

E =

#rows∑
i=1

#cols∑
j=1

f
(
Nm(i, j),Nimg(i, j)

)
. (3.2)
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The dissimilarity function f is defined as:

f(a,b) =


0 if both a and b are masked,

π if either a xor b is masked,

|w × cos−1(a · b)| otherwise.

(3.3)

The masks hold the locations of background pixels, so that this function imposes a large

penalty if a pixel is part of the background of either the model or normal map, but not both.

The weight w is calculated as w = 1− (b · C), where C is the camera direction. So, if the

normal is facing towards the camera it gets a higher weight, and vice versa.

To optimize this energy function we need to transform the model and render the normal

map, making the problem non-linear. We therefore use the Nelder-Mead algorithm [131],

which initializes a simplex in the 6-dimensional rotation-translation space and heuristically

grows, moves, and shrinks the simplex. For added robustness we perform randomized restart,

computing a new random simplex (with maximum extent half the size as at the previous

restart) once the simplex becomes sufficiently small, or if the algorithm performs more than

8 “shrink” operations in a row. We also re-initialize the simplex if 100 energy function

calculations have been performed since the last restart. We terminate the algorithm after

8 restarts. Figure 3.2 shows the value of the energy function over time, for two different

models. Restarts are marked with vertical dashed lines. At the beginning and end, and at

each restart, we visualize the remaining misalignment: the normal map is rendered in red,

while the mesh is in blue. We observe that the energy drops quickly during the first several

iterations, eventually converging after 2–3 restarts.

To measure the accuracy of the alignment, we use two synthetic normal maps (front

and side) obtained from the armadillo model. For each of 100 trials, we randomly perturb

the ground-truth alignment by up to 6% of the radius of the model’s bounding sphere to

obtain an initial registration, and then run our iterative optimization to align the smoothed
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Figure 3.2: nSIFT feature points detected on pre-smoothed real normal map (first column)

and nSIFT feature points detected on rendered normal map (second column). Optimized

energy as a function of Nelder-Mead iterations for a scarab model (scanned with a laser

scanner, third column) and a penguin model (acquired with MS Kinect, last column). False-

colored visualizations of the normal maps (in red) blended with the 3D models (in blue) are

shown below each graph for the initial alignment, after each restart, and the final alignment

from left to right (restart positions are marked with vertical dashed lines).

Figure 3.3: Alignment error for the armadillo dataset from the front (left) and the side (right).

Error is measured for six parameters of rigid transformation: errors in translation (tx, ty, tz)

are measured as a fraction of the diameter of the bounding sphere of the model, while errors

in rotation (Rx, Ry, Rz) are measured in radians.
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3D mesh to the normal map. Scatter plots of the errors in translation (tx, ty, tz) and rotation

(Rx, Ry, Rz) are shown in Figure 3.3, where translation is measured as a fraction of the

diameter of the model’s bounding sphere and rotation is measured in radians.

Note that different components of the alignment are recovered with different accura-

cies, reflecting the screen-space perturbation resulting from changing each parameter. For

example, for the front view (shown in Figure 3.3, left), it is more difficult to recover the z

component of translation, corresponding to moving along the camera’s direction of view,

than it is to find the x and y components.

3.2.5 Blending Normal Maps

After the normal maps are aligned to the coarse 3D geometry, we would like to assign a

single normal to each vertex on the 3D surface (after isometrically re-meshing the surface to

have the desired output resolution). If the normal maps were perfect, and perfectly aligned,

we could assign to each surface point a normal from an arbitrary normal map that observed it

(e.g., the one that observed it most head-on). In practice, however, both of these hypotheses

are false. Normal maps are not perfect due to limitations with the photometric stereo

algorithm, which imperfectly accounts for shadows, non-Lambertian materials, non-opaque

surfaces, and inter-reflection. The alignment is not perfect, since we are aligning to coarse

3D meshes that sometimes do not contain enough detail to reliably constrain the alignment.

So, if we only assigned a single normal to each surface point, the resulting normal field

would be discontinuous. Averaging all the normals projecting to a given 3D surface point

would not solve the problem, since we would still see seams where we switched between

including, and not including, the contribution of each normal map.

A partial solution to this problem was proposed by Nehab et al.[130]. They observed that

the dominant error in normal maps is low-frequency. In contrast, while scanned 3D models

might have high-frequency noise or lack high-frequency detail, their low frequencies are

reliable. It is therefore possible to correct the normal maps by replacing their low-frequency
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components by the low-frequency component of normals obtained from the 3D model. We

adopt this strategy, including it in all of the results shown in this chapter. Nevertheless,

we find that this correction is not always sufficient for avoiding seams between data from

different maps.

Inspired by Poisson image editing [135], we propose blending between the (already-

corrected) normal maps in a way that preserves their gradients. To do this we optimize an

energy function with two terms, a vertex term that pushes the result towards a consensus

(weighted average) among samples, and an edge term that preserves differences between

neighboring normals:

E = λEvert + (1− λ) Eedge, (3.4)

where λ controls the relative significance of the terms. The vertex energy seeks to minimize

the weighted difference between the mesh normal nv and the projected normal from each

normal map ns
v:

Evert =

#vert∑
v=1

#maps∑
s=1

wsv ‖nv − ns
v‖

2, (3.5)

where higher weight is given to normal maps that see the surface more directly: wsv =

(dviewer · ns
v)p.

The edge energy ensures that local gradients among the samples and over the surface

will be consistent:

Eedge =

#edge∑
e=1

#maps∑
s=1

[(nev1 − nev2)− (ns
ev1 − n

s
ev2)]2, (3.6)

nev1, nev2 are the normals at the endpoints of edge e.

This energy function can be minimized with linear least squares, and it is sparse because

there is only one coefficient for each vertex constraint and two coefficients for each edge

constraint. We set the parameter λ = 0.4 to blend multiple normal maps for all results

demonstrated in this chapter.
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Figure 3.4: Comparison of different blending methods. Left: averaging all sample normals.

Center: choosing the normal which is captured from the most direct view point. Right:

our proposed blending method. Normals are false-colored by embedding in the RGB color

space.

We compare our method to two alternative approaches: averaging samples, or just taking

the normal captured from the most direct view. As shown in Figure 3.4, both of these

methods create dramatic transitions, especially close to silhouettes. Our method successfully

blends samples coming from different normal maps, and handles silhouettes well.

3.2.6 Surface Enhancement

Given high-quality normals and rough vertex positions, the true surface can be approximated

by Poisson surface reconstruction[89], or using the method of Nehab et al.[130]. However,

one of the most common problems with these methods is loss of some high-frequency infor-

mation. Even though the work of Nehab et al. was designed to compensate for this problem,

their full-model optimization (as opposed to their method for height fields) sacrifices some
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high-frequency details to make the problem linear, by assuming that the surface is locally

planar.

To overcome this drawback, we perform a non-linear optimization, minimizing an energy

function consisting of two terms (similar to the previous work [130]) as follows:

E = λEp + (1− λ)En, (3.7)

where Ep is the position term and En is the normal term (see [130] for notations). These are

formulated as follows:

Ep =

#vert∑
v=1

‖pv − pmesh
v ‖2 (3.8)

En =

#vert∑
v=1

−‖nv · nmeasured
v ‖2, (3.9)

where the optimized positions pv are intended to match those coming from the mesh, and

the optimized normals nv are intended to match those coming from the normal maps (after

alignment, low-frequency correction, and blending). We have also experimented with

calculating En by summing over the faces rather than over the vertices, but found that this

increased computational complexity with little benefit visible in the final result.

We minimize this energy function with the conjugate gradient method, using analytically-

computed Jacobians and a line search at each iteration. We use the parameter λ = 0.4 for

the enhancement in both our method and the algorithm of Nehab et al. [130] for comparison.

Figure 3.5 shows a quantitative comparison of our method to Poisson surface reconstruc-

tion [89] and the method of Nehab et al. [130]. We found that the latter two methods exhibit

less smoothing if the surface positions are close to the correct ones, and so we actually run

these methods in an iterative manner. We start with a smoothed armadillo model and normal

maps obtained from the original mesh. We then repeatedly assign the original normals
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Iterated Poisson Surface Reconstruction [89]

Iterated Nehab et al. [130]

Our Method

Figure 3.5: Comparisons of our method to Poisson surface reconstruction and Nehab et al.

Blue represents zero distance between the reconstructed surface and ground truth, while red

is greater than or equal to 0.001 of the radius of the bounding sphere.
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Iterated Poisson Iterated Nehab et al. Our Method

Figure 3.6: Comparison of results of Poisson surface reconstruction [89], Nehab et al. [130],

and our method on a cube. The ground-truth vertex positions and normals of the cube were

used as input.

onto the enhanced model from the previous iteration (using ground-truth alignment), and

reconstruct/enhance the surface, until each algorithm converges.

The visualizations in the figure are color-coded by perpendicular distance from the

original model to the enhanced surface, with the color mapping shown at the bottom of

Figure 3.5. It is obvious that Poisson reconstruction smooths out high frequency details, and

flattens parts with high curvature such as the tips of the ears, hands, noise, and feet. Note,

however, that our scenario was not really the one for which this algorithm was designed.

Note also that we do not use the more recent Screened Poisson Surface Reconstruction

algorithm [90] because it gives more weight to the vertex positions, which would result in

even worse results.

The algorithm by Nehab et al., which was designed for this specific problem, produces

better results. However, our method, which performs the correct non-linear optimization,

loses fewer high-frequency details and produces results very close to the true surface.

In Figure 3.6, we used a cube to test an extreme case. We used the original positions

and normals of the cube as input, in order to observe the behavior of the three algorithms in

a controlled setting. The previous algorithms are unable to preserve the sharp corners of

the cube, introducing significant smoothing. In contrast, our method neither introduces any

artifacts nor smooths over the corners.
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3.2.7 Results and Discussion

Figure 3.7 demonstrates results for the three algorithms described above, using source

data from two different types of 3D acquisition techniques: moderate-resolution models

acquired with the NextEngine laser scanner and coarse models obtained with MS Kinect.

The leftmost column in Figure 3.7 shows the results and close-up images for the iterative

Poisson reconstruction; the middle column shows the results of the algorithm proposed by

Nehab et al. [130]; and finally the rightmost column shows our results. All of these used our

proposed alignment and blending algorithms.

Our method preserves more of the high-frequency information from the normal maps,

as compared to the other two methods. This is particularly visible in the close-ups in the

last two rows of Figure 3.7, which used the comparatively coarse Kinect reconstructions as

input. Also note the additional detail in the fingers of the soldier (fourth row) preserved by

our method. Of course, in some cases this may also mean that our method preserves more

noise, since it does not smooth the normal maps — this effect is especially visible in the

third row of Figure 3.7.

3.2.8 Conclusion and Future Work

In this chapter, a complete pipeline for combining coarse 3D models with multiple unaligned

2D normal maps was presented, including acquisition, fully automatic alignment, blending

the normal maps, and enhancing the model to incorporate high-frequency normals. We

demonstrated that our algorithm outperforms two well-known methods: Poisson surface

reconstruction from point clouds with normals [89] and the work proposed by Nehab et

al. [130].

As future work, we can use more information from the normal maps, such as extracting

the object silhouettes from them and constraining the 3D object to match those silhouettes.

We can also explore large-scale applications, such as combining normal maps of a building

with 3D point clouds from Google Street View or enhancing only a part of a big object.
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Iterated Poisson Iterated Nehab et al. Our Method

Figure 3.7: Comparison of results of Poisson surface reconstruction [89], Nehab et al. [130],

and our method. The 3D models in the first five rows are acquired with the NextEngine laser

scanner, while the last two are obtained with MS Kinect.
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Chapter 4

Abstraction from Surface Details:

Semi-Automatic Digital Epigraphy from

Images with Normals

In this chapter, we propose a system to process acquired surface details in the form of normal

and albedo maps. Specifically, we present a semi-automated system for converting photomet-

ric datasets (RGB images with normals) into geometry-aware non-photorealistic illustrations

that obey the common conventions of epigraphy (black-and-white archaeological drawings

of inscriptions). We focus on rock inscriptions formed by carving into or pecking out the

rock surface: these are characteristically rough with shallow relief, making the problem

very challenging for previous line drawing methods. Our system allows the user to easily

outline the inscriptions on the rock surface, then segment out the inscriptions and create

line drawings and shaded renderings in a variety of styles. We explore both constant-width

and tilt-indicating lines, as well as locally shape-revealing shading. Our system produces

more understandable illustrations than previous NPR techniques, successfully converting

epigraphy from a manual and painstaking process into a user-guided semi-automatic process.
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(a) Color Image (b) Surface Normals

(c) Manual Digital Epigraphy (d) Our Result

Figure 4.1: (a) Albedo and (b) normal maps are estimated with a photometric stereo

algorithm. (c) Digital epigraphy done manually on Adobe Photoshop and Illustrator by

archaeologists which took 7-8 hours in total. (d) Result from our user-guided system which

took around 6 minutes.

(a) Photography (b) Epigraphy

Figure 4.2: Photograph of a rock inscription and digital epigraphy done manually.
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4.1 Introduction

Scientific illustrations are used in various fields to represent objects in a more effective

and succinct way than is possible with photography. In archaeology, it is paramount for

publications of record to use illustrations in agreed-upon styles, to document findings

and communicate them to others for further study. For example, the conventions for

epigraphic documentation, used for writing, drawings, and other inscriptions in stone, are

based on traditional pen-and-ink drawings. While it offers great clarity, making epigraphic

illustrations by hand can be time-consuming and imprecise. The quality and accuracy of the

drawing usually depends on the archaeologist’s talent, the size of the drawing paper and the

object, and the time spent on the drawing. Recently, archaeologists have begun to adapt this

painstaking process into the digital realm, by using tools such as Adobe Illustrator to trace

over photographs. While still time-consuming (typically taking many hours per illustration),

digital epigraphy removes the need to be on-site to execute the drawing, although it still may

be necessary to go back to the site to correct perspective and add details that are hard to see

in the photograph. Figure 4.2 shows an example of digital epigraphy of rock inscriptions

from the Sinai done manually by archaeologists [156].

In traditional epigraphy, experts only use line drawings, sometimes with varying thick-

ness and color. However, it is tedious and difficult to illustrate small surface details without

creating distractions with line drawings. Recently, experts started looking for new ways to

illustrate details. Museums and archaeologists have begun using Reflectance Transformation

Imaging (RTI) for both visualization and digital preservation purposes [126]. RTI capture

consists of photographing the object under study from a fixed viewpoint, but under varying

lighting. Using this collection of photometric data, techniques such as albedo/normal estima-

tion, re-lighting, and material modification may be used to produce enhanced visualizations.

On the other hand, RTI is not as effective at conveying large-scale structures at a glance, and

hence has not been adopted in publications of record as a replacement for epigraphy.
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In this chapter, we present a user-guided system to create digital epigraphy with both

line drawings and detail illustrations from photometric datasets. We focus on ancient rock

inscriptions that are created by either carving into the rock or roughening (“pecking out”)

the surface. We make use of a photometric dataset of 4000-year-old inscriptions located in

a desert, constantly under strong sunlight, making capture challenging. Furthermore, the

rock surface is usually very rough and eroded because of weathering, which makes any type

of captured data very noisy. The main challenges are to capture these inscriptions in high

precision, find the relevant information, and attenuate the effects of noise caused by surface

roughness and weathering. We propose a semi-automatic pipeline to solve this problem as

follows:

• Capturing photometric datasets in challenging terrain, and estimating surface albedo and

normals;

• Rectification of the surface normals to correct perspective;

• Segmentation of the inscriptions from the rock surface and classification based on carving

technique (either slightly deeper grooves, or shallow pecked-out regions); and

• Stylization of the inscriptions in various styles.

For grooves, we produce illustrations in a traditional epigraphic line-drawing style, with

line thickness optionally modulated by the grooves’ depth to give a sense of relief. For

pecked-out regions, we explore shaded and stippled styles, with control over whether the

shading depicts global shape or only local detail. Our pipeline offers the user the control

needed to produce clear illustrations, and deals with poor signal-to-noise more effectively

than existing NPR methods.
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4.2 Related Work

Segmentation. Image segmentation has been one of the oldest and most widely stud-

ied problems in the field [155]. Popular approaches include clustering techniques which

aggregate pixels into regions with similar contents [78], graph cuts and energy based meth-

ods [28] [95]. However, the problem can become trickier in some situations, including

segmenting the rock inscriptions which we focus on. Less work has been addressed in the

context of segmenting on nearly flat surfaces. Zatzarinni et al. [191] have designed a method

to extract reliefs and details from relief surfaces based on depth, but it is hard to apply their

method to our dataset where some pecked-out inscriptions do not even have noticeable depth

change. For robust segmentation on these datasets, we adopt the idea of combining color

and normals for segmentation [161].

2D Line Drawings. Line extraction and drawing on 2D images has been extensively

studied. For instance, Kang et al. [86] proposed using anisotropic Difference of Gaussians

(DoG) guided by edge tangent flow to detect coherent lines while suppressing noise. Son

et al. [149] extracted lines by imitating human line drawing process using estimation

of a likelihood function with consideration of feature scales and line blurriness. Shape

and shading on the image were represented by using tone and strokes by Lu et al. [108].

Winnemoller [180] reviewed the variations of the DoG operator, which was shown to give

the most aesthetic results. Xu and Kaplan [186] depicted images using only black and

white colors by formulating the problem of thresholding as an optimization over a graph of

segmentation connectivity. All of those methods solely depend on the color variation in the

image, which can be a drawback on rock inscriptions, where the color difference between

the inscription and the background is usually small, and the surface roughness results in

noise with traditional edge detection algorithms. On the other hand, we propose using both

color and surface normal statistics at the same time to detect inscriptions.
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3D Line Drawings. Several works have been published on how to represent 3D models

with curves. DeCarlo et al. [45] proposed a new type of view-dependent curves — suggestive

contours — which are the loci of points at which occluding contours appear with minimal

change in viewpoint. Later, they proposed a new family of lines — suggestive highlights —

which are complementary to the suggestive contours [46]. Judd et al. [80] introduced

apparent ridges, which were defined as the loci of points that maximize a view-dependent

curvature. Kolomenkin et al. [97] proposed another type of view independent curve: demar-

cating curves, which are the zeros of the normal curvature in the curvature gradient direction.

Later, they defined relief edges as the zero crossings of the normal curvature in the direction

perpendicular to the relief edge [96], and extended multi-scale edge detection on images

to 3D surfaces by determining the optimal scale for each point on the surface [98]. These

methods only use the geometry to find the extrema points, which can fail if the inscriptions

are shallow and the surface is rough.

Shape Illustration. There are various non-photorealistic techniques in the literature to

depict a shape from 2/2.5/3D images. For instance, Kim et al. [92] generated a stippling

texture on an image from input samples by measuring a texture similarity metric. Toler-

Franklin et al. [161] investigated various non-photorealistic illustrations on 2.5D images

(images with normals). Brazil et al. [30] used Hermite Radial Basis Function Implicits

to generate a robust distribution of points on a given 3D surface to position the drawing

primitives, which are then rendered to depict shape and tone using silhouettes with hidden-

line attenuation, drawing directions, and stippling. Vergne et al. [168] proposed a view-

dependent shape descriptor called apparent relief, which combines the convexity of the 3D

object and the normal variations in image-space. Several works focused on using varying

line/stroke thickness to depict a 3D shape. Sousa et al. [151] extracted and rendered feature

edges by varying the thickness based on perceived curvature of the 3D model and they [150]

also used pen strokes to depict the 3D shape by making them thicker at certain curvatures,
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junctions and creases. House and Singh [75] mimicked the human drawing process by

following the connectivity of the feature edges and rendering them using a ribbon metaphor,

where the thickness is determined by the twist of the ribbon. Goodwin et al. [62] computed

the stroke thickness of contours and suggestive contours from depth, radial curvature, and

light direction.

The previous works have been tailored to work with only either color or geometry

information. However, we believe that the archaeological illustrations such as epigraphy

represent not only the geometry of the artifact, but also variations in texture. We can use

the photometric data for both geometry and texture information (normal maps and albedo

extracted from the photometric data, respectively). Examples of why we need both sources

of information are shown in Figure 4.3. Bartesaghi et al. [10] and TolerFranklin et al. [161]

showed how to use photometric data for stylized non-photo realistic renderings. The former

produces geometry and tone-aware hatching-like renderings; while the latter explores how to

reformulate some previous work, such as suggestive contours and ridges and valley lines, for

photometric data. Unfortunately, neither of these produces good results for archaeological

illustrations. They are either incomplete or noisy, as we will show in Section 4.7.

4.3 Overview

Our main challenge is to produce meaningful (shape-indicating), relevant (including the

most representative features) drawings of archaeological inscriptions. Unfortunately, the

signal-to-noise ratio is typically low: the inscriptions are shallow, while there is considerable

noise caused by surface roughness. We briefly review how our datasets are acquired and

rectified (Section 4.4), then divide the problem into two major components: finding and

classifying the inscriptions with user-guided segmentation (Section 4.5), and then rendering

them in different geometry-aware non-photorealistic styles (Section 4.6). We present results
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on a number of datasets, and argue that this type of stylization is difficult to achieve with

previous methods (Section 4.7).

4.4 Data Acquisition and Preprocessing

We begin with datasets captured at an ancient amethyst mining site in an area of Upper

Egypt called Wadi el Hudi, which was documented in 1952 by [52]. The terrain con-

sists of several hills covered with granite rocks. The inscriptions are mostly located on

the ridges and their position and surroundings make them hard to capture. The ridges

are steep and the rocks on the ridges are usually loose, which makes it challenging to

set up an acquisition system on the ground. Because of the environmental conditions,

the recording must be done during the day under strong sunlight. Also, carrying heavy

equipment or power sources to the site is impractical, since it takes a short hike to reach

to some of the inscriptions. However, the resolution of the acquisition system should

still be high, because the inscriptions are mostly on flat surfaces with shallow depth.

For these reasons, the most practical setup is one

based on a camera and flash, in preference to

3D acquisition systems such as structured-light

scanners, multi-view stereo, or a laser scanner.

Specifically, the datasets are captured using a

photometric acquisition setup, shown at left, sim-

ilar to the one used by Toler-Franklin et al. [161],

as described in Chapter 2. Estimated surface nor-

mals and albedo from those photometric datasets

are shown in Figure 4.3. In this chapter, we show

results for several representative datasets.
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Figure 4.3: Left column: Color images of some rock inscriptions; Right column: Normal

maps. Top row: While the inscriptions are visible on the color image, some of them are not

recognizable on the normal map. Bottom row: The normal map reveals more information

than the color image for some other cases.

(a) (b) (c)

Figure 4.4: (a), (b) Rectified inscription and normal map where the planar region to be

rectified is defined by user. (c) User defined rotation axis (marked with red arrow) and

flattened inscription.
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4.4.1 Rectification

One of the important conventions of documenting rock drawings is that they need to be

recorded from a perpendicular view to the surface. However, it is not always possible to place

the camera perpendicularly to the surface because of the position and height of the object or

the steepness of the terrain around it. Another problem is that the inscriptions sometimes

start from one face of the rock and continue on the other. Recording them from an angle

will make them look skewed, and this is not desirable for documentation. Archaeologists

usually warp the image to straighten the parts of the image by either eyeballing to flatten

these regions, or if they recorded some 3D points via some terrain mapping systems such as

Total Station, they manually select the control points on the image corresponding to those

3D points and rectify the image. However, it is time-consuming to both capture some 3D

points and rectify the image based on those points.

In our system, we allow the user to rectify the image without any extra data. The user

can select a nearly planar region R, by selecting a few points around the region to create a

closed polygon. Given this selection, we automatically rectify the region as follows:

~nmean = normalize
( ∑

(x,y)∈R

N(x, y)
)

(4.1)

~r = ~nmean × 〈0, 0, 1〉 (4.2)

α = acos(~nmean · 〈0, 0, 1〉) (4.3)

where N is the normal map, ~r is the rotation axis, and α is the rotation angle. Once the

rotation axis and angle are computed, the region is rotated around ~r and all the normal values

are rotated accordingly as shown in Figure 4.4a-b. This approach assumes that the region is

nearly planar which is the case for most of the datasets. We also allow the user to draw a

rotation axis manually by drawing a line on the image and use this axis instead to rotate the

region around, which requires two rotation operations: first we rotate the region so that the
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average normal along the user-defined rotation axis would be equal to the z-direction and

then we rotate the region around this fixed rotation axis to make the region flat as shown in

Figure 4.4.c. The user also can control scaling of the preselected region after flattening, as

done in Figure 4.4.

4.5 Segmentation

We focus on rock inscriptions, which can be classified into two types: carved grooves, and

“pecked out” areas on the rock surface.1 Their characteristic roughness and incompleteness

caused by erosion make the creation of epigraphy very difficult. Existing NPR techniques

are insufficient to produce nice and understandable illustrations for such rock inscriptions.

We approach the problem by first performing a robust segmentation to create masks for the

two types of inscriptions, and then stylize them separately. An implementation pipeline for

this segmentation problem is described in the following subsection in detail.

4.5.1 Implementation Pipeline

Preprocessing includes downsampling, histogram equalization, and bilateral filtering

to reduce noise and increase contrast between the foreground inscriptions and the back-

ground rock surface. Figures 4.5a-b show a color image before and after the preprocessing,

respectively.

Over-segmenting the color image can help to enforce local consistency, thus better main-

taining the boundaries of the foreground inscriptions. We apply a clustering-based algo-

rithm [3] to aggregate pixels into superpixels and create an over-segmentation of the image:

Figure 4.5c shows such an example.

1Pecking-out is a term used to describe areas where the rock surface has been roughened to form a design
or figure.
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Feature descriptors are extracted from both colors and normals. Color-based features

are based on statistics over each superpixel. These are augmented with the information

from normal maps that helps improve descriptiveness, especially when some inscriptions

are difficult to see in the color image. The normals also help with distinguishing between

carved grooves and pecked-out areas. Details are explained in Section 4.5.3.

Labeling is provided by the user who draws sparse strokes to indicate pixels belonging to

3 different classes. As shown in Figure 4.5d, red strokes refer to foreground grooves, green

strokes refer to foreground pecked-out areas, and blue strokes mark the background.

A graph-cut approach [29, 95, 28] is used to group the pixels into foreground and back-

ground. Energy functions are designed based on feature descriptors and user labeling as

explained in Section 4.5.3.

Post-refinement is applied to the graph-cut segmentation output to enhance foreground

connectivity and remove noise on the background. Figure 4.5e-f give the segmentation

results before and after the post-refinement processing.

Foreground classification is done after foreground/background segmentation to produce

masks for the two types of rock inscriptions. A Naive Bayes classifier is trained based on the

user input labels. Figure 4.5g shows an example classification result. We also allow the user

to edit the label of each connected component, so that they can fix mislabeled components

or remove irrelevant parts from the foreground, as illustrated in Figure 4.5h.

4.5.2 Feature Design

We compute a feature descriptor for each pixel using cues from both color and normal

images.
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Color-based features. Color images of rock carvings are noisy, and just using the color

of each pixel as a feature yields results that are not robust. Instead, we first over-segment the

color image into near-equal-sized superpixels. As shown in Figure 4.5c, these superpixels

preserve the boundaries in the original image while capturing redundancy in the data, and

they also help to reduce computational cost by allowing features to be computed only once

per superpixel (instead of per pixel). Means and standard deviations are computed for each

RGB channel within the neighborhood defined by each superpixel. Pixels from the same

superpixel are assigned the same color feature. Figure 4.6a-b visualize the color features for

the image shown in Figure 4.5a.

Normal based features. By only looking at the color image, it is hard to distinguish the

carved grooves from the pecked-out regions. However, these two types of inscriptions

have recognizably different normal statistics, as illustrated in Figure 4.7. Therefore, it is

reasonable to compute features from normals in addition to color. We take the x and y

components from the normal image to approximate surface gradient, and then compute the

gradient magnitude. We also compute the covariance matrix in a Gaussian weighted square

neighborhood for each pixel, and add the bigger eigenvalue as a new entry to the feature

descriptor: this helps to distinguish grooves (which will have one big eigenvalue) from

roughened regions (which will have two small eigenvalues). As visualized in Figure 4.6,

normal based features help to capture edges on the surface.

4.5.3 Inscription Segmentation

In order to produce labeled segmentation for both grooves and pecked areas, we first run a

graph-cut based binary segmentation to obtain foreground and background, and then train a

classifier on the foreground segment to distinguish between the two types of inscriptions.

Based on our experiment, such a two-fold process is more efficient and more reliable,

compared to multi-label graph-cut segmentation.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.5: (a) Original color image. (b) Color image after preprocessing. (c) A close

up image of the over-segmentation by superpixels. (d) User input strokes for labeling.

(e) Graph-cut foreground segmentation result. (f) Foreground segmentation result after

post-refinement. (g) Foreground classification. (h) Foreground mask after user cleanup.

(a) (b) (c) (d)

Figure 4.6: (a) Visualization of the color mean within each superpixel. (b) Visualization of

the color standard deviations within each superpixel. (c) Visualization of the approximated

surface gradient magnitude. (d) Visualization of the bigger eigenvalues of the structured

tensors. (The contrast of the images are increased for better visualization.)
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Training. We ask the user to label the two types of foreground inscriptions and the

background by drawing strokes in different colors. Let L = L0 ∪ L1 represent the set of

labeled pixels, where L0 denotes the background labeled pixels and L1 = L10 ∪L11 denotes

the two types of foreground labeled pixels. For labeled pixels from L0 and L1, we run

hierarchical clustering [127] to aggregate them into clusters in feature space. Let f sαj denote

the centroid of the j-th cluster with label α ∈ {0, 1}. We call f s0j background seeds and f s1j

foreground seeds.

Energy function. We define a graph on the image in which each pixel is a node and each

node has 4 edges connecting its 4-neighbors. A binary graph-cut segmentation algorithm is

applied to find the least-cost boundaries that smoothly partition the graph into foreground

and background by minimizing an energy function E(α,f), where α = (α1, α2, ..., αn) is

the label assignment, f = (f1, f2, ..., fn), is the vector of feature descriptors, and n denotes

the number of pixels. We choose to apply the graph-cut segmentation on pixels instead of

superpixels because the normal features are extracted from per-pixel neighborhoods. The

energy function consists of two terms:

E(α,f) = U(α,f) + V (α,f), (4.4)

where U(α,f) denotes the data term and V (α,f) denotes the smoothness term.

We define the data term as

U(α,f) =
∑
p∈L

− log
minj

∥∥∥fp − f sαpj

∥∥∥∑
α minj

∥∥fp − f sαj∥∥ +
∑
p/∈L

− log ε, (4.5)

where ‖ · ‖ denotes Euclidean distance and ε > 0 is a user defined small constant.

The smoothness term is defined as

V (α,f) = γ
∑

(p,q)∈N

I(αp 6= αq)e
−β(fp−fq)2 , (4.6)
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where γ and β are user-defined positive weighting parameters. N is the set of neighboring

pixel pairs in the grid graph. I(·) is an indicator function that is 1 if αp 6= αq, 0 otherwise.

Cleanup. After the graph-cut segmentation, we perform a post-refinement process to

enhance foreground connectivity and remove speckles. For each superpixel, we assign the

same label to all pixels within it by taking a majority vote on pixel labels from the graph-cut

output. We then remove noise in the background and fill small holes in the foreground by

removing small connected components.

Label classification. Finally, we train a Naive Bayes classifier [59] based on feature de-

scriptors of labeled foreground pixels from L1 = L10 ∪L11, and predict the type to be either

a carved-in or pecked-out inscription. We then assign pixels within each connected compo-

nent with the same label by conducting a majority vote, and create a labeled segmentation

mask for stylization.

Iterative refinement. In order to give the user fine control over segmentation, we imple-

ment an iterative scheme that allows the user to add strokes to refine the segmentation. It

takes 3− 4 iterations on average for an experienced user to create a decent segmentation

result. An example is shown in Figure 4.8.

4.5.4 Evaluation and Comparisons

Graph-cut on color. We show the results of applying graph-cut segmentation on only the

color image. Figure 4.9 shows that color alone is not enough to capture the real foreground

inscriptions, especially the grooves, and therefore it is necessary to have more robust features

based on normals as well.

K-means clustering. We compare our foreground/background segmentation result to that

of performing k-means clustering on pixels in feature space. Figure 4.10 shows side-by-side
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(a) (b) (c) (d)

Figure 4.7: (a) Normal and (b) color images with 2 types of inscriptions. (c) Close-up

images of the carved in region (red rectangle) and (d) the pecked out region (green rectangle).

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

Figure 4.8: Top row: Labels drawn by the user. Bottom row: Segmentation results.
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(a) (b)

Figure 4.9: (a) Our foreground/background classification results. (b) Fore-

ground/background classification results of graph-cut on color.

(a) (b) (c) (d)

Figure 4.10: (a) Our segmentation result before cleanup. (b) K-means clustering result

before cleanup. (c) Our segmentation result after cleanup. (d) K-means clustering result

after cleanup.

comparisons between our results and the k-means results. We notice that simple clustering

yields more noise and incomplete foreground.

We also compare our final labeled segmentation result to aggregating the pixels into

3 clusters by k-means, as shown in Figure 4.11. We conclude that a supervised approach

yields more reliable results for segmenting rock inscriptions.

Multi-label graph-cuts. We show a result of directly performing multi-label graph-cut

segmentation and compare it to foreground/background segmentation followed by foreround

classification. The computation time of the multi-label segmentation is roughly 50% higher

82



than our method. As shown in Figure 4.12, our two-stage process produces more reliable

results.

4.6 Stylization

Our system uses the labeled segmentations to drive stylized rendering. We describe two

categories of stylization: shape illustration that depicts the depth of grooves or the general

shape of the whole rock surface, and detail illustration to depict surface details in the

pecked-out regions.

4.6.1 Shape Illustration

We first extract contours from the segmentation masks and convert each into a discrete curve

by sub-pixel sampling the contour. Then, the user can manipulate the contours by controlling

parameters for Gaussian smoothing, bilateral filtering, and unsharpening along the contour.

Each filter can be applied to change either the contours’ shape or their properties such as

normals, curvatures, and colors. The user can also add a sense of relief by varying stroke

thickness, or provide an impression of overall shape using stippling.

Relief. Some of the inscriptions are carved into the rock (grooves) which makes them

either sunk or bas-relief depending on the carving technique. One way of representing reliefs

with line drawings is to draw them with different line thicknesses. One of most common

conventions used for reliefs in digital epigraphy is to assume a light source at a 45◦angle

from the top-left side of the image. The goal is to use line thickness to indicate the shading

of the surface under this hypothetical lighting. In digital epigraphy, this is done manually

by offsetting the mask for the inscriptions. However, this method only gives us general

information about whether it is sunk relief or bas relief. For a more precise depiction, we

use the depth of the inscription to determine the line thicknesses.
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(a) (b)

Figure 4.11: (a) Our final labeled segmentation result. (b) K-means 3 clustering result.

(a) (b)

Figure 4.12: (a) Our final labeled segmentation result. (b) 3-label graph-cut result.

(a) (b)

Figure 4.13: (a) Thickness calculation. (b) Example of a relief illustration.
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To determine the depth of the inscription without actually integrating the normal map,

we take a small window, W , from each curve point in the opposite direction of the curve

normal as shown in Figure 4.13a and take the average of the normals within that window.

Later, we could just use the dot product of the light direction with the average normal to

determine the line thickness. However, since the surface is not necessarily perpendicular to

the camera and we want to get rid of the noise caused by the rough surface, we first apply a

band-pass filter (Difference of Gaussians) on the normal map, N :

NDoG = N ∗G(σ1)−N ∗G(σ2) (4.7)

where G(.) are 2D Gaussian functions with σ1 removing the noise caused by the surface

roughness and σ2 removing the low frequency component of the normal map, which

represents the rough shape of the surface. We later use the DoG to compute the average

direction for each point on the curve, and the thickness is set proportional to the dot product

of the average DoG and the imaginary light direction.

t(i) = 〈1,−1, 0〉 ·
( 1

|Wi|
∑

(x,y)∈Wi

NDoG(x, y)
)

(4.8)

where t(i) is the computed line thickness at point i. Later, the user can further smooth

the thickness along the curve to have a smoother transition along the contour as described

below:

t(i)smooth =
1

gtotal

r∑
j=−r

g(j, r)t(i+ j) (4.9)

where g(j, r) is a Gaussian function in which the variance of the function is calculated from

the maximum range r. In Figure 4.13b, an example is shown where the relief illustration

is applied to the grooves while the pecked out regions are rendered with a constant line

thickness.

85



(a) (b)

Figure 4.14: (a) Stippling on a sphere. (b) Stippling to depict the rough shape of a curved

boulder.

Stippling. To depict the rough shape of the surface, we use stippling derived from the

normal map. We compute the stippling density in small grids by taking the dot product of

the z direction with the average normal within the grid, W , as follows:

d = 1−
(
〈0, 0, 1〉 ·

( 1

|W |
∑

(x,y)∈W

N(x, y)
))

(4.10)

A number of stippling points proportional to the density are randomly rendered within the

small grid with a color inversely proportionally to the density. When the surface is tilted

away from the camera, the stippling density will be close to 1 and the color will be darker,

and vice versa, as shown for a sphere in Figure 4.14a. This method can be used over all the

image to indicate the general shape of the surface when the rock surface is curved as shown

in Figure 4.14b.

4.6.2 Detail Illustration

To illustrate the surface details, we compute the dot product of the surface normals with

either the z-direction or the local average normal as follows:
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I(x, y) =


d = N(x, y) ·B(x, y) if d < τ

1 otherwise.
(4.11)

where τ is a user defined threshold, which controls the elimination of the flatter features

and B(x, y) is either 〈0, 0, 1〉 or the low frequency component of the normal map, Ng(x, y),

computed by Gaussian filtering the normal map. When the z-vector is used, it will depict

the general shape of the surface such as curviness; on the other hand, if Ng(x, y) is used,

it will reveal the local surface details only. If the surface is flat and perpendicular to the

camera, both methods will give similar results. In our results, extracted details are applied

to the pecked out regions as a texture.

User Control. The user can control all the sigma and threshold values, and can use either

the albedo, gray tones, or black and white for details. The stippling method described in

the previous section can also be used for detail illustration by using Ng(x, y) instead of the

z-direction. Different methods for detail illustration are shown in Figure 4.15.

4.7 Results and Discussion

In this section, we show results on several inscription and non-inscription datasets, as well

as comparisons to some previous work. Figure 4.16 demonstrates several styles of our

epigraphy pipeline on one dataset. We demonstrate generating outlines of the inscriptions,

adding surface details, giving relief effect to the grooves, stippling for shape depiction, and

stippling to illustrate the surface details respectively. For comparison, Figure 4.17 shows a

digital epigraphy done manually by archaeologists in two styles. As they reported, it took

5-6 hours to trace over the image and another 1-2 hours to add texture details to the pecked

out regions.
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(a) B = 〈0, 0, 1〉 (b) B = Ng(x, y) (c) B = 〈0, 0, 1〉 (d) B = Ng(x, y)

Figure 4.15: Detail illustrations for pecked out regions. (a), (b) details computed using

Equation 4.11; (c), (d) details are depicted by random stippling.

In Figures 4.18 and 4.19, several previous works are compared to our method. Results

from image-based line drawings are shown in Figure 4.18, where we compare our result to

Coherent Line Drawings (CLD) by Kang et al. [86] and extended Difference of Gaussians

(xDoG) by Winnemoller [180]. Even though xDoG handles the noise caused by surface

roughness better than CLD, it fails when the variation in color is small, such as in the right

column of the figure. To test 3D line drawing methods, we project the surface normals onto

a 3D plane and use those projected normals to compute 3D contours. As seen in Figure 4.19,

previous works cannot handle the noise well, and even when the surface is smoother it does

not produce contours enclosing the inscriptions as needed for epigraphy.

Results on several other rock inscriptions are shown in Figure 4.20, where the last

two datasets are deeply engraved stones different than other rock inscriptions. We also

demonstrate our system’s usability on non-inscription datasets in Figure 4.21.

4.8 Conclusion

In this chapter, we presented a user-guided system to produce digital epigraphy from

photometric datasets. The pipeline consists of segmenting the inscriptions from the rock

surface and labeling them based on their carving techniques and rendering them in various

non-photorealistic styles. We stated that our system efficiently and quickly (in less than
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(a) Outlines (b) Details (c) Relief (d) Stippling (e) Stippled de-

tails

Figure 4.16: (a) Outlines of the inscriptions computed by the segmentation algorithm,

grooves are drawn with thicker lines than pecked out regions. (b) Pecked out regions are

textured by adding surface details using Equation 4.11. (c), (d), and (e) are closeup images

showing relief, random stippling for shape depiction and stippling for detail illustration.

Figure 4.17: Digital epigraphy done manually by archaeologists using Adobe Photoshop

and Illustrator.
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(a) CLD on Albedo [86] (b) CLD on Normals [86]

(c) xDoG on Albedo [180] (d) xDoG on Normals [180]

(e) Our Results

Figure 4.18: Comparisons to previous image-based line drawing techniques.

(a) Ridges &

Valleys [77]

(b) Suggestive

Contours &

Highlights [46]

(c) Apparent

Ridges [80]

(d) Relief

Edges [96]

(e) Isophotes

Figure 4.19: Comparisons to previous 3D model-based line drawing techniques.
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Figure 4.20: Results on several other datasets.

10 minutes) produces results comparable to the epigraphic drawings done manually by

archaeologists in hours. We compared our results to several previous works on both 2D and

3D line drawing algorithms. Finally, we showed results for several rock inscriptions, rock

engravings, and non-inscription objects.
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(a) Normal map (b) Details (c) BW Details (d) Stippling (e) Stippling Details

(f) Details (g) Stippling (h) Details (i) Stippling

(j) Details (k) Stippling

Figure 4.21: Several non-inscription objects are used with our system where we use the

depth discontinuity to find the contours.
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Chapter 5

Transferring Surface Details:

Learning Detail Transfer based on

Geometric Features

Finally, we propose a method for realistically transferring details (specifically, displacement

maps) from existing high-quality 3D models to simple shapes that may be created with

easy-to-learn modeling tools. Our key insight is to use metric learning to find a combination

of geometric features that successfully predicts detail-map similarities on the source mesh,

and use the learned feature combination to drive the detail transfer. The latter uses a variant

of multi-resolution non-parametric texture synthesis, augmented by a high-frequency detail

transfer step in texture space. We demonstrate that our technique can successfully transfer

details among a variety of shapes including furniture and clothing.

5.1 Introduction

Increasingly customizable characters in video games, massive multi-user immersive virtual

environments, and advances in 3D printing have all driven the demand for high-quality
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Figure 5.1: Our algorithm learns combinations of geometric features that predict the spatial

arrangement of details on surfaces. Left: Input (target) mesh without details. Center/Right:

Details from each source mesh (blue) are synthesized on the target mesh (pink).

S

S’

M

M

D

D’

Figure 5.2: Our algorithm learns a mapping M between a coarse source shape S and its

detail map D, and uses the same mapping to synthesize a detail map D′ for a target mesh

S ′. Left: the source and target models without details. Right: source and target meshes are

rendered with their corresponding detail maps.
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3D models. It is time-consuming and expensive, however, to hand-model or scan 3D

surfaces with realistic fine details. Furthermore, the number of high-quality 3D models

freely available online or elsewhere is severely limited, forcing designers to generate models

by hand or obtain them from repositories of low-resolution shapes. Even if a detailed shape

is available in a desired class, edits that preserve fine-scale detail are tedious at best. For

this reason, most high-quality models continue to be generated by highly-trained 3D artists

who sculpt all the details manually using modeling tools such as ZBrush [136].

In this chapter we propose that the effort to create a single high-quality model may

be amortized by transferring its details to a wide variety of easily-produced and widely-

available low-resolution meshes. Specifically, we consider details that may be represented

as displacement maps (so that their geometric extent is limited) and whose statistics are

distinctive over different parts of the surface (so that they may be treated within the frame-

work of texture analysis and synthesis). This encompasses surface features such as wrinkles,

fabric patterns, wood grain, scratches, and cloth seams, which are critical to realism yet

most typically missing in the low-resolution meshes created by amateurs. However, while

there is a rich literature on texture analysis, the chief difficulty lies in the fact that realistic

surfaces contain many different kinds of details. We must therefore learn which parts of the

source model to draw from when synthesizing details on every point of a target model.

The key novelty of our work is to use metric learning to find a combination of geometric

features that best predicts which regions of the source mesh have similar details. The learned

metric is then used to evaluate source-target similarity, which guides the texture synthesis.

This builds upon the insight (also exploited in the work of Mertens et al. [120] and Lu et

al. [109]) that the patterns of details on a surface are usually correlated with large-scale

geometry.

It is important to note that our method does not attempt to find a one-to-one correspon-

dence, or even a fuzzy correspondence [93], between the source and target meshes. Instead,

we perform an analysis entirely within the source mesh to learn which geometric features
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are most important for predicting the similarity of local detail-texture statistics. One way of

thinking about our system is to imagine that it solves an analogy problem (Figure 5.2): we

learn predictive relationships M between a low-resolution source mesh S and its detail map

D, and apply them to the target mesh S ′ to synthesize a detail map D′.

This approach lets us transfer details between models of significantly different size,

complexity, and topology. For example, the center column in Figure 5.1 demonstrates that

our algorithm can transfer details between similar shapes such as armchairs, while the right

column illustrates that we can also successfully transfer the diamond pattern from a pillow

to a chair. Moreover, notice that the diamond pattern occurs only on the front side of the

pillow, and accordingly is transferred to only the front side of the chair. This is because our

method learns that the presence of the diamond pattern is correlated with surface orientation.

We demonstrate that the learned relationship between coarse geometry and texture detail

is highly dependent on shape class and context, highlighting our method’s contributions

beyond existing surface correspondence and texture synthesis algorithms.

Contributions. The major new components of our work described in this chapter are

• learning the relationships between a wide range of geometric features and the statistics

of a detail map expressed as a texture, via metric learning;

• transferring surface details between different 3D shapes in a non-parametric texture

synthesis framework;

• combining coarse- and mid-scale synthesis over the surface with fine-scale synthesis

in texture space, yielding an algorithm with the stability of the former and the quality

and efficiency of the latter; and

• making our database of high-quality 3D models generated by artists available to

the public, augmenting the currently-limited number of high-quality models freely

available online.
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5.2 Related Work

Texture Synthesis. Texture synthesis is a long-standing topic in the computer graphics

literature; Wei et al. [174] present a comprehensive survey. The original study of texture

synthesis was in the 2D image domain [69, 50, 175] and was later extended to synthesis of

color patterns over surfaces [164, 176]. More recent work in texture synthesis considers

volumetric surface details [24], mesh quilting [194], using terrain as a height field [193],

feature-aligned texturing [187], material interpolation for appearance synthesis [47], and

self-tuning optimization [88].

While most of the existing techniques are based on a Markov random field (MRF)

assumption, i.e., that the texture pattern is both local and stationary, several methods have

been proposed to handle non-stationary textures. Lu et al. [109] correlate the distributions

of texture appearance to some simple context parameters, such as ambient occlusion and

principal directions. Rosenberger et al. [141] automatically generate control maps for

layered textures. More recently, Chen et al. [38] adapt the PatchMatch algorithm to 3D and

transfers textures from one geometry to another with the help of some geometric features.

The previous work most relevant to our approach is that of Mertens et al. [120]. It uses

canonical correlation analysis (CCA) to find correlations between RGB colors and geometric

features, attempting to explain texture variations caused by processes such as dust accu-

mulation and weathering. In contrast, our work employs a wider set of recently-developed

geometric features along with the framework of metric learning, allowing meaningful

correlations to be learned for coarser models and more complex geometry/texture relation-

ships — see Figure 5.15 for a comparison. In addition, our method better handles structured

textures such as wrinkles and sewing stitches, as compared to the highly-stochastic textures

for which the work of Mertens et al. [120] is best suited.

Shape Correspondence. A key goal of our system is to establish which points on the

source shape should be considered when synthesizing detail at each point on the target.
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The simplest version of this problem would be to compute a one-to-one correspondence

between the source and target meshes, and a long line of research has been devoted to this

problem [166]. Kim et al. [93] extend this line of work to consider fuzzy correspondences

among a set of 3D models, with the goal of facilitating the exploration of shape collections.

Solomon et al. [148] compute a fuzzy map from the source surface into the target by

minimizing the distortion between their distance fields. However, most of existing techniques

for shape correspondence require the shapes to have the same or similar global structure,

which severely restricts their applicability to detail synthesis. Instead, our learned metric can

be used to effectively compute a similarity score between every pair of points on the source

and target shapes. This retains some notion of correspondence if the shapes are similar,

while smoothly degrading if the shapes are dissimilar in overall structure.

Geometry Synthesis. One application we consider is the synthesis of wrinkle and crease

patterns on cloth, furniture, and other shapes. Golovinskiy et al. [61] synthesize facial

wrinkles assuming both input and training 3D face models are perfectly aligned. They

segment these aligned faces into regions and calculate statistics on each of them to synthesize

new wrinkles for each region separately. Wang et al. [171] synthesize wrinkles for cloth

which closely fits the body, based on analysis of simulated examples. Rohmer et al. [140]

generate dynamic wrinkles by using the stretch tensor of the coarse cloth animation as the

guidance.

The broader problem of shape synthesis by example has received considerable attention

in other forms. One line of research focuses on part-based synthesis of new models from

shape repositories [81, 188, 6]. Other methods leverage symmetry information to generate

complex shapes from small examples [133, 26, 76]. Recently Ma et al. [112] use an analogy-

driven framework to transfer style from an exemplar to a target model. In their framework,

the source and the exemplar models need to have the same structure to build dense point-

to-point correspondences. Furthermore, the input source and target shapes in their cases
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Figure 5.3: Algorithm overview.

have to be of the same style to allow the computation of source-to-target analogy assembly.

In our framework, instead of computing full correspondences, we transfer details from the

source shape to the target shape via learning from geometric features, which works for more

general input shapes.

Source Low-poly Mesh Displacement map

Figure 5.4: A source mesh represented by a low-polygonal mesh and a displacement map.
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5.3 Algorithm

In order to guide our texture synthesis algorithm, we need to know which areas on the

source mesh should be considered for each point on the target. As hinted above, we dare

not compute a full correspondence between source and target: that would leave our method

fragile in the face of changes to gross shape, size, and topology. Instead, we argue that

points on the target should draw from geometrically similar areas of the source. We can

evaluate this similarity on the basis of a variety of geometric features, but this prompts

another question: which features are most important? Our insight is that feature importance

is not universal — in some situations the details might vary with curvature (such as the

wrinkles on the armrest of the armchair at center in Figure 5.1), in others with normals (such

as the diamond pattern on one side of the pillow at right in Figure 5.1), and in still other

situations the variation might be well-predicted by one of the more recent feature descriptors

such as the wave kernel signature (WKS) [9]. So, we must learn feature importance for each

particular source mesh and every particular detail texture.

This motivation gives rise to the pipeline in Figure 5.3. We begin with a source triangle

mesh S and its detail map D : S → R, where values in D represent displacements from the

base mesh S along surface normals — see Figure 5.4. For both S and the target mesh S ′, we

use repeated remeshing to create a hierarchy of lower-resolution versions.

Our key new step is to analyze which regions of D are self-similar and learn a metric M

that predicts these similarities on the basis of geometric features G. The learned metric M

is applied to target features G′, allowing us to evaluate the similarity of points on the source

and target. This, in turn, is used to guide a multi-resolution texture synthesis algorithm,

which yields the target detail map D′. In a refinement step, we transfer the highest-frequency

details from D directly to D′, operating in texture space rather than on the mesh.
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5.3.1 Input Preprocessing

Canonical Scale and Orientation. Our first preprocessing step is to scale each mesh

consistently with the others, and orient it such that its semantically-meaningful “up” direction

points along the positive y axis. While we perform this manually, we believe that automatic

algorithms could perform nearly as well [58].

Mesh Hierarchy. We create a multi-scale mesh hierarchy for both the source and target

meshes. We use an isometric remeshing algorithm proposed by Botsch and Kobbelt [27]

to create multi-resolution mesh hierarchies for both the source and the target meshes.

Specifically, we use the implementation provided by Möbius and Kobbelt [123] and create

four-scale hierarchies in which the average edge length of each level is equal to half the

average edge length in the previous level.

Tangent Frame. Our texture synthesis algorithm operates one patch at a time, and so we

need to define the orientations of patches that will be used for search and synthesis (see

Figure 5.5a-b). The first step is to define the orientation of a tangent frame at each vertex

on the surface. A variety of strategies could be used, including using the gradient of an

artist-provided uv map of texture coordinates, principal directions, or a user-specified vector

field [164]. However, all of these strategies in practice lead to inconsistent orientations

between similar patches on the source and target meshes. Exploring the problem of defining

consistent tangent frames between meshes is an interesting avenue for future work, but for

the purposes of this project we adopt a simple strategy that appears to work in most cases:

we project the constant vector (1, 0, 0) into the plane perpendicular to the surface normal n,

using that as the first tangent vector u. The other vector v is defined as n× u. While this

results in some discontinuities, we have not found this to be a problem in practice.
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5.3.2 Analysis

Our first step is to analyze how features in the detail map D correlate with the geometry of

the source surface S. This proceeds in three steps: (1) determining which regions of D have

similar textures; (2) computing a vector of geometric features G at each point on the surface;

and (3) applying a metric learning algorithm to determine a linear transform of G that best

matches the texture similarities. In the detail transfer stage (Section 5.3.3), this metric will

be used to select patches on S whose details can be transferred to different points on S ′.

Detail Features

In order to determine which regions of the surface have similar detail texture, we compute a

“detail feature” for each vertex on the surface, characterizing the statistics of the texture in

its neighborhood. We begin by mapping a 2D square patch on the tangent space around each

vertex v onto the surface S via an approximate exponential map, as shown in Figure 5.5.

We use a technique similar to that proposed by Melvaer and Reimers [119]. We choose this

parameterization at each v ∈ S because in the smooth case it maps the tangent plane at v

into S with minimal distortion about the center point [70].

We then compute the texture statistics of each unfolded 2D patch. We use the low-

dimensional feature vector proposed by Golovinskiy et al. [61], which consists of standard

deviations of the histograms of steerable-pyramid filter bank outputs [69] at four orientations

and four scales, along with a high-pass filter. Hence, the detail map around each vertex

vi is identified with a 17-dimensional feature ti. Figure 5.6 shows the steerable pyramid

outputs for the patch around the selected vertex marked in Figure 5.6c, along with the detail

similarity between the selected point and all other points on the mesh. Histograms of the

steerable pyramid are overlaid to demonstrate the varying standard deviation over different

scales and orientations.
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(a) (b) S (c) (d) (e)

Figure 5.5: Exponential mapping used to sample around vertex v. (a) Tangent space of a

surface S around vertex v with the tangent vector u and the relative location vector r of a

pixel; (b) corresponding u and r vectors on the 3D surface S; (c) example 3D model with

detail map visualized as vertex colors; (d) exponential mapping around the corner of the

seat; (e) corresponding 2D patches: a synthetic color mapping and actual sampled patch

around the selected vertex.

Sc
al
e

Orientation

(a) (b)

Figure 5.6: Computation of detail features. (a) The steerable pyramid of a patch around the

vertex highlighted in b for 4 scales (rows) and 4 orientations (columns), overlaid with their

histograms; (b) a detail map with one point highlighted, together with its similarity (blue =

similar, red = dissimilar) to all other vertices on the shape.
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Geometric Features

We compute the following geometric features at each vertex of the source mesh:

• Curvature (C): The two principal curvatures, along with the mean curvature, Gaussian

curvature, and L2 norm of the two principal curvatures.

• Height (H): The y-coordinate of each vertex.

• Normals (N): The surface normal at each vertex.

• Shape diameter function (SDF): A measurement of local object diameter, useful for

separating thin and thick parts of the object [145].

• Distance to segmentation boundary (Seg): The geodesic distance from each vertex

to the closest segmentation boundary obtained using SDF [145], normalized by the

maximum distance within the each segment as described by Chen et al. [40].

• Statistics on geodesic distances (Geo): The mean, median, maximum, standard devia-

tion, tenth percentile, and ninetieth percentile of geodesic distances from each vertex to

all others [40].

• Relative xyz coordinates (Box): Each vertex’s coordinates with respect to the center of

the bounding box, normalized by the size of the corresponding dimension of the bounding

box.

• Heat kernel signature (HKS): Measurements of the dissipation of heat from a point

onto the rest of the shape over time [152], sampled at 20 points in time.

• Wave kernel signature (WKS): The average probability to find a particle of a given

energy at a given point [9], sampled at 20 points on the frequency range.

Concatenating all of these features, we obtain a 60-dimensional geometric feature vector

gi at each vertex vi. Figure 5.7 visualizes each geometric feature for an armchair. A
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Figure 5.7: Visualizations of geometric features for an armchair. Each image visualizes one

of the 60 geometric features, with minimum and maximum values of each feature mapped

to blue and red, respectively.

diverging color map [125] is used, with blue mapped to the minimum value and red mapped

to the maximum.

Metric Learning

Measuring distances or similarities between data is ubiquitous in machine learning, pattern

recognition, and data mining, but it is generally difficult to tailor metrics for specific

problems. This has led to the emergence of metric learning, which automatically adjusts a

distance or similarity function using training data [99, 17].

In this chapter, we use a supervised global distance metric learning method to find a

transform to be applied to our geometric features, such that distances between transformed

features are predictive of distances between statistics of surface details. Although the expres-

sive power of a global metric is limited relative to localized alternatives, the resulting convex

objective is easier to optimize and suffices for our application. Furthermore, computation
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of a single global metric is more resistant to over-fitting relative to nonlinear and local

methods [17].

We define G to be a geometric feature matrix, with entry Gij corresponding to the i-th

feature of the j-th vertex on the source mesh. Additionally, we define the detail similarity

matrix T to have entries Tij = 〈ti, tj〉, where ti is the texture feature vector of the i-th vertex.

Intuitively, assuming we subtract the mean texture features ahead of this step, we can think

of Tij as measuring the similarity of vertices i and j with respect to the texture features.

We wish to learn a metric on geometric features that mimics the metric on the ti.

Formally, we can think of this problem as learning a distance function d(·, ·) between

columns of G that imitates the distances encapsulated in T . For simplicity, we restrict

ourselves to Mahalanobis metrics of the form

d(gi, gj) = (gi − gj)>M (gi − gj), (5.1)

for some matrix M � 0; the positive-definite constraint is needed for our metric to satisfy

the triangle inequality.

We propose learning M via the following optimization problem:

minM ‖T −G>MG‖2Fro + λ‖M‖1

s.t. M � 0.

(5.2)

We solve this convex problem using CVX [64, 63]. The first objective term encourages the

inner products of geometric features with respect to M to look similar to dot products of

the texture features. The second objective term, modulated by a regularization parameter

λ ≥ 0, promotes sparsity of M [17], in this case reflecting the intuition that most features

are uncorrelated and hence should have entry Mij = 0. The examples in this paper use

λ ≡ 0.1, which worked effectively for all of our experiments.
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We experimented with a variety of metric learning alternatives, most notably a formula-

tion minimizing differences of L2 distances instead of inner products. While still convex, the

resulting optimization problem is considerably more difficult to solve because the quadratic

terms become dense in the optimization variables. Our simpler formulation yielded similar

results in far less computation time.

Comparison to Context-Aware Textures. Lu et al. [109] propose a method for capturing

time-varying textures and context parameters (a few geometric features) to control texture

transfer. They first compute a diffusion map to represent the time-varying texture with a set

of orthogonal functions on vertices. They then compute a correlation by taking the inner

product of the diffusion map and context parameters (defined by ambient occlusion, signed

mean curvature, principle curvature directions, normals in optimal and non-optimal surface

directions). They only use these correlations to select the most important context parameter,

since the numerical values of these correlations are not meaningful. To transfer time-varying

textures, they provide a user interface in which the user can control the transfer by selecting

a context parameter. We found that this approach is limited to mostly stochastic textures

resulting from phenomena such as rusting, weathering, or chemical agents, for which the

color variation can be simply explained with a single geometric feature such as ambient

occlusion. We provide an empirical comparison later in the chapter (Figure 5.15b).

Comparison to CCA. Mertens et al. [120] propose guiding geometric texture synthesis

using canonical correlation analysis (CCA). Their work projects geometric features onto

three directions that are predictive of RGB triplets, computed using a greedy sequence of

eigenvector computations [66]. We found that this low-dimensional projection and use of

color rather than texture descriptors is not as good as metric learning at taking advantage

of the rich relationships between shape and texture. Furthermore, our formulation (5.2) is

globally optimal, allows for sparsity-based regularization, and is specifically tuned to the
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specific task of computing distances between features. We provide an empirical comparison

to CCA later in the chapter (Figure 5.15c).

5.3.3 Detail Transfer

Transferring details from one surface to another can be thought of as a texture synthesis

problem. In the literature, there are various works on texture synthesis in both 2D and 3D.

Although 2D domains have regular grid structures that enable fast processing, projecting

back into 3D introduces distortion. On the other hand, achieving high resolution in 3D

requires higher computational complexity than in 2D. To leverage the advantages of both

methods, we propose a hybrid approach: first transferring details between 3D surfaces, then

post-processing the synthesized detail maps, in texture space, to enhance fine details.

First, all the geometric features described in the previous section are computed for the full

multi-resolution hierarchy of the target mesh S ′. At this point, we have a new Mahalanobis

distance function to compute geometric similarity between points on the source and target

meshes, as follows:

d(gi, g
′
j) = (gi − g′j)>M(gi − g′j) (5.3)

= ‖Agi − Ag′j‖22, (5.4)

where the positive semidefinite matrix M is factored as M = A>A using Cholesky decom-

position. We apply the transformation matrix A to all geometric feature vectors of both the

source and the target meshes to simplify subsequent processing.

Detail Transfer over Surfaces

We adapt a variant of non-parametric texture synthesis (which has been explored for both

images [50] and 3D surfaces [164]) to transfer details from one surface to another. We use

a hierarchical method in which the synthesis progresses from the coarsest to finest level
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Algorithm Detail transfer from source to target.
function TRANSFER-TEXTURE(Hsrc, Htgt, n)

Hsrc: mesh hierarchy for the source shape

Htgt: mesh hierarchy for the target shape

n: patch size

compute sweep order on Htgt

for each level in Htgt, coarsest to finest:

upsample vertex colors

SYNTHESIZE-LEVEL(Hsrc, Htgt, n)

reverse sweep order

SYNTHESIZE-LEVEL(Hsrc, Htgt, n)

n← 2 ∗ n+ 1

end for

end function

function SYNTHESIZE-LEVEL(Hsrc, Htgt, n)

sample patches around evenly-distributed source vertices

for each target vertex, in sweep order:

if displacement weight wdisp > 0.5 then

skip the vertex

end if

sample a patch around the vertex

match features to find candidate source patches

match patches to find best candidate

blend best patch into target mesh

end for

end function
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in a mesh hierarchy. We also propose using a sweep order based on the number of good

candidates per vertex. In other words, vertices with fewer good candidate source patches

should be synthesized first, because they have fewer degrees of freedom. The synthesis is

guided by a two-step matching phase where both geometric features and already-synthesized

details are considered. We also choose to synthesize a patch at a time, in preference to

per-vertex synthesis, to both accelerate the process and preserve local coherency.

Our detail transfer algorithm is presented in the Algorithm . The main blocks of the

algorithm are as follows:

• Sweep order: The number of good correspondences per target vertex is computed by

thresholding the (transformed) distances d(gi, gj) from that vertex to all vertices on the

source mesh. A few vertices with the fewest good correspondences are selected as initial

seed vertices. Those seed vertices are then used to determine the sweep order, based

on the geodesic distance from the seed vertices to others. However, to reduce order

dependence, we reverse the sweep order at each iteration.

• Sampling: At each level in the hierarchy, the source mesh is sampled evenly and

exponential surface patches around those samples are stored along with their embedded

geometric features, as explained in §5.3.2.

• Matching: A two-step matching algorithm is used to find the best-fitting patch from

the source mesh to the target mesh. First, a set of candidate patches are found from the

source mesh based on geometric feature similarity. Second, among those candidates the

one which is the most similar to the already-synthesized part of the detail map on the

target mesh is selected. In both steps, a translational refinement is applied when searching

for the most similar feature or displacement patch.

• Blending: The best candidate patch is copied onto the target mesh and blended seam-

lessly by using a weighted average controlled by two weights, wloc and wval, inversely

proportional to: (i) the distance from the center of the patch, xc, to the pixel location, xi,
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and (ii) the difference between the new, dnew, and already synthesized, dcurr, displacement

values, respectively. In particular, the per-vertex displacement weights wdisp are updated

as follows:

wdisp← wdisp + wlocwval (5.5)

wloc = f
(
‖xc − xi‖ / (n/

√
2)
)

(5.6)

wval = f
(
‖dcurr − dnew‖ / dmax

)
, (5.7)

where n is the patch size, f(x) = 2x3 − 3x2 + 1 as in [164], and dmax = 1, assuming the

displacement values are in [0, 1].

Texture-space High-frequency Detail Transfer

Detail transfer over surfaces is limited by the finest mesh resolution in the mesh hierarchy. In

order to transfer details with higher frequency than the mesh sampling, we propose a hybrid

synthesis approach: detail transfer over surfaces (Section 5.3.3) followed by a refinement

step in texture space (below).

The texture-space refinement begins by rasterizing the per-vertex displacements syn-

thesized on the target mesh into a target texture map. We then consider small patches pi

from the source texture, centered at each vertex, along with their corresponding locations in

the target texture. We warp each pi to match the uv texture parameterization of the target,

and further refine its translation to match the target texture as well as possible. Finally, we

transfer only the high frequencies from pi to the target, where the cutoff frequency is set

according to the median edge length in uv texture space. The results before and after this

refinement step are shown in Figure 5.8.
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(a) Source (b) Before (c) After

(d) Source (e) Before (f) After

Figure 5.8: High-frequency refinement of transferred texture. (a) Close-up image from a

source detail map. (b) Before the refinement step, the transferred texture is blurrier than the

original. (c) After texture-space refinement, high-frequency details are restored. (d) Source

model with details, (e), (f) target model with details before and after the refinement step.
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Figure 5.9: Detail transfer for clothing models. For each source mesh (left column), we

transfer details to three different target meshes.

5.4 Results

We show the results of our detail-transfer pipeline on several classes of objects.

Wrinkles on Clothing. In Figure 5.9, we demonstrate that our framework can be used to

add a realistic appearance of fabric to clothing models. We not only transfer details between

shapes in the same category, such as pants, but also transfer details from a full-body scan to

a single piece of clothing. In this case, the automatically-learned metric is able to restrict the

textures that are selected to ones appropriate to the target. We believe that this framework

has a wide variety of applications, perhaps extending to synthesizing details in areas with

poor visibility on a 3D scanned model.
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In all, we generated a significant number of high-quality 3D clothing models from 6

source models and 11 target models.

Style Transfer on Furniture. Figure 5.1, Figure 5.10, and 5.15e show some of the

results of transferring details including wrinkles, seams, and fabric patterns among models

of upholstered furniture. In each case, the source mesh is shown in blue, with subsequent

pink models being the targets.

The results show that we are able to capture the semantically-meaningful distribution

of details on the surface. For example, similar kinds of wrinkles and seams tend to appear

in corresponding places on the surface, even in the presence of large differences in overall

shape. Note also that our non-parametric texture synthesis algorithm is able to handle

patterns ranging from structured to completely stochastic.

We also demonstrate in Figure 5.11 that our algorithm can be used on low-polygonal

shape collections to convert them into high-quality models from little data (i.e. from a

single armchair to four sofas with different sizes as shown in the figure) and produce similar-

looking but not identical details which is important for a realistic appearance of details like

wrinkles.

In the furniture category, 17 artist-designed source models were used to create a number

of high-quality target models.

Other Transfer Results. We also demonstrate a few results on shapes from other classes.

In Figure 5.12, we use the armadillo as a source mesh and transfer the details to a bunny and

a pair of pants. Our algorithm transfers the square patern from the armadillo’s shell to the

bunny’s back, and the bumpy pattern on the armadillo’s legs to the pants. Additionally, we

apply our algorithm on few faces from the Merl face database [61], as shown in Figure 5.13.

114



Figure 5.10: Detail transfer for furniture models. For each source mesh (left column), we

transfer details to three different target meshes.

Figure 5.11: Details from the source meshes shown in blue are transferred to multiple target

models to demonstrate that our algorithm produces similar but not identical details.
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Figure 5.12: Detail transfer from Armadillo to Bunny and pants.

Figure 5.13: Detail transfer on faces from Merl Database from the source models in blue to

the target models in pink.
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Source Targets

Figure 5.14: Full correspondences produced by using Solomon et al. [148]. Red points are

set manually as constraints. False coloring is used to visualize correspondences between

the source and target meshes. The same correspondences are used in Figure 5.15d for

comparison.

5.5 Experiments and Comparisons

Comparison to Other Algorithms. We compare our algorithm to several alternatives:

1. No Metric Learning: We disable the metric learning part of our algorithm, giving equal

weight to each geometric feature. Specifically, we subtract the mean of each feature,

and then divide by its standard deviation across the shape. This method can also be

understood as a version of MeshMatch, proposed by Chen et al. [38], where the geometric

features are equally weighted. As shown in Figure 5.15a, when the algorithm relies on

all the geometric features equally and the source and target meshes have dissimilar local

geometry, it fails to transfer meaningful details. For example, as shown in the middle

column, it transfers wrinkles from the corner of the source armchair to the middle of the

couch.
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2. Lu et al. [109]: Although the method proposed by Lu et al. [109] focuses on time-

varying textures, we adapt their idea of context-aware textures to compare to our method.

Specifically, we compute the eigenvalue decomposition of the learned metric M and use

the geometric feature (their “context parameter”) corresponding to the highest eigenvalue.

In other words, we transfer details using guidance from a single geometric feature to

explain the correlation between geometry and details of the source mesh. In Figure 5.15b,

the rightmost column shows that this technique works if the details are highly correlated

with a single geometric feature. In this example, the highest eigenvalue corresponds

to mean curvature, which explains the distribution of the wrinkles on the surface very

well. On the other hand, the first and second columns show that this method is not

sophisticated enough to discover details whose relationship with the underlying geometry

is not captured by a single descriptor.

3. Canonical Correlation Analysis (CCA): Previous work by Mertens et al. [120] uses

CCA to find correlations between RGB and geometric features (a smaller set than is

used in this paper). To provide fair comparison to metric learning, we use CCA to find

the relationship between the detail-texture descriptors described in Section 5.3.2 and

the geometric features listed in Section 5.3.2. We then use this correlation, instead of

metric learning, to guide detail transfer. As shown in Figure 5.15c, CCA fails to capture

a meaningful relationship between the details and the geometric features, and results in

poor guidance.

4. Mesh correspondence: One could also imagine using a mesh correspondence algorithm

as guidance for texture transfer. Figure 5.15d illustrates the advantages of metric learning

over this more restrictive pipeline. In this experiment, we use the method of Solomon

et al. [148] to compute a probabilistic map from the source surface into the target while

minimizing geodesic distortion (regularizer α = 0.005); we mark a single point as a

constraint. We then use the 10 highest-ranking matches for each target point to guide

118



texture synthesis. Algorithms like [148] minimize distortion while seeking bijective

maps. As illustrated in the results of this test, these properties can be problematic for

texture synthesis. Textures may be better aligned with features captured by our metric,

even if this induces stretch of the source onto the target. Furthermore, the search for

a bijective mapping is subject to local minima. Figure 5.14 shows some instances in

which our one-point constraint led to smooth but counterintuitive maps; these maps fail to

capture critical semantic relationships thanks to the geometric variability of the models.

We also experimented with turning off the geometric feature matching altogether. How-

ever, with no constraint on which regions of the source mesh should be used at different

locations on the target, the texture synthesis algorithm quickly “got stuck” by gravitating

towards a single texture, most typically the one with lowest variation. This is because the

matching part of the algorithm tries to minimize the difference between adjacent detail

patches, and completely flat patches minimize this cost function most effectively.

Significance of Geometric Features. To demonstrate the significance of different geo-

metric features used for the detail transfer, we learn the relationships between the surface

details and the geometric features, as explained in Section 5.3.2, for models in two different

categories: (i) clothing, with six models, and (ii) furniture, with 17 models. We plot the

average of the first eigenvectors (i.e., corresponding to the largest eigenvalues) of matrices

M for both categories in Figure 5.16. To make the graphs more compact, related geometric

features are grouped into one; for instance, the “curvature” data point (C) represents the total

significance of all the features derived from surface curvatures, as listed in Section 5.3.2.

The only exceptions are the Heat Kernel Signatures (HKS) and Wave Kernel Signatures

(WKS), which are partitioned into low-frequency (HKS1 and WKS1) and high-frequency

(HKS2 and WKS2) components. The error bars on each data point represent variance of the

corresponding class of features across models within a category.
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(a) No Metric Learning

(b) Lu et al. [109]

(c) CCA, Mertens et al. [120]

(d) Surface correspondence, Solomon et al. [148]

(e) Our results

Figure 5.15: Comparisons to several algorithms. Source meshes are shown at the top row in

blue and the results are shown in pink.
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We observe that the variation in the surface details for clothing is highly dependent on

the height and SDF, while curvatures and surface normals are more important for furniture.

On the other hand, the metric learning finds HKS features to be the least important for both

categories. This can be explained by the presence of WKS features, since WKS is known to

be more robust and distinctive compared to HKS.

Because meshes can vary in which geometric features are most strongly expressed,

we also experimented with including the target mesh geometry into the metric learning —

essentially, ensuring that the learned metric on the source mesh only includes features that

are present and important on the target. To do this, we first find the principal components of

the 60-dimensional geometric features of the target mesh, then project the source geometric

features onto the first k of those principal components; we experimented with using k =

{5, 15, 30, 45, 60}. We use these projected geometric features, instead of the original ones,

in the metric learning and the detail transfer. While we believe that there may be situations

in which this yields a benefit, we did not observe significant improvements by adding this

step. A more thorough exploration of using target feature distribution to guide the metric

learning would be an interesting avenue for future work.

Stability of Detail Transfer. Figure 5.17 shows the result of an experiment intended to

evaluate how well our learning step can match the distribution of textures across a model.

Specifically, we first transfer details from the model in a to the one in b. Then, we use the

synthesized model in b as the source mesh and transfer details from b back to the model in

a (ignoring its original detail map), yielding the result in c. We observe that our framework

is stable enough to produce a plausible result (although, as with any texture-synthesis result,

we would not expect perfect agreement).
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(a) Clothing (b) Furniture

Figure 5.16: Significance of different geometric features, for (a) clothing and (b) furniture

models. The y axis shows the average values of the first eigenvectors of learned matrices M ,

with the error bars in red representing variation of feature significance among the models in

a shape category. Categories of geometric features are grouped along the x axis.

(a) (b) (c)

Figure 5.17: Experiment evaluating the stability of detail transfer. (a) Source mesh; (b)

target mesh, with details synthesized from the source mesh; (c) source mesh, with details

transferred back from the mesh in (b).
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5.6 Conclusions

This chapter presented an algorithm to transfer surface details from one shape to another in

a non-parametric texture synthesis framework, guided by learned relationships between the

surface details and the geometric features of the source shape. We showed that there is no

one global set of geometric features to guide the surface detail transfer across different shape

categories: this is why a metric learning algorithm is needed to compute the appropriate

weightings of different geometric features for each source shape and input detail map.

Discussion. The success of our method depends on finding a meaningful correlation

between geometric features and the distribution of details across a surfce. This is most easily

accomplished when the source and targets are in the same class, and indeed this was the case

for which our algorithm was designed. When the source and target differ more drastically,

we make the following observations:

• If the source has no regions closely matching the target, our algorithm will still find

the closest match. As with all data-driven methods, a lack of training data can lead to

suboptimal results.

• Because we use a rich feature set, including global features, even points with identical

local geometry, such as the two armrests of an armchair, will have distinct features. This

allows our algorithm to learn whether these regions should have similar or different

textures.

• If two points have similar texture but different geometry, our algorithm will learn that

similar geometric features are not predictive of texture (though, as mentioned above,

“global” features may differ).

• If two objects come from completely different classes, our method may still produce

intuitive results, such as in Figure 5.1, right, or Figure 5.12, bottom. In other situations,

such as armadillo-to-armchair detail transfer, however, the result will not be meaningful.
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Limitations and Future Work. One of the limitations of the detail transfer is the depen-

dence on the tangent frame. Since (to our knowledge) there is no prior work that creates

consistent tangent fields between two different 3D shapes, we rely on their initial alignment

and the projection of a single global direction. Although we could search over different

orientations during synthesis, this would result in higher computational complexity and

inconsistently (and unnaturally) oriented details such as wrinkles. As future work, we

would like to explore how to generate consistent tangent frames between shapes for texture

synthesis over surfaces.

As with all MRF-based texture synthesis techniques, our algorithm performs less than

ideally for highly-structured patterns. Specifically, neither the self-similarity of the detail

map nor the geometric features that are used to transfer detail are precise enough to represent

highly-structured repetitive patterns and exactly where they should appear on the surface.

Exploring more sophisticated texture descriptors and geometric features tailored to structured

patterns would be an interesting future direction.

While in this chapter we focused on small surface details, which are conveniently

represented by displacement maps, recent work in 3D shape analysis has begun to focus

on the understanding and transfer of larger-scale mesh “style” [112, 111, 105]. We believe

that our work may form part of a toolbox for analyzing the expression of style across

different frequencies in 3D models, and it would be an interesting direction to explore

unified solutions for transferring geometric elements of all scales between meshes.
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Chapter 6

Conclusion

The visual richness of computer graphics applications is frequently limited by the difficulty

of obtaining high-quality, detailed 3D models. In this thesis, we address several research

problems on capturing, processing, and synthesizing surfaces with high-quality details and

propose solutions which are beneficial to many applications such as 3D printing, 3D content

creation, video gaming, visual effects, and cultural heritage.

First, we focused on capturing high-resolution surface details via photometric stereo.

We validated the captured data and corrected any misalignments if necessary to achieve the

highest possible resolution from the dataset. We then analyzed the effects of several internal

and external factors on various photometric stereo algorithms and proposed an iterative least

squares approach for general purpose photometric stereo problem.

Second, we proposed a pipeline to combine two different types of captured data to

achieve higher quality than either one of them alone. We used normals maps estimated

by the photometric stereo algorithm mentioned in Section 2.3 and 3D scans captured with

either one of the acquisition techniques mentioned in Section 3.1. Photometric stereo is

good at capturing high-frequency details while they suffer from low-frequency bias. On

the other hand, 3D scans are hard to obtain in very high resolution but they provide good

coarse-scale shape. We offered a fully automatic solution to align, blend, and optimize these
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two types of data without any prior information to obtain a high resolution 3D model with a

coarse-scale shape of the 3D scan and high resolution details of the normal maps.

Third, we presented a user-guided system for converting the captured high-resolution

photometric data into interpretable geometry-aware non-photorealistic illustrations. Specif-

ically, we captured rough rock surfaces with shallow reliefs formed by carving into or

scraping off the rock surface, making the problem very challenging for previous line draw-

ing methods. We proposed using a segmentation algorithm which uses both the color and

geometry information of the rock surface to handle the low signal-to-noise ratio of the

datasets caused by weathered rough surfaces. We then classified each inscription based on

their carving methods and non-photorealistically illustrated them in different styles.

Finally, we proposed a method for transferring surface details from existing high-quality

3D models to coarse 3D shapes to give them realistic appearances. We argued that we

can learn a mathematical relationship between the geometry and the surface details of

the high-quality 3D model and use this relationship to guide the detail transfer. We first

transferred the mid-scale details over 3D surfaces then the finer details on texture space to

benefit from the stability of the former and the quality and efficiency of the latter.

6.1 Future Work

We believe that there are various interesting future directions for the problems that we

addressed in this thesis and we summarize them in three categories:

Capturing. Researchers have been working on sophisticated capture setups to have more

control over the scene and reduce the external noise causing factors. For instance, Light

stage proposed by Wenger et al. [177] provides more control over the illumination and

repeatable results, however these type of acquisition setups are expensive, hard to maintain,

take a lot of space, and are not portable or easily scalable. It is an interesting avenue to

explore cheaper and scalable solutions. Moreover, real-time and mobile acquisition systems
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have became more and more important as the data hungry algorithms emerge and perform

better than their predecessors, such as deep learning. A unified real-time system which

captures both shape and the appearance in high-quality would make collecting data practical

and enables researchers to approach traditional computer graphics problems from a different

angle.

Processing. In the literature, there is extensive amount of work on 3D shape analysis

including shape matching, retrieval, segmentation, classification etc. [167, 160]. Those

works, however, focus on coarse-scaled 3D models. We proposed a solution on segmenting

surfaces with details captured with photometric stereo where the previous computer graphics

techniques would fail. We leave solving other shape analysis problems for surfaces with

details as future work.

Synthesizing. In this thesis, we focused on transferring details from a single source mesh

(to arbitrary targets), because of the limited number of high-quality 3D models available

as input. Even though our framework can be used to extend the available collections of

high-quality meshes, the resulting styles will still be limited to those present in the original

source collection. An interesting avenue would be to explore interactive tools for novice

users to create high-quality mesh detail maps quickly, possibly exploiting inputs such as

photographs. Furthermore, once there are more high-quality models available, we would

like to explore transferring details from collections of shapes, instead of being limited to a

single source mesh.
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