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Abstract

This paper describes a method for extracting roads from a large scale unstructured 3D point cloud of an urban
environment consisting of many superimposed scans taken at different times. Given a road map and a point cloud,
our system automatically separates road surfaces from the rest of the point cloud. Starting with an approximate
map of the road network given in the form of 2D intersection locations connected by polylines, we first produce a
3D representation of the map by optimizing Cardinal splines to minimize the distances to points of the cloud under
continuity constraints. We then divide the road network into independent patches, making it feasible to process a large
point cloud with a small in-memory working set. For each patch, we fit a 2D active contour to an attractor function
with peaks at small vertical discontinuities to predict the locations of curbs. Finally, we output a set of labeled points,
where points lying within the active contour are tagged as “road” and the others are not. During experiments with
a LIDAR point set containing almost a billion points spread over six square kilometers of a city center, our method
provides 86% correctness and 94% completeness.
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1. Introduction

Constructing semantically-tagged 3D models of ur-
ban environments is a long-standing problem with ap-
plications in navigation, planning, social engineering,
and virtual tourism. In particular, semantic tagging and
modeling of roads is crucial to understanding the com-
plete structure of a city, since roads provide a contin-
uous surface spanning an entire city, segment the city
into blocks, and provide contextual cues for recogniz-
ing smaller objects (e.g., fire hydrants are usually a fixed
distance from a roadside). As such, accurate extraction
of roads is an important problem in GIS analysis, scene
segmentation, and object recognition.

Due to its importance, researchers have developed
methods to extract roads from several types of input
data, including satellite and aerial imagery, aerial LI-
DAR data, and terrestrial LIDAR scans.

For road extraction from satellite and aerial images,
a variety of methods have been proposed, using cues
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based mainly on color, monochromatic intensity and
texture patterns (Fortier et al., 1999; Mena, 2003). For
example, common algorithmic strategies include re-
gion growing (Amo et al., 2006; Bicego et al., 2003;
Hu et al., 2007; Mena and Malpica, 2005; Tesser and
Pavlidis, 2000), segmentation and clustering (Ferchichi
and Wang, 2005; Wan et al., 2007), machine learn-
ing (Butenuth et al., 2003; Yager and Sowmya, 2003),
multi-scale extraction and refinement (Baumgartner and
Hinz, 2000; Heipke et al., 1995; Mayer et al., 1998;
Steger, 1998), and active contours (Laptev et al., 2000;
Peng et al., 2008). These methods tend to work well
in rural environments, where color and intensity is rel-
atively distinctive and consistent within roads, and in
urban environments when assumptions can be made
about the structure of roads (e.g., a semi-regular grid
pattern (e.g., Hu et al., 2004; Youn and Bethel, 2004))
and/or a knowledge base and carefully tuned parame-
ters can be provided (e.g., Hinz, 2004). However, good
performance has not been achieved in general urban en-
vironments (Mayer et al., 2006).

A number of papers have addressed the problem of
road extraction from aerial LIDAR scans (ALS) (Al-
harthy and Bethel, 2003; Choi et al., 2007; Clode et al.,
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2007). In (Alharthy and Bethel, 2003) the points were
filtered by their intensity, proximity to a digital terrain
model(DTM) and then the network was extracted by
finding connected components. (Clode et al., 2007) use
a similar approach to select candidate road points. How-
ever, instead of using a connected component filter they
extract the road area by employing a phase coded disk
operator (Clode et al., 2004) and follow with joining and
intersecting the extracted roads. In (Choi et al., 2007),
road points were extracted by a series of circle buffers
clustering points by elevation and reflectance and merg-
ing clusters based on the maximum possible slope of the
road. This work has been extended to a parallel algo-
rithm by (Li et al., 2008). (Hatger and Brenner, 2003)
offer a method which does not rely on the intensity at
all - it extracts roads by planar approximations along the
lines of roads in an existing GIS map. (Oude Elberink
and Vosselman, 2006) fit a polygonal annotated map to
an ALS to assign proper third dimension to the objects,
modeling discontinuities in the elevation, followed by
surface reconstruction.

Other research groups have considered point clouds
from terrestrial LIDAR scans (TLS) acquired with a
sensor mounted on a vehicle (e.g., Chen et al., 2009;
Goulette et al., 2006; Jaakkola et al., 2008; Yu et al.,
2007). These methods achieve good results in some ur-
ban settings by leveraging temporal and spatial struc-
turedness of the data and knowledge of the position and
the angle of the scanner when it scans each point. Un-
fortunately, many point clouds, such as the one used in
our study, are provided without such structure or infor-
mation. Also, these methods provide limited means to
deal with frequent and variably large interruptions in
curb lines that occur in urban environments. Finally,
road extraction proceeds by considering local windows
in the direction of the scanning vehicle’s movement,
providing little global consistency in the case when a
description of an entire road network of a city is neces-
sary.

The goal of our work is to derive a method for ex-
traction of roads from a large scale dense point cloud
merged from multiple aerial and terrestrial source scans
of an urban environment. For example, consider the
point cloud shown in Fig. 1: it was collected by
Neptec with one airborne scanner (78 scans/second,
full waveform) and four car-mounted TITAN scanners
(50 scans/second, first return only), facing left, right,
forward-up, and forward-down as the car moved along
all roads in a 6 kilometer2 region of downtown Ottawa,
Canada (Neptec, 2009). Scans were merged at the time
of collection and output as a single point cloud contain-
ing 951 million points, each with a UTM position, inten-

sity, color and an identifier of the source scanner. The
total size of the data set is approximately 35GB. The
reported error in alignments between airborne and car-
mounted scans is 0.05 meters, and the reported vertical
accuracy is 0.04 meters.

Such a large, dense point cloud provides unique op-
portunities for road extraction. Since data is included
from aerial scanners, the point cloud provides large-
scale coverage of all roads in an entire city, making it
possible to employ algorithms that enforce global con-
sistency of extracted roads. Since data is also included
from terrestrial scanners, it provides fine-scale sampling
density and precision suitable for detection of curbs and
other small features of roads, and it provides coverage of
all roads, including multilevel intersections, overpasses,
bridges, and tunnels. This combination makes it possi-
ble to couple local and global road extraction criteria to
achieve good results in difficult urban settings.

However, there are many challenges. The points
from different scanners may be captured at different
times, in different weather conditions, under different
illumination, and with different sampling densities. The
scanline-order of points acquired from each scanner
may be discarded during the merging process (as is the
case for our data set). Misalignments and/or ghosting of
moving objects (e.g. pedestrians and cars) may appear
as point clouds are merged; and, there may be large oc-
clusions in the data set due to trees, cars, and other ur-
ban objects. Moreover, the sheer size of the data makes
it impossible to store all points in memory simultane-
ously. These challenges make it difficult to employ tra-
ditional algorithms directly.

In this paper, we describe a method for high preci-
sion (up to a curb) road extraction from a large scale
dense merged point cloud of an urban environment. The
key idea is to leverage both global properties of roads
(topology and smoothness) and local road features (curb
boundaries) to extract roads accurately and consistently.
In contrast to the previous methods, our approach deals
with very large point clouds that are not expected to of-
fer any information about the location and orientation of
the scanner, nor to be organized into scanlines or grids,
nor to be consistent in its color and intensity values or
sampling rate (as long as sampling is dense enough to
notice objects as small as a curb). Furthermore, our
approach treats any multilevel structure, including long
tunnels, as any other case, processing them in the same
pipeline. Our method separates the stage of a global
3D fitting from accurate local 2D fitting, each of the
stages working on a small subset of the larger dataset.
This enables us to keep entire relevant subsets in mem-
ory while processing an extremely large point cloud, as
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(a) 2D projection of the entire point cloud. (b) Screen shot of the point cloud.

Figure 1: Point cloud acquired with aerial and terrestrial LIDAR scanners covering a six kilometer2 region of downtown Ottawa.
(a) The image on the left shows a top-down view of the scanned area, while (b) the image on the right shows a perspective view of
one region (a road going under the building forming a tunnel)

.

well as to parallelize extraction routines for independent
streets. Within each subset, we employ ribbon snakes to
extract smooth road boundaries aligned with curbs. We
have implemented a prototype system and present qual-
itative and quantitative results of using active contours
with various curb detectors within the framework of our
approach on a large multisource point cloud of an urban
environment.

2. Method

Our method takes as input a point cloud and an ap-
proximate 2D map of a road network (e.g., as provided
by (OpenStreetMap, 2010)), and it produces a model of
the road boundaries along with a tag for every point in
the cloud indicating whether it is part of a road or not.
It is intended to work for road networks that can be rep-
resented as a connected set of smooth continuous sur-

faces of slowly changing width and elevation delimited
partially by elevation discontinuities (e.g., curbs), as are
commonly found in urban environments.

The pipeline of processing steps is depicted in Fig. 2.
We first project the given 2D map of the road network
onto the given 3D point cloud in a manner that preserves
the road network’s topology and ensures geometric con-
tinuity - creating a map spline. We then split the map
spline into independent parts, road patches, and extract
a subcloud of relevant points for each road patch. These
subclouds are small enough and can be processed inde-
pendently with an out-of-core framework that requires
small working sets. For each subcloud, we build a 2D
attractor map that estimates the locations of elevation
discontinuities. Then, we compute a ribbon snake for
each road patch by optimizing an active contour that
aims to maintain smoothness of its boundary while fit-
ting its boundary to likely predictions in the attractor
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map. Finally, the points in the respective subcloud that
fall inside the active contour are labeled as road points.
The following subsections describe the motivation and
implementation for each of these steps in detail.

2.1. Road Map Registration

The first step of our processing pipeline is to register
the input 2D map of the road network with the input 3D
point cloud. Typical maps acquired on-line (e.g., Open-
StreetMap, 2010) are provided as a graph, with nodes
representing road intersections (given as 2D locations)
and edges representing road patches (given as 2D poly-
lines), but without 3D elevations (Fig. 3). Since later
stages of our processing pipeline require 3D locations
for points on street maps, our goal in this step is to es-
timate elevations for every 2D point in the map by pro-
jection onto the 3D point cloud.

Figure 3: Open Street Map data provided as input to our
method (OpenStreetMap, 2010). Zoomed view of area high-
lighted with red rectangle appears on right. Red points are
intersections. Green points are polyline vertices. Blue lines
are roads.

While simply projecting 2D map points onto 3D
LIDAR points may seem simple at first glance, it is
difficult in cases where the LIDAR points are poorly
sampled, where roads cross over one another (e.g., at
bridges and tunnels), where there are obstacles over the
road (e.g., trees and cars), and/or where the map is in-
accurate (e.g., goes outside the road boundary). In these
cases, a naive projection onto the closest LIDAR points
will yield road maps with sharp elevation discontinu-
ities. Instead, we need a globally consistent and smooth
set of road elevations throughout the entire city.

Our approach is to optimize elevations of Cardinal
spline control vertices arranged in a network with 2D
locations and topology of the road network given in the
input map. We place a spline control vertex at the 2D

position of every intersection in the map and at 2D po-
sitions sampled regularly at 15 meter intervals along ev-
ery polyline of the connecting intersections in the in-
put map (Fig. 4). We then solve for the elevations (Z
coordinates) for these control vertices V to minimize
an error function E(V) providing the weighted sum of
squared distances between the elevations of points s on
the spline curve S and nearby LIDAR points N(s):

E(V) =
∑

s∈S (V)

(w(s)
∑

p∈N(s)

(sz − pz)2)

where V is the set of control vertices, s is a set of points
sampled at 1 meter intervals along the Cardinal spline
S defined by V , sz is the elevation of s, p is a LIDAR
point in the set of points N(s) within 15 cm of s in 2D,
w(s) is a weight computed as the inverse of the variance
of the elevations within N(s), and pz is the elevation of
p (Fig. 4).

Figure 4: Projecting a 2D map onto the 3D point cloud.

This approach fits a smooth spline curve to the LI-
DAR data, weighted to favor points with small eleva-
tion variance, and thus draws the curve to 3D LIDAR
points that are most clearly on the road. The resulting
elevations are guaranteed to be smooth, since the spline
curve is guaranteed to be C1 continuous at intersections
and C2 continuous everywhere else, with the expected
curvature determined by the spacing of control vertices
(15 meters). Since the control network is connected
throughout the entire city (control vertices at intersec-
tions are shared and therefore connect splines repre-
senting adjacent roads), and the elevations for all roads
are solved simultaneously, elevations are predicted cor-
rectly even in areas of occlusions and/or missing data,
as large-scale smoothness constraints guide the solution
to correct results in regions where data is locally imper-
fect.

After solving for the control vertices V , we snap the
elevation for each sample point s to that of the LIDAR
point closest to the spline curve position at s. Finally,
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Figure 2: Processing pipeline.

to correct minor discontinuities introduced in this step,
we finish by visiting each sample point s in order and
assigning its elevation to be that of the preceding sample
if its incline exceeds a conservative threshold (35% - the
incline of the world’s steepest road (NZ, 2005)).

In the end, we have a set of connected polylines with
3D points lying on the road surface. Fig. 5 shows some
results. To evaluate the quality of results of this step,
we look at how often a smooth projection onto the point
cloud was not possible, and how much of an incline
anomaly throughout the city these failure cases pro-
duced. To address the first question, we compare how
many map samples could not be smoothly projected
onto the point cloud within the maximum incline win-
dow. For a manually created map of Ottawa (described
in Section 3.4), there are only 11 samples that do not
fit the Ottawa point cloud smoothly, out of over 4 × 104

sample points in the input map. To evaluate the smooth-
ness of the final 3D map spline, we look at the average
and largest absolute incline of the resulting map splines.
Average inclines are very close to zero, which shows
that overall fitting of the map to the point cloud of a
rather flat region is successful. The maximum incline is
0.4, which means that among the 11 samples that do not
fit smoothly, the biggest jump is 40 cm vertically per 1
meter on a plane. We believe that this minor and infre-
quent issue can be explained by the map passing through
an object on the road, e.g. a car. Visual observations
also indicate good quality of fitting, e.g. Fig 5, where
map splines fit to correct road surfaces of the overpass,
and to both roadways of a dual roadway elevated bridge,

with one roadway densely covered from above.

2.2. Point Cloud Partitioning

The second step is to partition the point cloud into
“subclouds” that contain parts of the input data that can
be processed independently. This step is necessary be-
cause the entire point cloud is far larger than fits into
memory on most computers, and thus must be parti-
tioned into small “working sets” that can be processed
efficiently.

There are many ways in which a point cloud can be
partitioned into working sets. For example, previous
works break point clouds into spatial tiles arranged in a
regular grid and process each tile independently. How-
ever, that approach requires processing challenging road
topologies within each tile (since a tile can contain many
disconnected parts of the road network), and it can in-
troduce noticeable seams at tile boundaries if tiles are
processed independently. Instead, we aim for a parti-
tioning that yields simple road topologies within each
working set and whose results can be stitched together
with few seams.

Our approach is to partition the point cloud into inde-
pendent working sets based on the topology and geom-
etry of the input map. Specifically, for spline curve S
representing a road patch connecting two intersections
of the given road network, we extract a subcloud for S
with the following steps:

1. For each sample s in S (spaced at 1 meter inter-
vals), we estimate a local support plane P(s) by

5



(a) Overpassing roads. (b) Bridge map fitting.

Figure 5: Map fitting and extraction results. Map splines projected onto the cloud are shown as red lines. These images illustrate
a correct fitting of the map spline to the point cloud in a case of roads crossing in 2D but not in 3D, and on a partially covered
elevated dual roadway bridge.

fitting a plane to LIDAR points within a 4 meter
radius of s.

2. For each spline sample s, we extract a working set
of points WS (s) from the LIDAR point cloud that
lie within a distance of 0.5 meters from the sup-
port plane P(s) and within a 22 meter radius of s
(where 22 meters is 6 times the standard lane width
in Canada: 3.66 meters (RTAC, 1986)).

3. We merge working sets of all the spline samples
into one set of LIDAR points to form a subcloud
for S .

This approach was chosen for several reasons. First,
roads exhibit rapid changes in their structure (width,
curvature) at intersections, and thus intersections are
natural places to partition road networks into indepen-
dent patches with large coherence within each patch
and manageable seams at patch boundaries. Second,
LIDAR points on roads that cross over one another
(bridges, tunnels, etc.) are separated by this process
into separate subclouds, preventing them from interfer-
ing with each other. Finally, the subcloud for any given
road patch is generally small, since it contains points
only near the road elevation within a small radius of the
road patch centerline (empirically, the size of each road
patch is on the order of ×103 to ×105 times smaller than
the size of the entire point cloud), and thus it provides an
appropriate granularity for memory management during
road extraction.

Our method for finding points in the subcloud is ac-
celerated by an out-of-core spatial indexing structure
that stores points on disk in contiguous blocks based on
cells of a regular 2D grid. This structure enables rapid
retrieval of points within a given 2D region of the point
cloud. Even with this indexing, for the Ottawa data set,

the subcloud extraction step takes several hours, most of
which is spent reading data from disk.

An example result of the subcloud extraction process
is shown in Fig. 6. Points within the subcloud for one
road patch are shown in white and blue, while others
are shown in black – note that obstacles sitting above
the road are excluded from the subcloud.

2.3. Attractor Map Construction
The third step is to analyze the LIDAR points within

the subcloud for each road patch and construct an at-
tractor map, a(x, y), to be used for fitting an active con-
tour surrounding the road area within the patch in the
next step. The ideal attractor map has a large value at
road boundaries and small values everywhere else, so
that the active contour will snap to road boundaries pre-
cisely.

In urban environments, roads usually have constraints
on their widths and have boundaries recognizable by el-
evation discontinuities (e.g., curbs). Thus, our attractor
map has two terms, an extent constraint, e(x, y), and a
curb detector, c(x, y):

a(x, y) = αattr · e(x, y) + βattr · c(x, y)

The extent constraint, e(x, y), penalizes road bound-
aries outside the expected range of distances from the
input map spline. In our current implementation, we set
e(x, y) to zero if (x, y) is less than one lane width (3.66
meters in Canada (RTAC, 1986)) or greater than 6 lane
widths from the closest point on the map road spline,
and 1 otherwise. This term will penalize road predic-
tions that are too thin or wide.

The curb detector, c(x, y), provides an estimate for
probability that a curb can be found at (x, y). To com-
pute it, we compute a curb detector c(p) at every point
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Figure 6: Subcloud extracted for a road patch. The patch centerline is shown as a red line. Points belonging to the subcloud are
shown in white and blue, other points are shown in black for contrast. Low resolution 2D projection of the cloud in original color
is provided for context.

p in the subcloud and then aggregate them by averaging
within regularly sampled 2D grid cells. Specifically, for
every point p in the road patch subcloud, we estimate a
value c(p) by analyzing the normal direction and eleva-
tion variation within a local neighborhood N(p) of p as
follows:

c(p) = f (∆h) · (1 − (~np · ~n2
s) (1)

where ∆h is a function of the local elevation variance of
points in N(p), ~np is a normal estimated by at the point
p based on principal component analysis of N(p), ~ns is
a normal of the support plane estimated at the nearest
road patch spline point, and N(p) is a set of at least 20
points closest to p.

In this work, we consider three possible definitions of
f (∆h). The first, fn, is simply a constant function (ele-
vation variation is not considered in the attractor map).
The second, fnS tep, is a step function, with value 1 if the
elevation range lies within preset bounds determined by
road construction standards (4 to 8 inches in (Seattle,
2010)). The third, fnExp, is a continuous function that
is largest when ∆h = ∆havg and smaller elsewhere, with
σ∆hmax defining how narrow the window for the eleva-
tion variation should be before the c(p) becomes negli-
gibly small. Following the same road construction stan-
dards, we use a 15 cm average and a 5 cm deviation to
ensure that the standard-compliant curbs fall within the

one standard deviation.

fn(∆h) = 1 (2)

fnS tep(∆h) =

{
1,∆hmin ≤ ∆h ≤ ∆hmax

0, otherwise (3)

fnExp(∆h) = exp

−
(
∆h − ∆havg

)2

2σ2
∆hmax

 (4)

Figure 7 shows visualizations of the attractor maps
computed with each of these three f (∆h) functions (an

uses fn, and so on). an identifies curb lines on the
map. However, it fires on any remotely vertical group of
points and thus generates a lot of noise in the attractor
map. The anS tep measure filters out much of the noise,
mostly firing on curbs and similar small objects. How-
ever, it uses a step threshold and any road delimiter that
is too small or too tall disappears from the map. This
results in increased gaps in the curb line. anExp offers a
trade-off between the former two by still capturing but
downweighting deviations in the curb’s height.

2.4. Road Boundary Estimation
The third step is to estimate the boundaries of the

road from the 3D curve representing the road patch cen-
terline (Sec. 2.1) and the attractor map representing the
expected locations of curbs (Sec. 2.3).
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(a) an (b) anS tep (c) anExp

Figure 7: Visualization of attractor maps for one example road segment. Darker pixels indicate larger values. The non-white region
represents area where e(x, y) , 0.

This problem is challenging for several reasons. First,
the point cloud may have noisy and missing data (e.g.,
due to occlusions). Second, the given road patch “cen-
terline” may not be located at or even near the cen-
ter of the road (e.g., due to inaccuracies in the input
map). Third, there can be numerous obstacles (e.g.,
cars) and other urban features (e.g., barriers) on the road
that could provide high values in the attractor map and
thus be confused with road boundaries. Finally, there
are many places where road boundaries are not dis-
tinguishable in the attractor map (e.g., at driveways or
when the shoulder is gravel), which makes finding the
road boundary difficult without simultaneous analysis
of large regions. As a result, simple region growing
algorithms that threshold the attractor map and “flood
fill” will produce erroneous results in all but the sim-
plest cases.

Our approach is to extract road boundaries by opti-
mization of a “ribbon snake” (Fua, 1997), a parametric
contour, v(s) = (x(s),w(s)), described by the position of
its centerline x(s) and its width w(s) as a function of arc
length s. The ribbon snake is fit to a potential by opti-
mizing its centerline position and width to minimize an
energy functional with internal smoothness and external
data approximation terms.

This ribbon snake representation was chosen because
it provides a parameterization of the road boundary that
allows efficient formulation of an error functional mea-
suring how well the predicted road boundary fits to
the given input data. Specifically, our error functional,
Esnake, includes an internal term favoring smoothness of

the road boundary and an external term favoring align-
ment of the road boundary with high values in the at-
tractor map:

Esnake =

∫ 1

0
κsnakeEinternal(v(s)) + γsnakeEexternal(v(s))ds

(5)
The internal smoothness energy term, Einternal, mea-

sures how similar the shape of the ribbon centerline is
to the input road patch centerline. To facilitate compu-
tation of this term, the ribbon centerline is represented
based on t(s), a function of arc-length s representing
the distance from ribbon snake centerline to the input
road patch curve in the direction locally perpendicular
to the input road patch curve (~nt(s)). This formulation
enables us to enforce the snake’s internal energy to de-
pend on the initial road patch curve rather than penaliz-
ing the initial curvedness, if any. It also facilitates mod-
eling global shifts of the ribbon centerline, which is im-
portant because the input road patch centerline might
be significantly off-center (due to inaccuracies in the
input map). To enable the snake to translate globally
without penalty we introduce tavg that we compute as
an average of t(s) over the whole snake, and we actu-
ally represent the snake as v(s) = (u(s),w(s)), where
u(s) = (t(s) − tavg). We compute the internal energy
term as:

Einternal(v(s)) = (αsnake|vs(s)|2 + βsnake|vss(s)|2)/2 (6)

The external data approximation energy term,
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Eexternal, measures how well the ribbon snake boundary
aligns with the attractor map:

Eexternal(v(s)) = −a(x(v(s)), y(v(s)))

In order to enforce the smoothness of the road’s width
and center, without encouraging shrinkage of its area,
we set the rigidity parameter of the snake (βsnake) well
above other parameters, and keep the elasticity param-
eter (αsnake) very small. Parameters γsnake and κsnake,
which control the trade-off between smoothness and ap-
proximation terms of the snake’s energy function, were
chosen experimentally (γsnake = 10 and κsnake = 1).

As in the original snake paper (Kass et al., 1988), we
optimize the ribbon snake by iteratively refining com-
ponents of v(s) using the following matrix equation:

vt = (A + γsnakeI)−1(γvt−1(s) − ft−1(s))

where, t and (t − 1) indices refer to respective val-
ues at current and previous iterations of the solution,
A = αsnakevss(s)+βsnakevssss(s) is a diagonal matrix rep-
resentation of the derivative of the Einternal(vt−1(s)), and
f(s) is derived from Eexternal. Namely, for our snake rep-
resentation f(s) = (( ~f · ~nt(s))l + ( ~f · ~nt(s))r, ( ~f · ~nt(s))l −

( ~f · ~nt(s))r), where ~f = ~f (x, y) is a ”force” vector that
attracts the snake towards the minima of Eexternal taken
at left and right points of the ribbon snake (indices l and
r, respectively). To compute ~f (x, y) and avoid the ne-
cessity of initializing the snake near the curb lines, sim-
ilarly to (Marikhu et al., 2007), we use an improved ap-
proach proposed in (Xu and Prince, 1997) where the au-
thors introduced the concept of the gradient vector flow
(GVF) to enable attractors to propagate their influence
further into the image and increase the capture range
of an active contour. To do this ~f (x, y) is represented
as (u(x, y), v(x, y)) and its components are computed by
minimizing the following error function:

EGVF =

∫ ∫
µ(u2

x + u2
y + v2

x + v2
y) + |∇P|2|f − ∇P|2dxdy

(7)
where P(x, y) = Eexternal(x, y). Computation of GVF for
each attractor map needs to be done only once - before
fitting the snake.

In Fig. 8 we illustrate the process on an example of
the road patch located in the point cloud shown in orig-
inal color in Fig. 8a and by elevation encoded in color
in Fig. 8b. Fig. 8c shows the attractor map a(x, y) built
from the subcloud of the given road patch. The GVF
field obtained from a(x, y) is shown in Fig. 8d with the
direction of ~f (x, y) at every point encoded by hue: red
meaning ~f (x, y) pointing right, blue - down, cyan - left,

and green - up. Fig. 8e shows the initial position of the
snake along the map spline position for the road patch.
Fig. 8f shows the final result of fitting the snake, which
smoothly and accurately fits the curb lines where they
exist with only occasional and very small smooth pro-
trusions outside where there is no curb.

2.5. Semantic Tagging

The final step of our pipeline is to produce a set of
points to be tagged as being on a road. This step is quite
easy once the ribbon snake for every road patch has been
computed. For each road patch, we simply identify the
set of points within the patch’s subcloud whose projec-
tion onto the XY plane falls within the region delimited
by the ribbon snake for that patch. We then unite the
sets of points found for all road patches to produce the
final output.

Since road patches are processed independently, this
process could potentially miss points and/or introduce
discontinuities at road intersections. However, in prac-
tice, since patch subclouds extend into the middle of
intersections, the points tagged as road for adjacent
patches almost always overlap, and so points are rarely
missed. Also, since patches overlap at intersections, the
precise placement of the road boundary for each patch
at each intersection is not as important as the boundary
of their union, and thus the final output almost always
provides continuous road boundaries, even at intersec-
tions.

3. Results and Discussion

In order to test how well the proposed method detects
roads in a large LIDAR point cloud, we ran a series of
experiments with the methods described in the previous
sections on the Ottawa data set described in the intro-
duction. Again, this data set comprises 951 million LI-
DAR points covering several hundred road patches in a
downtown area.

In addition to describing accuracy and timing results
for our method, we report the results of experiments
with different input data (road maps) and different al-
gorithmic design decisions (curb detectors). These ex-
periments provide an indication of the sensitivity of our
method to the varying parameters. Unless otherwise
specified, parameters were set to the values shown in
Tab. 1 chosen either to match standards of road con-
struction or empirically.

On average, each experiment (beginning to end com-
putation for the entire point cloud) took approximately
24 hours using a cluster machine of 20 2.2GHz Opteron
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(a) Input point cloud. (b) Color-coded by elevation. (c) Attractor map.

(d) Hue-coded GVF map. (e) Snake initialization. (f) Final snake.

Figure 8: Snake fitting of a single road patch. (a) - road patch (view from above) in the original color, (b) - same view with points
color-coded by their elevations: from green (smallest) to red (highest), (c) - attractor map formed from the subcloud around the
road patch (darker regions are stronger attractors), (d) - GVF map with the vector direction encoded with the hue, (e) - snake is
initialized around the map spline with a minimal width of 1 lane, (f) - final result of fitting the snake to the attractor map.

Dual-Core processors with 8GB of memory and 11
2.3GHz Opteron Quad-Core processors with 16GB of
memory.

3.1. Ground Truth and Evaluation Metrics

To evaluate the accuracy of road detection results in
each experiment, we compare them to a manually cre-
ated ground truth representation of the roads, gt. This
ground truth is represented as a 2D grid specifies for ev-
ery 0.5 x 0.5 meter cell a value of ”1” if any road in the
city overlaps the cell (shown in green and red in Fig. 9),
and ”0” otherwise. It was created by manual marking of
an image overlaid on the point cloud using an interactive
tool.

To evaluate how well our road prediction matches this
ground truth data set, we produce a predicted grid, pred,
by projecting all LIDAR points in the road prediction
output into a 2D grid and then setting to ”1” the value
of every grid cell containing at least one point from the

predicted set and all other grid cells to ”0.” Then, we
compute the following accuracy metrics by comparing
the two grids:

• Correctness (precision): p = T P/(T P + FP)

• Completeness (recall): r = T P/(T P + FN)

• Quality: q = T P/(T P + FP + FN)

• Average spill size:
s =

∑
‖roadsidepred‖

d(roadsidegt, roadsidepred)/‖roadsidegt‖

• Prevailing spill direction: d = (FP − FN)/(FP +

FN)

where T P is the number of true positives
(gt(x,y)=pred(x,y)=1), T N is the number of true
negatives (gt(x,y)=pred(x,y)=0), FP is the number
of false positives (gt(x,y)=0, pred(x,y)=1), FN is the
number of false negatives (gt(x,y)=1, pred(x,y)=0), and
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Input road map Manual
Attractor map anExp

3D spline sampling rate every 1 m
Control vertex sampling rate every 15 m
Fitting data support cylinder radius 15 cm
Maximum road incline window ±35%
Maximum expected road width 10 lanes
Minimum expected lane width 1 lane
Subcloud extraction vertical window 1 m
Subcloud extraction support radius 22 m
αattr 0.2
βattr 1
∆havg 15 cm
σ∆hmax 5 cm
∆hmin 10 cm
∆hmax 20 cm
αsnake 0.01
βsnake 100
γsnake 10
κsnake 1

Table 1: Summary of the parameters and their values used in
our experiments.

roadsidegt and roadsidepred are pixels in the ground
truth and prediction, respectively, that are on the
boundary of the road areas. The nominator of s is a sum
of unsigned distances from each pixel in roadsidepred

to the closest pixel in roadsidegt, and the denominator
is the size of the roadsidegt.

The first three metrics (p, r, and q) are standard for
evaluation of the road extraction algorithms (e.g., Clode
et al., 2007; Harvey, 1999; Heipke et al., 1997; Mayer
et al., 2006; Wiedemann, 2003). The latter two are new
in this paper. First, s, is the average distance of the road-
side in the predicted extraction from the roadside in the
ground truth, indicating how far, on average, from the
actual curb line the predicted road area ended. Simply
put, it describes how deep of a spill we can expect per
1 meter of the reference road, allowing us to make con-
clusions about the shape of the spills: given same T P,
FP, FN, and T N whether the spills are long and shal-
low or deep and short. Second, d, shows which direc-
tion of the spills is prevailing - inside the ground truth
area or outside. The direction of spills is indicative of
the susceptibility of the method to terminating the road
growth too early or too late, depending on the ability of
our method to accurately locate the curbs. If d is neg-
ative, snakes are prone to early growth termination due
to spurious snake attractors, and vice versa - when d
is positive, curb detector does not create strong enough

attractors to hold the snakes from growing outside the
curb line.

These evaluation methods leverage marked 2D grids
rather than marked 3D points for reasons of practicality
(manually labeling 3D points is much more difficult).
Although they do not precisely characterize predictions
of 3D structures (bridges, tunnels, and overpasses) and
they introduce discretization errors (due to the grid), we
find that they provide a good overall evaluation of the
methods and are quite representative of results observed
qualitatively through visual observation.

3.2. Results
Evaluation of the results of our method on the Ot-

tawa LIDAR point cloud are presented visually in Fig. 9.
The color coding depicts true positives in green, false
negatives in red, false positives in magenta, and true
negatives in cyan. Most of the area is cyan and green
indicating that correct classification prevails. Detailed
observation shows that our method succeeds in most
cases, making minor errors in cases where curbs are not
well-defined. In particular, it succeeds in many difficult
cases where roads have gaps in the curb line. For ex-
ample, Fig. 9c shows a very complicated intersection,
where all 15 corners are level with the ground for cross-
walks. It also succeeds in cases where roads are part of
a multilevel environment. For example, Fig. 9b shows
a properly extracted open single-roadway bridge, and
Fig. 9a shows a long tunnel underneath a building ex-
tracted from the area shown in Fig. 1. These examples
would require special treatment using previous meth-
ods.

While our algorithm performs well for most roads
throughout the city, there are cases where it fails. In
particular, areas where several snakes meet are often
jagged and abrupt because there is no inter-snake in-
teraction in our model. Although snakes that meet at an
intersection cover most of it, each of their area of in-
terest ends midway into the intersection, where the lack
of curbs enables snakes to behave in a manner inconsis-
tent with one another. Another source of error with re-
spect to the reference is spilling through gaps in curbs.
Although we demand high rigidity from the snake, if
we have a long interruption in the curb line, a nearby
curb of another road can provide enough attraction for a
snake to smoothly bend outside the road area or even to
spill completely over a thin roadway separator. Unless
there is a much longer consistent curb line around the
gap to support the line, these spills can become large,
in extreme cases of closely located gaps, even allow-
ing the snake contour to bypass entire curb segments
between the gaps. An example of poor extraction with
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Figure 9: Classification error map.
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these cases is in Fig. 9d. In Fig. 9e you can see an-
other failure case - here the road is being reconstructed
and moved to follow an alternate geometry; hence, the
features of the road are poorly defined and inconsistent
throughout this area causing an incorrect solution.

Overall, our algorithm achieves 86.3% precision,
94.0% recall, 81.8% quality, 2.02 average spill size, and
42.2 prevailing spill direction for the Ottawa data set.
We believe that this performance is suitable for many
applications that leverage detected roads as contextual
cues for object recognition and urban planning.

3.3. Attractor Map Comparison
In this subsection, we study how the construction of

the attractor map affects the overall road detection re-
sults. In this study, we ran three experiments, keeping
all parameters the same (as in Tab. 1) except the attrac-
tor map, for which we tested an (Eq. 2), anS tep (Eq. 3),
and anExp (Eq. 4).

A comparison of the results is shown in Tab. 2. an

provides the highest precision, yet the lowest recall and
quality, and negative d, suggesting that snake fitting of-
ten terminates before reaching the actual curb. The aver-
age spill size for an is also the largest. The combination
of a small negative d, lowest quality, and a large s de-
scribe the predominantly inward deep spills. anS tep has
the opposite features - lowest precision, highest recall,
high positive spill direction. This proves the qualitative
observation that anS tep filters out too much data, provid-
ing large windows for the snake to leak outside of the
road’s area. Smaller s with a much larger absolute value
of d suggests that the spills are more undulate. This also
makes sense from the perspective of the snake formal-
ism: smaller values on the attractor map create weaker
input from the approximation term of the snake’s en-
ergy and the smoothness enforcement dominates. When
using anExp, we can see that although its precision and
recall are marginally smaller than the others, it has the
highest quality, suggesting that it finds the best balance
between early and late terminations. Positive d suggests
that the spills are predominantly outward, and the small-
est of three s together with the highest quality shows
that the spills are shallow and the predicted curb lines in
this case are closer to the ground truth. These observa-
tions suggest that anExp is the most robust curb detector
for this data set.

3.4. Input Map Comparison
In this last subsection, we study how the choice of in-

put map affects the road detection results. In this study,
we ran two experiments, each using one of the following
two road maps as input:

Metric an anS tep anExp

p (%) 88.7 83.2 86.3
r (%) 86.2 95.7 94.0
q (%) 77.7 80.2 81.8

s 2.62 2.26 2.02
d (%) -11.6 63.3 42.2

Table 2: Results of using different curb detectors. Best values
are given in bold.

• Manual: a map created specifically for the Ot-
tawa point cloud using an interactive tool to select
approximate 2D positions of intersections and 2D
polylines near the centerlines of road patches. The
map yields 383 road patches ranging in length from
5.5 to 627 meters, averaging at 107 meters.

• OpenStreetMap: a map downloaded from
www.openstreetmap.org. This map is freely avail-
able on-line (Fig. 3). This map yields 688 road
patches ranging in length from 1.3 to 1563 meters,
averaging at 132 meters.

Table 3 shows the evaluation measures for road pre-
dictions produced by our method with these two maps.
The results achieved with OpenStreetMap are lower
than the ones with the Manual map by 9% in correct-
ness, 13% in completeness, 19% in quality, and more
than twice as large in average spill size. The reasons for
these differences are due mainly to extra, missing, and
misplaced roads in the OpenStreetMap data. For exam-
ple in Fig. 10a, an entire street is marked with red (FN),
indicating that the street is not present in the map at all.
Also some curb-separated dual roadway roads are only
half-extracted due to the map indicating only one of the
roadways (Fig. 10b). This results in the drop in com-
pleteness. The drop in correctness comes from the parts
of the map that do not follow the path of the roads in the
point cloud: the road in the subcloud has been extracted
regardless and it greatly contributed to both FP and FN
areas in the classification error map - see Fig. 10c for an
example.

Metric Manual Map OpenStreetMap
p (%) 86.3 78.4
r (%) 94.0 81.3
q (%) 81.8 66.4

s 2.02 4.64
d (%) 42.2 8.2

Table 3: Results with manually created and OpenStreetMap
maps.
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These results indicate that our current implementa-
tion is sensitive to the quality of the map used. How-
ever, we believe it would be possible to extend our ap-
proach to overcome errors in the map by detecting roads
automatically and/or optimizing their positions directly
from the point cloud. This is a topic for future work.

4. Conclusion

We have described an approach for a map guided
extraction of roads from a large dense merged point
cloud made of real life urban environment scans. By
partitioning the problem into patches, using a curb de-
tector to encode elevation discontinuities, and fitting
ribbon snakes to model road boundaries, we combine
both small-scale (curb detectors) and large-scale (snake
smoothness) cues to extract roads more robustly than
either alone. Our method is able to deal with all kinds
of roads, including bridges, tunnels, and multilevel in-
tersections. It is parallelizable, does not rely on point
cloud’s color, texture or intensity properties, and de-
mands only for the cloud to be sampled densely enough
and the magnitude of noise to be low enough for the
curb-like features to be noticeable. Results of experi-
ments on a point cloud with almost a billion points sug-
gest that the system is scalable and provides fairly ac-
curate results for difficult cases encountered in urban
environments.

This method has several limitation that suggest for
the following directions of future work. Among the
main directions we see the need to decrease the sensi-
tivity of our approach to the incorrect map data or to
completely extract the road network directly from the
point cloud. A set of verification steps will benefit the
robustness of our approach, e.g. preventing road extrac-
tion at a poorly fitted 3D spline area. Also, striving to
achieve scalability by treating each road patch indepen-
dently, our method does not explicitly deal with road in-
tersections where subclouds overlap. Special treatment
is necessary for the intersection areas extraction due to
their possible topological complexity, especially in ur-
ban environments. This can be achieved in the future
by allowing the snakes to interact at the overlapping ar-
eas, among the possible solutions we see using ziplock
snakes (Neuenschwander et al., 1997) in the overlap ar-
eas or explicit modeling of the intersections in the man-
ner it is done in (Mayer et al., 1998, Sec.4.3). Global
fitting of a network of snakes to the entire point cloud
may yield better results, but may also be extremely com-
putationally expensive. Another future work direction is
the cross-data portability of our approach. The applica-
bility of our method to data collected from other cities

and countries as well as possibility of extension to rural
environments is an interesting direction for future inves-
tigation. Finally, the running time to process the entire
city can be decreased by optimizing the implementation.
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