
Line Drawings from Volume Data

Michael Burns1 Janek Klawe1 Szymon Rusinkiewicz1 Adam Finkelstein1 Doug DeCarlo2

1Princeton University 2Rutgers University

Abstract

Renderings of volumetric data have become an important data anal-
ysis tool for applications ranging from medicine to scientific sim-
ulation. We propose a volumetric drawing system that directly ex-
tracts sparse linear features, such as silhouettes and suggestive con-
tours, using a temporally coherent seed-and-traverse framework.
In contrast to previous methods based on isosurfaces or nonrefrac-
tive transparency, producing these drawings requires examining an
asymptotically smaller subset of the data, leading to efficiency on
large data sets. In addition, the resulting imagery is often more
comprehensible than standard rendering styles, since it focuses at-
tention on important features in the data. We test our algorithms on
datasets up to 5123 , demonstrating interactive extraction and ren-
dering of line drawings in a variety of drawing styles.

Keywords: visualization, volume, isosurface, NPR, silhouettes,
suggestive contours

1 Introduction

Volumetric data sets are widely used in scientific and medical appli-
cations. They can arise both from scans of real-world phenomena
(such as a CT or MRI scan of the brain) and from simulation (for
example, fluid flow near an airplane engine intake). As scanning
hardware and simulation algorithms have become more sophisti-
cated, the size of these data sets has grown, pushing the limits of
computing resources and taxing the ability of scientists to under-
stand them. Effective visualization tools must therefore be both
efficient on large data and comprehensible for the user, and visual-
ization research has focused on developing techniques that address
both of these criteria.

There are two major classes of rendering algorithms for volume
data: those that render the volume itself (with nonrefractive trans-
parency), and others that treat the volumetric data as an implicit
function and render an isosurface. This distinction has implications
on both efficiency and comprehensibility. In particular, since an
isosurface is a two-dimensional manifold embedded in the three-
dimensional space of the data, its size in bandlimited∗ datasets
grows asymptotically more slowly than the size of the volume it-
self. Isosurface extraction algorithms can take advantage of this
sparseness to achieve greater efficiency than is possible with meth-
ods that must visit each voxel [van Kreveld et al. 2004]. In addition,
by hiding the clutter of multiple overlapping layers of data, isosur-
face renderings can be easier to understand and interpret.

Motivated by the above discussion, as well as developments in
non-photorealistic line drawing algorithms for surfaces, we propose

∗By “bandlimited” we mean that the isosurface complexity does not

grow with the size of the dataset; the same structures appear at higher

resolution (albeit with greater fidelity).

Figure 1: Two line drawings of isosurfaces extracted directly from
a 5122 × 256 voxel grid. Without hidden surface removal, the left
drawing renders at interactive frame rates on a laptop.

a further dimensionality reduction in volume rendering: our system
directly extracts and renders linear features that lie on isosurfaces
within the volume. Thus, we exploit not only the sparseness of
surfaces within the volume, but also the sparseness of lines on a
surface. We argue that this both reduces the amount of data that
must be examined while rendering a frame (to a one-dimensional
subspace of the volume) and leads to greater visual clarity, while
conveying the same information as traditional shaded isosurface
renderings. We note that the benefits of emphasizing linear features
such as ridges and valleys or silhouettes in traditional volume
renderings have been demonstrated by a number of researchers,
e.g. [Ebert and Rheingans 2000; Interrante et al. 1995; Lu et al.
2003; Lum and Ma 2002; Nagy et al. 2002; Svakhine and Ebert
2003]. Our work carries this further by proposing a framework in
which such lines are the fundamental rendering primitives.

We demonstrate a system that implements a volumetric ren-
dering framework based on lines (Figure 1). Our system uses a
randomized, temporally coherent seed-and-traverse algorithm in-
spired by one originally developed for silhouette extraction from
meshes [Markosian et al. 1997]. Several types of lines are sup-
ported (Figure 2), including intersections with cutting planes, oc-
cluding contours (i.e., interior and exterior silhouettes), and sug-
gestive contours, which are features recently introduced by De-
Carlo et al. [2003] that help convey shape. Comprehensibility may

Visible Visible and Contours and Intersections
Contours hidden suggestive with

contours contours cutting planes

Figure 2: Types of lines supported by our system.

be further improved by choosing drawing styles based on factors
such as visibility, and the selected isovalue may be placed in context
by simultaneously drawing lines associated with other isovalues.
By selecting which features to draw, we provide a flexible range of
trade-offs between rendering quality and interactivity. At its most
basic settings, our system achieves interactive rates on commodity
hardware for data sets of roughly 5123 samples, while placing few
demands on the graphics card (which could be utilized to provide
further stylization or to simultaneously display an extracted mesh).

2 Related work

As this paper focuses on rendering isosurfaces, we omit discus-
sion of work on volume rendering using transfer functions, except
where it involves non-photorealistic techniques (as discussed be-
low). Dealing with the huge amount of data associated with a grid
in 3D is a central challenge in rendering from volume data, and
therefore most visualization techniques are not designed for interac-
tive frame rates. However, several general strategies may be applied
for accelerated extraction and rendering of isosurfaces. First, re-
searchers have developed methods for extracting isosurfaces with-
out traversing the entire volume, for example seed-and-traverse
methods (e.g. [van Kreveld et al. 2004]) and hierarchical methods
(e.g. [Cignoni et al. 1997]). Such algorithms exploit the property
that the isosurface is typically sparse in the volume; our method
also enjoys this property, but is further enhanced by the fact that the
feature lines we draw are sparse on the isosurface. Second, view-
dependent methods avoid drawing invisible portions of the isosur-
face, exploiting the fact that for some surfaces depth complexity
can be high, and only the front layer needs to be drawn [Parker et al.
1998; Livnat et al. 1996]. Our algorithms are also view-dependent
because of the nature of the features being drawn, but do not ex-
ploit this property for acceleration because computing visibility is
expensive (Section 4.2). Finally, the stochastic method for search-
ing the volume for isosurface feature lines described in Section 3.4
has a property enjoyed by previous methods [Liu et al. 2002; Parker
et al. 1998] – the picture may not be 100% “correct” when the user
first turns the camera or dials the isosurface threshold to a particu-
lar value; however, the response rate is interactive, and the “correct”
picture is guaranteed to resolve soon thereafter.

The other aspect of rendering volumetric data addressed by this
paper is comprehensibility, obviously a critical quality of effective
scientific visualization. Researchers have applied various principles
from non-photorealistic rendering (NPR) techniques to make ren-
derings from grid data more effective. Kirby et al. [1999] showed
that different forms of scalar and vector data organized in a 2D
grid may be displayed simultaneously by adapting techniques from
painting. For 3D data sets, researchers have created illustrations in
the styles of pen and ink illustration [Dong et al. 2003; Treavett and
Chen 2000], hatching and toon shading [Nagy et al. 2002], and stip-
ple drawings [Lu et al. 2003] that can effectively convey volumetric
data. Perhaps most similar to this work are the efforts for empha-

sizing linear features such as object boundaries by explicitly draw-
ing or darkening silhouettes or by drawing “halos” to convey depth
ordering (e.g, [Interrante and Grosch 1998; Ebert and Rheingans
2000; Csébfalvi et al. 2001; Lum and Ma 2002; Nagy et al. 2002;
Svakhine and Ebert 2003; Kindlmann et al. 2003]). Our work also
falls into the line of research of bringing NPR techniques to visual-
ization, though the visual effect – line drawings of isosurfaces – is
quite different than that of previous efforts, with a few exceptions.

Bremer and Hughes [1998] use a randomized algorithm simi-
lar to ours to render silhouettes from analytic implicit functions.
Our technique, in contrast, operates on regularly-sampled volumet-
ric data, and uses a voxel-based “marching lines” technique, as op-
posed to numerical integration, to trace contours.

Schein and Elber [2004] extract high-quality silhouettes from
volumetric data at non-interactive frame rates by modeling the
data with B-spline functions, using a lengthy preprocess for faster
rendering. In contrast, our method renders high-quality contours at
interactive frame rates without any preprocess.

Nagy and Klein [2004] render surface contours from volumes
using modern programmable graphics hardware and the traditional
volume rendering pipeline. As a result, volumes must be down-
loaded to the graphics card memory and rendering time is highly
dependent on output resolution. Our approach, in contrast, gener-
ates resolution-independent line geometry from the volume in main
memory, allowing for interactive rendering of very high-resolution
images of large volumes.

3 Fast Line Extraction

This section describes how to extract sparse linear features from
volumetric datasets. Although we make the discussion specific by
focusing on occluding contours (interior and exterior silhouettes),
the techniques we develop are general. Their applications to
different line types are described in Section 4.1.

Our main algorithmic challenge is achieving extraction of lines
in time proportional to the size of the extracted features (i.e.,
output sensitivity). While it is possible to design pathological
datasets of size n× n× n that produce isosurfaces of size O(n3)
with silhouettes also of size O(n3) (for example a Peano curve
in 3D), these shapes are not characteristic of typical datasets that
one would want to visualize. In practice, isosurfaces describing
a particular bandlimited shape represented by a volume of size n3

will have size O(n2), at least at the isovalues one typically wishes
to visualize. Furthermore, the contours of those isosurfaces will
have size O(n). Markosian et al. [1997] effectively argue for the
latter statement by showing that silhouettes of a shape have size
proportional to the square root of the number of faces representing
that shape. Their argument might also be adapted to address the
first claim (about the size of the isosurface), although it would be
complicated by the nature of the surface extracted by the marching
cubes algorithm. Nonetheless, these claims are borne out by our
experiments, in particular the graph in Figure 7.

3.1 Contours in Volumes

Our input data φ(i, j,k) is a 3D matrix of real-numbered data
values, positioned at the nodes of a regularly spaced lattice. We
begin by considering the task of rendering contours on isosurfaces
of φ . Recall that an isosurface F can be defined as the zero-set of
the function

f (i, j,k) = φ(i, j,k)− τ, (1)

where τ is a threshold within the range of the data values. This
equation f = 0 implicitly defines a 2D surface in 3D space.

Contours on a continuous surface are those locations where the
surface normal is perpendicular to the view. That is, they are

(a) (b)

(c) (d)

Figure 3: Extracting silhouettes. (a) Isosurface F in red traverses
three neighboring voxels. (b) Contour surface C is blue. (c) F and
C intersect in a curve, which can be traced through the volume (d).

locations at which n · v = 0, where n is the surface normal and v is
the view vector (i.e., a unit vector from a point on the surface to the
camera). In our application of volume rendering, we could use this
definition directly by first extracting an isosurface at some threshold
τ , computing the surface normal as n = −∇φ , and extracting the
contour. Alternatively, we can consider the set of contours on all
possible isosurfaces of φ , which is itself a 2D surface defined as the
zero set C of the function

c(i, j,k) = −∇φ(i, j,k) · v(i, j,k). (2)

The task of finding contours at a specific threshold τ then reduces
to finding the intersection of the 2D surfaces F and C. Generically,
this intersection takes the form of a set of 1D loops in 3D space.

In order to extract a contour, we first locate cubes containing ze-
ros of both the f and c implicit functions; we describe fast methods
for this below. Once a relevant voxel is found, we extract its contour
segments using a variant of the Marching Lines algorithm [Thirion
and Gourdon 1996]. This was originally presented as an adaptation
of the well-known Marching Cubes technique [Lorensen and Cline
1987] to extracting crest lines on surfaces, but can be generalized to
extract the intersection of isosurfaces of any two implicit functions.

Briefly, the algorithm finds intersections of the two implicit
functions on the faces of the cube, using linear interpolation based
on the values at the eight corners (Figure 3a-b). Then it finds any
intersections between these two sets of lines on each face. The
result is a set of points on the faces of the cube, which when
connected yield segments of the contour (Figure 3c-d). Note that
this method is completely general, in that it can extract the curves
formed by the intersection of any two implicit functions on the
volume. We rely on this property to extract other families of lines
in addition to contours, as described in Section 4.1.

3.2 Walking Contours

The most basic method of finding contours would be to examine
all cells in a volume, looking for cubes containing zeros of the
implicit functions and extracting line segments in each. However,
this approach is impractical for interactive visualization of large
datasets due to its lack of output sensitivity. We instead use an
accelerated technique that traces lines through the volume while
attempting to avoid examination of the majority of cells.

Since the intersection of two 2D surfaces is in general a 1D
loop, it is reasonable to extract the loop by following it through the
volume. Given a starting seed cell, we extract a 1D segment of the

 0

 20000

 40000

 60000

 10 20 30 40 50

L
in

e
 s

e
g

m
e

n
ts

 f
o

u
n

d

Frame number

Brute force, 1876 msec/frame
Previous + random, 124 msec/frame

Previous, 112 msec/frame
Random, 60 msec/frame

Figure 4: Efficiency of extracting contours using different seeding
strategies, for an animation (with changing viewpoint and isosur-
face threshold) of the aneurysm dataset (Figure 8).

contour with Marching Lines, then move to the cell adjacent to the
face containing one of the intersection points and repeat (Figure 3).
We continue this around the loop until we return to the seed cell.
Walking through voxels that contain more than one line segment
is performed in an arbitrary but consistent manner, to ensure that
complete loops are formed.

Given this algorithm, and supposing we had at least one valid
seed cell for every loop in the volume, we could then extract all
contours in O(m) time, where m is the total length of all loops.
Thus, this algorithm is output sensitive, which is convenient since
our output tends to be sparse for non-pathological cases. In the
typical case, m is O(n) in an n3 volume, as argued above.

3.3 Exploiting Spatio-Temporal Coherency

We are then left with the problem of finding cells from which we
can seed the contour extraction. While contours are view depen-
dent and move along the surface as the viewpoint changes, they
usually intersect contours of that surface from other viewpoints.
To exploit this spatio-temporal coherency, we begin our search for
contour seed points of a new frame by first examining cells that
contained contours in the previously drawn frame – a method pre-
viously explored for finding contours [Markosian et al. 1997] and
suggestive contours [DeCarlo et al. 2004] on surfaces. Since there
are O(m) cells containing contours from the previous frame, our
search only adds O(m) time to the extraction algorithm, leaving the
overall running time as O(m).

To evaluate the performance of this strategy, we conducted an
experiment in which we measured the number of contour segments
found in an animation involving continuous change in viewpoint
and isosurface threshold. The red curve at the top of Figure 4
shows the number of contour segments extracted by the brute-
force algorithm (i.e., “ground truth”) at each frame in the sequence.
The third curve, drawn in blue, shows the performance of using
contours from the previous frame as seeds (the other two curves
involve a random seeding approach, and are discussed in the next
section). In all cases, the first frame is initialized with the brute-
force algorithm. As can be seen, the temporally-coherent algorithm
extracted most of the contours in all frames, with an average of
85% and a minimum of 70%. Although this performance is not
perfect, we have observed that this is not objectionable in practice.
First, short segments are more likely to be missed than long ones,
so it is unlikely that the most perceptually important loops will be
omitted. In addition, the missing line segments are more likely
to occur during periods of quick motion, so they are less likely to
be perceived. Finally, when the user stops changing the viewpoint
and threshold, the random probing discussed in the next subsection

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20

F
ra

c
ti
o

n
 o

f
lin

e
 s

e
g

m
e

n
ts

 f
o

u
n

d

Frame number

Checking 64n points, 416 msec/frame
Checking 16n points, 211 msec/frame
Checking 4n points, 142 msec/frame

Checking n points, 110 msec/frame

Figure 5: Efficiency of randomized probing, together with tempo-
ral coherence, for the skull isolevel of the head dataset (see Fig-
ure 10). The viewpoint and threshold are static. Because contours
found on the previous frame are retained, the total number of con-
tour segments found increases over time. We show results for dif-
ferent numbers of random probes, as a multiple of n (where n3 is
the number of voxels).

causes the missing segments to be located and drawn, with high
probability, within a few frames.

3.4 Gradient Descent for Contour Location

Contours do appear and disappear through changes in view and
isovalue. Therefore, in addition to the previous-frame seeding
discussed above we search for new seeds using an iterative gradient
descent method. This locates valid seed cells either nearby old
contours or at random in the volume. As shown in the magenta
(lower-most) curve of Figure 4, random sampling and gradient
descent can be used alone to find a large percentage of new
contours, though leveraging information from the previous frame
accelerates this process.

Given a stating point p in the volume, we calculate the gradient
g= ∇φ(p) and the vector

vwalk =
τ −φ(p)

|g|

g

|g|
. (3)

The vector vwalk is thus a linear approximation of the vector from
p to the closest zero of f . We proceed to the point q = p+ vwalk,
and repeat this calculation at q using the gradient of the n ·v implicit
function. We then test if this cell is a valid seed for a new contour.

We repeat this process of alternately walking along gradients of
f and c and testing for contour seeds. In our experiments with a
wide variety of datasets, we have found that this process typically
either finds the surface or fails (by leaving the volume or getting
stuck in a local minimum) within four to five iterations. We thus
terminate our search after five iterations if no seed point is found.

To find new contours, we can perform this gradient descent
starting either at contour-containing cells from the previous frame
or at random cells in the volume. If we were to restrict ourselves to
purely random probing, potentially a large number of probes would
be required to locate most of the contour segments (Figure 5).

4 Comprehensible Rendering

To render volume data in a comprehensible manner, we can extract
any of a number of different families of lines using the method
described in section 3. We optionally test extracted line segments
for visibility, then assign to each a rendering style based on the type
of line, whether it is visible, and a selection of other properties.
Finally, the extracted segments are rendered as OpenGL polylines.

4.1 Families of Lines

Contours: As described in section 3, we compute the contour for
our surface by extracting intersections of the isosurface φ − τ = 0
and the contour surface n · v = 0. The normals are computed as
n= −∇φ , and are evaluated as needed using a finite differences
approximation over a local neighborhood. An alternative would be
to precompute normals at program startup, which would increase
run-time performance at a substantial (4×) cost in memory usage.

As described below, we can omit or stylize the contours based
on properties such as their length and visibility. Moreover, indepen-
dently of their visibility, not all contours are worth drawing. Specif-
ically, we can selectively omit those portions of the contour loops
whose contour is never visible (from outside the surface). Such
contours occur in locations such as the bottom of an indentation;
they have negative radial curvature [Koenderink 1984]. We detect
these “interior” contours by defining

s(i, j,k) = ∇
(

n̂(i, j,k) · v(i, j,k)
)

· v(i, j,k), (4)

where n̂ is the unit-length normal. As with the normal, the gradient
is computed numerically, on demand. Since s has the same sign as
radial curvature, interior contours are found by testing s < 0 once
a segment has been extracted. Although most of the results in this
paper omit these interior contours, they are visible as the hollow
voids in the bones of the hand model (Figure 10, left).

Suggestive contours: Our renderings also include suggestive con-
tours [DeCarlo et al. 2003], which complement contours in line
drawings to produce more effective renderings of shape. Sugges-
tive contours are defined as those surface locations where the radial
curvature is zero, and its directional derivative towards the camera
is positive. Thus, we extract suggestive contours as the zero set
of s (as defined above), then check that the derivative of s towards
the viewer is positive. In practice, we compare the derivative to a
small positive threshold (Ds > ε) to filter out spurious zero cross-
ings caused by noise [DeCarlo et al. 2004]. Furthermore, finding
suggestive contours on backfaces requires the sign of the derivative
test to be negated (Ds< −ε) in order to keep the analogous lines to
those found on frontfaces. (DeCarlo et al. [2003] assumed opaque
surfaces, hence did not address backfacing suggestive contours.)

Cutting plane intersections: We also render lines for the intersec-
tion of the isosurface with each of six axis-aligned cutting planes,
with two planes per axis representing positive and negative bounds
on the axis. Note that the same method as described in Section 3.1
for finding loops at the intersection of two surfaces addresses this
problem, using the implicit function

p(i, j,k) = pos(i, j,k) ·nplane−off plane. (5)

Cutting planes can also affect the visibility of other lines, with user
control over omitting or applying stylization to lines on either the
near or far side (Figure 10, center).

Multiple thresholds: As a final effect, we can simultaneously ren-
der lines from each of these families at multiple settings of the iso-
surface threshold τ . As shown in Figure 1 and Figure 10, center,
this effect can unobtrusively provide context and enhance compre-
hensibility of the spatial relationship between multiple isosurfaces
in the volume data.

4.2 Visibility

A significant aspect of rendering lines is determining which are
visible and which are hidden. If we were extracting the entire
isosurface, visibility could be obtained at little or no additional
cost using a hardware z-buffer. However, if we are interested in
drawing only the lines, this would impose at least the obvious O(n2)
cost to download the mesh to the graphics card, not to mention
the additional complexity of implementing an accelerated marching

cubes algorithm to extract the mesh in less than O(n3) time. Since
we prefer to avoid extracting the entire isosurface in favor of finding
sparse features on the surface, we need some method to determine
which parts of these lines would be occluded by the surface.

We have implemented a simple solution, as follows: for each
vertex of each rendered loop, we trace a ray through the volume
from the vertex to the camera position (possibly using a “depth off-
set” heuristic to prevent immediate detection of self-intersection).
As the ray passes through each cell in the volume, we determine
whether it intersects the isosurface in that cell by examining the in-
tersection of the ray with the face by which it leaves the cell. At
that intersection, we use linear interpolation from the four corners
to determine the function value and see if it has changed sign (in-
dicating the ray has passed from outside to inside the isosurface).
If it has, we mark the originating vertex as occluded. Note that, as
a hint to our randomized drawing code, we could add the point of
occlusion as a seed point for the randomized search, to ensure that
the occluder is drawn.

Occluded vertices can be drawn in a different style, or not drawn
at all, according to the user’s preferences. The visibility algorithm
can also be extended to handle multiple thresholds or cutting planes,
simply by keeping track of all intersections against the isosurfaces
and cutting planes of interest, as well as the order in which they
occur. Examples of the use of visibility for one or more isosurfaces
and cutting planes may be seen in figures throughout the paper.

The disadvantage to this method is that it is asymptotically as
expensive as the z-buffer approach. In a volume of size n3, the
number of vertices rendered by our system is in O(n), as is the
number of cells touched by an average ray. Therefore, the time
complexity for this visibility algorithm is O(n2). In practice, this
method is still fast enough to be interactive, but it doesn’t scale
as well as the other algorithms in this application. For large data
sets, if this algorithm is not fast enough for real-time rendering,
one can compromise by only doing visibility calculations when the
program is idle; when the user is manipulating the view, visibility
is not computed, and so occluded contours are drawn in the same
style as non-occluded contours.

There exist ways in which visibility could be computed more
quickly for our application. For example, ray-to-ray caching and

Stride = 2 (370 msec./frame)Stride = 1 (590 msec./frame)

Stride = 4 (280 msec./frame) Stride = 8 (244 msec./frame)

Figure 6: Effect of stride length k on approximate visibility
algorithm. Note that the first three images are essentially identical
(while resulting in a 2× speedup), while the last shows visible
artifacts in areas with narrow occluders.

fast rejection techniques would reduce the constant factors in our
implementation, hierarchical approaches such as the one used by
Parker et al. [1998] would reduce the complexity to O(n log n),
and approaches based on finding the image-space intersections of
occluding contours could reduce complexity further. Instead, we
have implemented a simple approach for computing approximate
visibility as follows. Rather than checking visibility for every
vertex, we check every k-th vertex as we traverse a loop. Whenever
there is a change in visibility between two tested vertices, we check
the intervening vertices as well to determine where the transition
occurred. If no transition occurs between two tested vertices, we
assume the intervening vertices have the same visibility. In non-
pathological cases this method reduces the algorithm’s running
time by a factor of at most k, possibly at the cost of a greater
number of mislabeled vertices. One is still guaranteed not to miss
details larger than k voxels, which may be acceptable for large
data sets, especially where a large number of voxels can map to
just one pixel. An evaluation of the impact of this algorithm is
shown in Figure 6. The figure shows a closeup of a rendering from
the aneurysm dataset, which we expect to be challenging for this
algorithm because of the abundance of narrow occluders. Note that
the sequences in the accompanying video were created without the
approximate visibility algorithm.

4.3 Stylization

Our system provides the user with full control over which kinds
of lines are drawn, and in which style. In particular, the user can
control the width and color of rendered lines based on any of the
following attributes:

• the type of line (contour, suggestive contour, or cutting plane);

• the originating isosurface (primary or secondary);

• the result of the s< 0 test for finding “inside” contours;

• the result of visibility testing;

• the side of a cutting plane on which the segment lies; and

• the length of the loop from which a segment originates (since
omitting short lines provides a simple form of detail elision).

Alternatively, lines can be omitted based on any of these tests. The
renderings throughout the paper demonstrate the stylistic flexibility
afforded by these controls.

4.4 Results

Figures 1 and 8-10 show examples of line drawings made from
data sets with a range of sizes from 150 × 110× 60 (simulation)
to 5122 × 256 (feet). These are drawn in a variety of styles to
demonstrate rendering flexibility.

Figure 7 reports timing results for the stochastic search for
silhouette loops as well as computing visibility on them. These
data were collected as an average over a set of frames where
the isosurface was swept through its meaningful range while the
camera circled twice around the data – re-sampled versions of the
aneurysm data set shown in Figure 8. To ensure that the datasets
were band limited (as per the discussion in Section 3), we down-
sampled the original 2563 dataset to 643, which was then up-
sampled to produce the 1263 , 2563, and 5123. Without hidden
surface removal, the algorithm runs at interactive frame rates, even
for a 5123 dataset. These times were measured on a laptop with a
1.8 GHz. Pentium M processor and 1 GB of memory.

Computing suggestive contours takes more time, and, as reported
in Figure 7, visibility takes even more time. Therefore our applica-
tion has a mode (demonstrated in the accompanying video) wherein
only contours are drawn during interaction (camera movement or
sweeping the isosurface); when motion stops the full drawing with
suggestive contours and hidden surface removal is rendered.

10
2

10
3

10
4

10
5

10
6

10
7

10
8

2
6

2
7

2
8

2
9

n

Voxels
Isosurface
Contours

Performance (frames per sec.)

n Fast Fast+vis Brute force

64 86 62 29

128 71 32 4

256 50 10 0.6

512 31 3 0.08

Figure 7: Experimental verification of O(n) scaling for different-
resolution versions of aneurysm dataset (Figure 8). Left: the to-
tal number of voxels grows cubically with dimension, the number
of voxels on an isosurface grows quadratically, while the number
of voxels on contours grows linearly. Right: the rendering perfor-
mance of the fast seed-and-traverse algorithm, the same algorithm
with visibility testing, and brute-force extraction. Interactive per-
formance is maintained even for 5123 datasets.

5 Conclusion and Future Work

We have described a method for creating line drawings from
volumetric datasets by extracting linear features such as contours
and suggestive contours directly from the data. Because such
features are sparse, they offer the potential to be extracted more
efficiently than by traversing the entire dataset. Furthermore they
can produce more comprehensible renderings either by identifying
important structural relationships (as exploited by previous research
on traditional volume rendering that has emphasized silhouettes,
for example) or by producing more spare drawings based on
such lines alone. We have demonstrated both the efficiency and
comprehensibility aspects of these algorithms by creating a variety
of figures based on a variety of datasets using a working system.
This project leads to several possible areas for future work, such as:

Efficient visibility: Visibility is the most expensive phase of
the system we described, both in absolute terms and in terms
of asymptotic complexity. As mentioned in Section 4.2, we
believe that we could achieve an asymptotic improvement by
using hierarchical methods to intersect a ray with the volume.
Perhaps more interesting would be to find a way to adapt classical
algorithms for hidden-line removal [Griffiths 1978] to our problem.

Enhanced stylization: Section 4.3 describes several ways that
we use stylized rendering of the lines to aid comprehensibility.
Nonetheless, there are a number of more sophisticated or abstract
rendering algorithms one might try. In the spirit of [Kirby et al.
1999], there are strategies for conveying more information about the
data or other scalar or vector values in the volume by further styliza-
tion of the lines. As another example, rather than drawing lines we
could draw narrow “ribbons” that convey speed of motion with re-
spect to changing either viewpoint or isovalue, producing an effect
similar to motion blur. Finally, one might prefer to draw textured
lines such as those drawn for silhouettes by Kalnins et al. [2003],
which would then require investigating how to do so with temporal
coherence when such lines are extracted from volumes.

Acknowledgments

The authors thank Gordon Kindlmann and Allen Sanderson for ad-
vice and assistance during the development of this project. We
also thank Philip Shilane and Chris DeCoro for last minute proof-
reading before the submission deadline. The human CT, aneurysm,
and the bonsai data sets are attributed to the NLM Visible Human
Project, Philips Research, and Stefan Roettger, respectively, and we
thank them for making such volumetric data sets publicly available.
This work is partially supported by the National Science Founda-
tion through grants HLC 0308121 and CCF 0347427.

References

BREMER, D., AND HUGHES, J. 1998. Rapid approximate silhouette

rendering of implicit surfaces. In Implicit Surfaces 98, 155–164.

CIGNONI, P., MARINO, P., MONTANI, C., PUPPO, E., AND SCOPIGNO,

R. 1997. Speeding up isosurface extraction using interval trees. IEEE

Trans. on Visualization and Computer Graphics 3, 2 (Apr.), 158–170.

CSÉBFALVI, B., MROZ, L., HAUSER, H., KÖNIG, A., AND GRÖLLER, E.

2001. Fast visualization of object contours by non-photorealistic volume

rendering. Computer Graphics Forum 20, 3, 452–460.

DECARLO, D., FINKELSTEIN, A., RUSINKIEWICZ, S., AND SANTELLA,

A. 2003. Suggestive contours for conveying shape. ACM Transactions

on Graphics 22, 3 (July), 848–855.

DECARLO, D., FINKELSTEIN, A., AND RUSINKIEWICZ, S. 2004.

Interactive rendering of suggestive contours with temporal coherence.

In Third International Symposium on Non-Photorealistic Animation and

Rendering (NPAR), 15–24.

DONG, F., CLAPWORTHY, G. J., LIN, H., AND KROKOS, M. A. 2003.

Nonphotorealistic rendering of medical volume data. IEEE Computer

Graphics and Applications 23, 4, 44–52.

EBERT, D., AND RHEINGANS, P. 2000. Volume illustration: non-

photorealistic rendering of volume models. In IEEE Visualization 2000,

195–202.

GRIFFITHS, J. G. 1978. Bibliography of hidden-line and hidden-surface

algorithms. Computer-Aided Design 10, 3, 203–206.

INTERRANTE, V., AND GROSCH, C. 1998. Visualizing 3d flow. IEEE

Computer Graphics and Applications 18, 4, 49–53.

INTERRANTE, V., FUCHS, H., AND PIZER, S. 1995. Enhancing

transparent skin surfaces with ridge and valley lines. In Proceedings

of the 6th conference on Visualization ’95, IEEE Computer Society, 52.

KALNINS, R. D., DAVIDSON, P. L., MARKOSIAN, L., AND FINKEL-

STEIN, A. 2003. Coherent stylized silhouettes. ACM Transactions on

Graphics 22, 3 (July), 856–861.

K INDLMANN, G., WHITAKER, R., TASDIZEN, T., AND MOLLER, T.

2003. Curvature-based transfer functions for direct volume rendering:

methods and applications. In IEEE Visualization 2003, 513–520.

K IRBY, M., MARMANIS, H., AND LAIDLAW, D. H. 1999. Visualizing

multivalued data from 2D incompressible flows using concepts from

painting. In IEEE Visualization 1999, 333–340.

KOENDERINK, J. J. 1984. What does the occluding contour tell us about

solid shape? Perception 13, 321–330.

LIU, Z., FINKELSTEIN, A., AND LI, K. 2002. Improving progressive

view-dependent isosurface propagation. Computers & Graphics 26, 2

(Apr.), 209–218.

LIVNAT, Y., SHEN, H.-W., AND JOHNSON, C. R. 1996. A near optimal

isosurface extraction algorithm using the span space. IEEE Trans. on

Visualization and Computer Graphics 2, 1 (Mar.), 73–84.

LORENSEN, W., AND CLINE, H. 1987. Marching cubes: A high resolution

3D surface construction algorithm. In Proc. SIGGRAPH 1987, 163–169.

LU, A., MORRIS, C. J., TAYLOR, J., EBERT, D. S., HANSEN, C.,

RHEINGANS, P., AND HARTNER, M. 2003. Illustrative interactive

stipple rendering. IEEE Trans. on Visualization and Computer Graphics

9, 2 (Apr.), 127–138.

LUM, E. B., AND MA, K.-L. 2002. Hardware-accelerated parallel non-

photorealistic volume rendering. In Proceedings of the 2nd international

symposium on Non-photorealistic animation and rendering (NPAR),

ACM Press, 67–74.

MARKOSIAN, L., KOWALSKI, M. A., TRYCHIN, S. J., BOURDEV, L. D.,

GOLDSTEIN, D., AND HUGHES, J. F. 1997. Real-time nonphotoreal-

istic rendering. In Proceedings of SIGGRAPH 97, Computer Graphics

Proceedings, Annual Conference Series, 415–420.

NAGY, Z., AND KLEIN, R. 2004. High-quality silhouette illustration

for texture-based volume rendering. In Proc. WSCG, V. Skala and

R. Scopigno, Eds., 301–308.

Figure 8: Aneurysm (2563), left to right: without visibility; with visibility; using brute force for the search. Note that the stochastic search
misses a few short, visible lines that are found by brute force search. If these features persist over time they will be found in future frames.

Figure 9: Bonsai (2563), left to right: silhouettes alone; with suggestive contours; a different isosurface threshold.

Figure 10: Left to right: Hand (1503) without visibility draws at interactive rates and reveals hollow bones as thin backfacing contours; head
(5122 ×209) with skin, bone and cutting plane; hypersonic turbulent flow simulation (150×110×60).

NAGY, Z., SCHNEIDER, J., AND WESTERMANN, R. 2002. Interactive vol-

ume illustration. In Proc. Vision, Modeling and Visualization Workshop.

PARKER, S., SHIRLEY, P., LIVNAT, Y., HANSEN, C., AND SLOAN, P.-

P. 1998. Interactive ray tracing for isosurface rendering. In IEEE

Visualization ’98, 233–238.

SCHEIN, S., AND ELBER, G. 2004. Adaptive extraction and visualization

of silhouette curves from volumetric datasets. Vis. Comput. 20, 4, 243–

252.

SVAKHINE, N. A., AND EBERT, D. S. 2003. Interactive volume illustration

and feature halos. In PG ’03: Proceedings of the 11th Pacific Conference

on Computer Graphics and Applications, IEEE Computer Society, 347.

THIRION, J.-P., AND GOURDON, A. 1996. The 3d marching lines

algorithm. Graphical Models and Image Processing 58, 6 (Nov.), 503–

509.

TREAVETT, S. M. F., AND CHEN, M. 2000. Pen-and-ink rendering

in volume visualization. In VISUALIZATION ’00: Proceedings of the

11th IEEE Visualization 2000 Conference (VIS 2000), IEEE Computer

Society.

VAN KREVELD, M., VAN OOSTRUM, R., BAJAJ, C., PASCUCCI, V., AND

SCHIKORE, D. 2004. Chapter 5: Contour trees and small seed sets for

isosurface generation. In Topological Data Structures for Surfaces, John

Wiley & Sons, Ltd, Reading, Massachusetts, S. Rana, Ed., 71–86.

