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Figure 1: Color texture transfer. From left to right: input zebra; output cow, giraffe, and cerburus (a three-headed dog).

Abstract

Transferring surface properties such as color texture from one 3D
mesh to another is a well-known problem, which has become in-
creasingly important as the demand for textured models in games
and films has grown. We propose a mesh-based analogy of the
PatchMatch [Barnes et al. 2009] algorithm, which we call “Mesh-
Match,” and a non-parametric multi-resolution approach to surface
texture transfer based on this algorithm. Our system offers benefits
of both parameterization and texture synthesis approaches, preserv-
ing both large- and fine-scale patterns of the source properties. We
demonstrate this system in a variety of applications, including tex-
ture transfer, detail transfer, and texture painting assists.

1 Introduction

Transferring surface properties from one mesh to another is an
important problem for many applications in computer graphics,
including texture transfer [Mertens et al. 2006], detail synthe-
sis [Golovinskiy et al. 2006], shape analysis [Allen et al. 2003],
hole filling [Nguyen et al. 2005], and surface editing [Bhat et al.
2004].

Perhaps the most well-known instance of the problem is transfer-
ring color texture from one mesh to another. The goal is to produce
a pattern on a target mesh that matches the spatially-varying pattern
on a given source mesh, replicating both fine-scale textural details
and large-scale structural elements of the pattern without visible
distortion. This problem has become increasingly important as the
demand for textured models in games and movies has exploded,
while the availability of studio artists has not.

Two general approaches have been proposed to address this prob-
lem. The first aims to produce a common parameterization that can
be used as a mapping from one surface to the other, usually optimiz-
ing for a smooth map that minimizes local distortions as measured
by deviations in lengths and/or angles [Alexa 2002]. This strategy is
able to preserve large-scale patterns in textures, but suffers from no-
ticeable distortion in small-scale details when the source and target
surfaces have significantly different shapes (e.g., two animals with
different length necks). The second approach uses texture synthesis
to copy patches and/or statistics of texture from the source mesh
onto the target [Mertens et al. 2006]. This strategy is able to repro-
duce small-scale details of textures, but has difficulty preserving
large-scale patterns (e.g., different width stripes on different body
parts of a zebra).

In this paper, we propose a surface texture transfer framework that
unifies the best features of surface parameterization and texture syn-
thesis for 3D meshes. The heart of our framework is a surface cor-
respondence algorithm based on PatchMatch [Barnes et al. 2009]
that quickly finds the surface patch in the source with shape and
color properties most similar to each patch in the target. This algo-
rithm is largely insensitive to the dimensionality of the patch repre-
sentation and thus enables association of high-dimensional feature
vectors representing shape and color descriptors with each patch.
Using this algorithm in a multiresolution synthesis strategy [Wei
and Levoy 2001; Hertzmann et al. 2001] allows our system to ef-
ficiently transfer textures preserving both large- and fine-scale pat-
terns of the source.

The key idea behind PatchMatch is to leverage random search and
spatial coherence when finding patch correspondences. The law
of large numbers suggests that some patches are likely to find the
correct nearest neighbor during a random search, and coherence
suggests that good correspondences can be propagated to adjacent
patches, yielding full nearest neighbor fields in high-dimensional
feature spaces faster than is possible with spatial indexing struc-
tures like kd-trees. However, PatchMatch was developed for im-
ages, where there is a straightforward parameterization and dis-
tances are Euclidean, and the extensions of its key steps to work for
3D surface meshes are not obvious. Non-trivial methods must be
developed for selecting appropriate shape and color features, rep-
resenting surface patches, searching for patch matches at arbitrary
orientations, transferring features across resolutions, determining
efficient propagation orders, and identifying suitable locations for
random jumps. Addressing these issues is our main research con-
tribution.

We demonstrate our surface correspondence algorithm – “Mesh-
Match” – in the context of a “texture-by-shape” system that uses
shape as a guiding layer in the spirit of Image Analogies [Hertz-
mann et al. 2001]. Our approach supports several different shape
features depending on the application: geodesic affinities generated
from sparse manually-specified correspondences, as well as fully-
automatic heat kernel signatures. We illustrate the utility of this
system in a variety of applications, including texture transfer, detail
transfer, and texture editing. In each case, our framework is able
to automatically produce patterns on the target that resemble the
source’s at multiple scales, even when the source and target have
relatively different shapes.
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2 Related Work

Understanding how a pattern on one surface can be mapped to an-
other is an important problem in many disciplines, including biol-
ogy, paleontology, archaeology, etc. In this section, we focus on
recent related work on texture transfer in computer graphics.

Parameterization. Perhaps the most obvious approach is consis-
tent mesh parameterization. Recent work has proposed a number
of ways of mapping arbitrary surfaces to canonical parameteriza-
tion domains and then establishing a map with minimal distortion
in those domains [Alexa 2002]. For example, consistent param-
eterizations have been established on spheres [Praun and Hoppe
2003; Sheffer et al. 2004], planes [Hormann et al. 2007], tem-
plate meshes [Allen et al. 2003], and automatically computed base
meshes [Schreiner et al. 2004]. These methods have the advantage
that they can guarantee properties of the map (e.g., smoothness),
but are suitable only for surfaces with similar topology and shape,
as they would otherwise introduce distortions and/or seams in the
transferred texture.

Mapping. Other methods compute a map between two surfaces di-
rectly via optimization with respect to an analytical distortion mea-
sure. For example, Generalized Multidimensional Scaling [Bron-
stein et al. 2006], Heat Kernel Maps [Ovsjanikov et al. 2010], Mo-
bius Voting [Lipman and Funkhouser 2009], and Blended Intrinsic
Maps [Kim et al. 2011] all aim to find a map minimizing devia-
tions from isometry. Wang et al. [2008] register human faces with
a conformal map and use the dense correspondences for facial ex-
pression transfer. Dinh et al. [2005] solve for a mapping between
two 3D shapes using PDEs, but they assume that a smooth trans-
formation between the shapes is already provided as input. Such
methods are applicable only when the differences between two sur-
faces are well-approximated by an analytical model of distortion –
they do not work well when different parts of the desired map re-
quire significantly different distortions (e.g., dragon↔ frog) and/or
different numbers and arrangements of parts (e.g., insect with four
legs ↔ insect with six legs), which are typical problems of most
real-world texture transfer problems.

Texture Synthesis. Other methods have transferred properties be-
tween surfaces by example-based texture synthesis. For example,
Golovinsky et al. [2006] used the parametric synthesis method of
Heeger and Bergen [1995] to transfer displacement maps from one
face to another. Breckon and Fisher [2008] extended the non-
parametric approach of Efros and Leung [1999] for 3D texture
transfer and surface detail inpainting. Bhat et al. [2004] perform
similar synthesis operations in the volumetric domain. These meth-
ods can be applied to arbitrary surfaces, even when the source and
target have different numbers of parts. However, they have only
been demonstrated for stochastic textures with highly repetetive
patterns. Our work builds on the patch-based optimization ap-
proaches introduced to texture synthesis by Kwatra et al. [2005]
and Wei et al. [2008] and extended to the surface domain by
Han et al. [2006].

The works most closely related to ours are Mertens et al. [2006]
and Lu et al. [2007]. Both papers describe “texture-by-shape” sys-
tems that use geometric surface features to guide example-based
texture synthesis. They investigate methods based both on paramet-
ric and non-parametric models, finding that the parametric meth-
ods are able to reproduce weathering effects and other small-scale
texture features strongly associated with local geometry. However,
the non-parametric methods do not work as well, partially due to
the difficulties of finding nearest neighbors in a high-dimensional
search space. A goal of our work is to overcome this problem,
thereby allowing synthesis of highly structured textures using non-
parametric synthesis methods.

3 Overview

The objective of this work is to transfer a texture from one surface
to another while retaining its geometry-aware characteristics, large-
scale structural elements, and small-scale details.

To address this problem, we have developed a patch-based texture-
by-shape synthesis algorithm based on Image Analogies [Hertz-
mann et al. 2001] and PatchMatch [Barnes et al. 2009]. As in other
algorithms of this type, we simultaneously solve for the texture
of the target mesh MT and the correspondences to vertices of the
source meshMS in a multiresolution optimization. At each level of
the optimization, the texture of the target mesh is first initialized, ei-
ther by up-sampling from the previous level or at random in the top
level, and then an EM algorithm solves for the texture and corre-
spondences for the next level via interleaved optimization. Specif-
ically, the E-Step finds a correspondence from every vertex vT of
MT to the most similar vertex vS in the source mesh MS , where
similarity is determined by proximity of color and shape features
within patches centered at vT and vS . The M-Step then synthe-
sizes a new color for every vertex vT by voting with colors found
in patches of vS corresponding to patches of MT overlapping vT .
The iteration terminates when correspondences stabilize, or after a
fixed number of iterations in each level.

A major challenge in implementing this patch-based synthesis ap-
proach is to find the source patch(es) most similar to each target
patch quickly. If patch similarity is determined by the proximity of
k features (e.g., 3p features for RGB color over a patch with p sam-
ples, plus q features for shape), then the problem is to find nearest
neighbors in a k-dimensional feature space, which is well-known to
be difficult when k is large, resulting in slow algorithms, even when
approximate indexing structures are used [Simakov et al. 2008]. In
part to avoid this problem, many previous methods for geometry-
guided texture synthesis have utilized parametric synthesis algo-
rithms, which are faster but do not replicate large-scale structural
elements in synthesized textures.

The key contribution of our work is to leverage the ideas pro-
posed in PatchMatch [Barnes et al. 2009] to accelerate the search
for similar patches during non-parametric texture transfer between
3D meshes. The main idea is to leverage the law of random
numbers and the spatial coherence of nearest neighbor field when
searching for patch correspondences. Random guesses are inter-
leaved with propagation to establish approximate correspondences
quickly, without the need for a spatial indexing structure. As a re-
sult, finding similar patches is faster, less memory intensive, and
less sensitive to the patch size and feature count. These differ-
ences enable the use of large patches with descriptive geometric
features. In turn, such informative descriptors help reproduce large-
scale structures in transferred textures that are consistent with the
model’s shape.

The following section describes the implementation of our algo-
rithm, paying special attention to the issues unique to 3D meshes.
In Section 5, we illustrate results for several possible applications,
and we conclude with a brief summary and discussion of topics for
future work in Section 6.

4 Algorithms

The input to our system is a source texture TS stored on vertices of
a source mesh MS and a target mesh MT ; and, the output is a new
synthesized texture TT stored on vertices of MT , along with an ap-
proximate nearest neighbor field NNF that associates an orientation
and vertex of MS with every vertex of MT .
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Figure 2: Texture-by-shape algorithm overview.

As shown in Figure 2, the system starts by preprocessing the meshes
to build efficient multiresolution adjacency structures. Given a
mesh M , we build L discrete levels via iterative mesh decimation
using an algorithm similar in spirit to Q-Slim [Garland and Heck-
bert 1997]. Edges are collapsed in shortest-first order, positioning
new vertices at the midpoint of the collapsed edge to preserve good
aspect ratio, and retaining the “vertex tree” of parent-child rela-
tionships to allow efficient traversal between multiresolution levels.
The mesh at each level, M i, is decimated in this way until it con-
tains approximately half as many vertices as the previous level, and
the process stops when there are approximately 128 vertices in the
coarsest mesh.

Then, the system performs a multiresolution optimization of the
nearest neighbor field (NNF) and target texture TT . At each mul-
tiresolution level, proceeding coarse to fine, it alternates between
optimizing the NNF (via propagation and randomization) and opti-
mizing the texture (via voting) until they jointly converge. The re-
sult is upsampled to the next multiresolution level and the process
iterates. The following subsections describe each step in detail.

4.1 Patch Similarity

Before describing steps of the algorithm, we first describe the
method used to determine the similarity of patches centered at ver-
tices vS and vT . On the one hand, this is an implementation detail,
as any distance metric could be used in the context of MeshMatch.
On the other hand, it is an important detail, since the goal of the al-
gorithm is to maximize the patch similarity S(NNF (vT ), vT ) for
every vertex vT of the target mesh MT .

There are several questions that must be addressed: 1) what is the
shape of each patch?, 2) what features are stored with patches?, 3)
how are the features represented in patches?, 4) how are relative
orientations determined?, and 5) how is similarity computed? For
images, answers to these questions are relatively straight-forward
(e.g., compute L2 differences between RGB colors in rectangular
patches aligned with regularly sampled pixel locations) [Turk 2001;
Wei and Levoy 2001; Kwatra et al. 2007; Xu et al. 2009]. However,
they are significantly more difficult for 3D meshes, which have ir-
regular vertex sampling and lack obvious local parameterizations.

Surface Patches. For every vertex v of every mesh at level M , we
find and store the set of vertices P (v) of M within a given radius
r of v via a geodesic walk on vertices of the mesh. We compute a

local tangent polar coordinate frame for v and store vertices ofP (v)
in that frame. We call this representation the “patch” associated
with v.

Surface Features. For each patch, we store a set of features in-
dicating the distribution of texture values and geometric properties
within the patch. Similarities of these features will be used to de-
termine the similarity of patches.

In this work, we aim to allow both “true” geometric correspon-
dences between semantically corresponding locations, as well as
“creative” correspondences provided by an artistic user, that do not
necessarily match semantic correspondences — and which also en-
able manual override when automatic methods fail. Our system
therefore supports both automatic and interactively-specified shape
features depending on the application:

Our automatic shape features must capture both small-scale de-
tails of curvature and also large-scale attributes that place the patch
within a broader context of its shape (e.g., features should distin-
guish the neck from the back of a zebra, since different width stripes
are likely to appear in those different regions). To achieve this goal,
we compute the Heat Kernel Signature (HKS) at every vertex of
the mesh [Sun et al. 2009]. The HKS is a smooth, orientation-
invariant, and isometry-invariant shape descriptor that represents
for each point p how much heat leaves p and then returns back to
it in a given time t. At small time scales, it approximates the lo-
cal Gauss curvature; and, at large time scales, it approximates the
average diffusion distance to other points on the surface. Thus, it
captures both small- and large-scale shape features in a common
continuous framework. It has recently been used successfully for
intrinsic symmetry detection and shape matching [Dey et al. 2010],
showing excellent results for finding similarities between similar
semantic regions for many types of objects. We augment the HKS
vector with one more dimension: the dot product of the surface
normal with a prescribed up direction. This up vector is helpful in
many cases to distinguish similar shape regions with different se-
mantics (e.g., the back and belly of an animal). Computing it is not
onerous, since the up direction is prescribed in most modeling lan-
guages (e.g., positive Y in VRML), and automatic methods can be
used to align the upright orientation of a mesh in most cases where
it is not [Fu et al. 2008].

For interactive control, we provide an interface allowing a user to
specify manual correspondences between points on different mod-
els, and compute features using the geodesic distances from each
vertex to these constraint points. Unfortunately, geodesic distances
alone are not very good shape features for two reasons: First, be-
cause the models have different global and local scales, the shape
features do not match exactly even at correspondence points. Sec-
ond, each manually-specified point has global influence across the
model, making local control difficult. To address these problems
we convert the geodesic distance vectors G(v) to geodesic affini-
ties G′(v) using an affine transform and an exponential:

G′(v) = exp(−MT→SG(v)/2σ2) (1)

The affine transform MT→S (applied only to feature vectors on
the target model) is computed using all pairs of correspondences
(vS , vT ) between source and target models, such that the L2 dis-
tance MT→SG(vT ) = G(vS) exactly at all such pairs. (The re-
sulting linear system may be under-constrained, and we find the
minimum-norm solution using a linear solver.) The affine transform
addresses the first problem with geodesics – meeting the constraints
exactly at correspondence points – and the exponential reduces the
influence of correspondences far from v. The choice of σ is not
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crucial: In all our results we used σ = maxi,v Gi(v)/3, one third
the maximum geodesic distance of any point on the mesh.

Patch Similarity. We define the dissimilarity, D(vT , vS), of the
patch centered at vertex vT with the patch centered at vS as the
integral of the L2 difference of all features at all points in the patch
at the optimal aligning rotation:

D(vS , vT ) = argminθ

∫
p∈P (vT )

‖FT (p)− FS(R(p, vS , θ))‖dp

(2)
where P (v) is the surface patch centered at v, FT (p) is the fea-
ture vector associated with every surface point p, andR(p, vS , θ) is
rotation of p around vS by θ in the tangent plane.

This definition requires a search over orientations and the evalu-
ation of an integral for every patch comparison, which could be
expensive without an appropriate patch representation. We choose
it because it provides a robust dissimilarity measure and avoids the
challenge of establishing a direction field on a surface.

To accelerate computation of Equation 2, we represent the distri-
bution of features within a patch using a geodesic fan [Zelinka and
Garland 2004], a representation that stores a discrete sampling of
surface features in a geodesically circular structure indexed by po-
lar coordinates (r, θ) centered at v (Figure 3). This representation
provides the advantages of pre-filtering features at discrete samples
for rapid comparison and rapid search over relative orientations.

In our current implementation, geodesic fans store filtered estimates
of the 3 (RGB) color features at fan samples located at R = 3
discrete radii and A = 18 discrete polar angles in each fan. The
shape features vary more slowly across the surface, so we find it
suffices to use only a single shape vector sampled at the center of
the fan (8 dimensions for HKS or anywhere from 3 to 20 dimen-
sions for geodesic affinities). Thus we typically have up to a 182-
dimensional feature vector associated with each vertex. This is not
too different from typical image patch search applications, which
often use 147-dimensional color patches.

4.2 Optimization

Given this definition of patch dissimilarity, our main task is to find
texture values and nearest neighbors that minimize the dissimilar-
ity measure for every vertex of the target mesh. Since the patch
dissimilarity depends on both the nearest neighbor field (NNF) and
the texture values (TT ), this requires a joint optimization.

Our EM optimization algorithm starts at the coarsest level of the
multiresolution mesh, initializing the NNF randomly. Then, for
each multiresolution mesh level, from coarse to fine, it updates the
NNF via propagation and randomization in the E-Step, and then

patch
geodesic 
fan

M

Figure 3: Data structures. Left: 3D mesh (gray) and local patch
region (red); Right: patch mapped into local 2D coordinate frame
(red) with geodesic fan samples (blue).

reconstructs an estimate of the target texture from the NNF with a
voting algorithm in the M-Step. After the EM iterations have con-
verged, the NNF is upsampled to the next finer resolution, the target
texture is reconstructed at the finer level by re-voting, and the pro-
cess is repeated until the finest multiresolution level is reached.

NNF Propagation. During the NNF propagation phase of the E-
Step, our goal is to utilize “good” correspondences found in the
previous step (possibly by random chance) to find others for adja-
cent vertices. To do this, we visit each vertex vT of MT in order,
updating NNF(vT ) to be the vertex vS of MS with highest patch
similarity to vt amongst a set of candidates that includes its cur-
rent nearest neighbor, NNF(vT ), and all vertices adjacent to nearest
neighbors of vertices adjacent to vT . This phase takes advantage
of spatial correspondence in the nearest neighbor field to propagate
good correspondences from one vertex to others in its connected
component of the mesh.

An issue encountered for 3D meshes in this phase is how to choose
a vertex traversal order. For maximal efficiency, we aim to find an
ordering that favors visiting adjacent vertices in succession, so that
recent updates can be leveraged as each vertex is visited. For im-
ages, the natural order is to visit pixels across successive scan-lines.
However, no such order exists for vertices of a mesh. So, we select
a start vertex randomly within each connected component of MT

and visit vertices in breadth-first order from there. In successive
iterations we start from the last vertex in the most recent sequence;
this is analogous to alternating forwards/backwards passes in the
image-based PatchMatch algorithm.

Note that some care must be taken to propagate consistently under
patch rotations. As described in Barnes et al. [2010], when search-
ing over rotations, propagation neighborhoods in the target domain
must be transformed to the appropriate coordinate frame.

NNF Randomization. During the NNF randomization phase of the
E-Step, our goal is to “explore” the space of possible nearest neigh-
bors. To do this, we visit each vertex vT ofMT , updating NNF(vT )
to be the vertex with highest patch similarity to vt amongst a set of
candidates that includes its current nearest neighbor, NNF(T ), and
vertices sampled from MS at increasing distances from NNF(vT ).
Following PatchMatch, the candidate set includes a random sample
within radius r of vT , another within radius 2r, and so on. This ran-
dom sample often contains a good correspondence for vT , which is
propagated to its adjacent vertices in the next iteration.

An interesting issue encountered for meshes in this phase is how to
sample vertices matching a desired distribution of distances from
a given vertex NNF(vT ). This is easy for images, since distances
are Euclidean. However, for meshes, distances are geodesic, and
tracing geodesic paths for long distances on a mesh is too slow for
the inner loop of our algorithm. To address this issue, we leverage
the hierarchy of the multiresolution mesh. Since every multireso-
lution level covers the same area with half as many vertices as the
next, they are spaced approximately

√
2 times as far apart. Thus,

we can randomly sample vertices at prescribed distances of
√
2
j

from NNF(vT ) by traversing j levels up the multiresolution hierar-
chy from NNF(vT ) and then traversing back down j levels moving
to a random vertex in the next finer level at each step down (Fig-
ure 4). This provides a fast way to sample random vertices from
uniform distributions over several region sizes.

Texture Reconstruction: The M-Step of the optimization updates
the target texture based on the current estimate of the nearest neigh-
bor field. For every vertex vT of MT , the algorithm performs a
weighted averaging (voting) of values from the source texture TS
using the correspondences of nearby vertices (Figure 5). Specif-
ically, for every vertex vp in the neighborhood of vT , the loca-
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Figure 4: Using the multiresolution mesh hierarchy to sample ran-
dom vertices at multiple distances from vT (shown in white): An-
cestor vertices (shown in red) are associated with many descendant
vertices (shown in green), allowing for fast random sampling of
a large region by hopping multiple levels in the multi-resolution
mesh.

tion of vT is mapped to a location on MS by NNF(vp), and then
a color estimate is accumulated from the source mesh vertices us-
ing a weighted average, with weights falling off as a Gaussian with
the distance from vT to produce the final reconstruction value.

This Gaussian filtering is essential in the inner loop of the algorithm
to avoid aliasing, as otherwise feedback loops can amplify spurious
patterns. However, the resulting output is somewhat blurrier than
the input texture, so as an optional last step, we reconstruct per-
vertex colors at the finest resolution by simply copying the nearest-
neighbor color instead of filtering with a weighted Gaussian. The
results in Figure 1 and Figure 7 were produced using this nearest-
neighbor sampling.

Figure 5: Texture Reconstruction. Geodesic fan samples from the
NNF vote for the texture values of each vertex vT .

Upsampling. Finally, after the EM optimization has converged for
level i, we upsample the NNF to the next finer level i + 1. If
NNF(viT ) = viS at level i, we must determine the corresponding
vertex vi+1

S and relative coordinate frame for vi+1
T in the next finer

level of the multiresolution hierarchy. To do this, we project each
vertex vi+1

T ontoM i
T and determine the geodesic offset and relative

orientation with respect to viT . Then, we use NNF(viT ) to find viS
and reverse the geodesic offset and relative orientation to find the
mapped position of vertex vi+1

T on M i
S . Finally, we map that posi-

tion and orientation to the finer meshM i+1
S and find the closest ver-

tex vi+1
S . This provides the upsampled value: NNF(vi+1

T ) = vi+1
S .

5 Results and applications

In this section, we investigate the performance and applications of
the proposed algorithms.

5.1 User interface

For applications requiring manual correspondence points, we pro-
vide a user interface allowing the user to add and remove corre-
sponding points. It supports creation and deletion of both one-to-
one and one-to-many constraints, and allows camera motions of
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Figure 6: Upsampling. At the end of each iteration, NNFs for
vertices in multiresolution level i are upsampled from the NNF of
level i+ 1.

source and target views to be locked, facilitating navigation around
the models while identifying corresponding points.

In addition, the computation of the texture transfer is fast enough
that we can provide progressive updates of the transfer in progress
in the target view, enabling the user to decide whether additional
correspondences are required to improve the results. Coarse-
resolution results are typically visible within a few seconds after
adding new correspondences, and fine resolutions are computed in
under 30 seconds. Please refer to our supplementary video to see
this interface in use.

5.2 Color texture transfer

The most straightforward application of our approach is the trans-
fer of color texture from one 3D model to another. Figure 1 illus-
trates transfer of textures from a zebra to three other creatures. Note
that when transferring the zebra’s stripes to the other geometry, the
resulting stripes are not uniformly or randomly distributed as one
might expect using texture synthesis approaches. Instead they re-
tain the same spatial variation as seen in the source model, with
widely separated stripes near the hindquarters and thicker, more
densely packed stripes along the neck. However, the texture cor-
respondence is not one-to-one: The giraffe’s neck has many more
stripes than the zebra, and the cerberus has three noses and six eyes.
This highlights an advantage of our method: Because it does not as-
sume one-to-one mapping between source and destination geome-
try, it can adapt appropriately to variations in local shape, synthesiz-
ing more texture in stretched areas. Thus, our method demonstrates
the preservation of high level structure like direct mapping tech-
niques, while maintaining the flexibility of non-parametric texture
synthesis approaches.

Even in cases where a one-to-one mapping is possible, it may be
extremely deformed and thus unsuitable for direct texture mapping.
In Figure 9 we compare our method to correspondences computed
using blended intrinsic maps[Kim et al. 2011]. These correspon-
dences – and indeed any one-to-one mapping for this model pair
– produce severe distortions in order to match such dramatically
different geometry. Our method can use any one-to-one or one-to-
many mapping method as initialization and/or soft constraint, syn-
thesizing locally consistent and distortion-free texture while retain-
ing global semantic correspondences.

For color transfer we find that models such as the cow and zebra
typically require only about 6 to 10 manual correspondences, and
the weights of shape and color features are set to be equal (after
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normalizing for dimensionality and variance). In some cases we
use lower shape weighting at finer scales to encourage more flexible
transfer.

Figure 7 illustrates transfer between more widely differing mod-
els. Here there are few geometric cues because there is no obvi-
ous correspondence between shapes. By adjusting a few correspon-
dence points we can obtain a global correspondence and synthesize
a new spatially-varying texture that is locally similar to the original
at those points.

Figure 7: Transfer between widely differing models. Left: input
mesh and texture. Middle: output texture with correspondences
clicked at head, tail, tip of leg and center of back and belly.

5.3 Texture painting power assists

Texture painting in film and game production can require a great
deal of manual effort. What’s worse, that effort can be for naught
if the topology or geometry of a model is modified after paint-
ing, requiring reparameterization and repainting due to distortion.
We propose two uses of MeshMatch to reduce effort in the texture
painting workflow: Texture by example and texture update.

Texture by example: In addition to transfer between models,
MeshMatch can also be used to transfer texture within a model.
This can be useful, for example, to propagate painted textures auto-
matically from regions already painted to regions of a model that
have not yet been touched. Figure 8 illustrates some examples.
Although textures were manually created for just one surface re-
gion, they are successfully propagated across the rest of the sur-
face. In this case, the object is globally self-similar, so we use
automatically-computed HKS features rather than requiring manual
correspondence. However, note that matching HKS features alone
(Figure 8c) cannot properly resolve the differently colored stripes
– only by using local texture patches can we synthesize the proper
complex color pattern seen in the source.

Mertens et al. [2006] also use shape features to guide texture syn-
thesis. However, their method uses smaller texture patches and
mostly local shape features. In Figure 8d we demonstrate the im-
pact of patch size and shape feature dimensionality by reducing
the fan radii to R = 2 and using only one dimension of fine-
scale HKS. Because of the efficiency of the MeshMatch match-
ing algorithm, we are able to integrate shape and color features
into a single optimization over a high dimensional space. Although
Mertens et al. use a broader combination of several different fea-
tures, their method handles only stochastic textures with a sim-
ple statistical correlation to the underlying shape features, whereas
our method can handle essentially arbitrary relationships by using
nearest-neighbor search.

Texture update: Figure 10 depicts a creature that has been signif-
icantly lengthened after textures were painted. In this case we re-

synthesized the texture map for the entire torso and copied textures
verbatim for other body parts. However, if the geometric model-
ing package retains knowledge about the portions of geometry that
were edited and those that were not, we could make finer grained
updates by synthesizing new texture only in modified regions. No
explicit reparameterization is required.

Figure 10: Reapplying texture after geometry changes. Left to
right: input geometry and texture, modified geometry, texture up-
dated to fit new geometry.

5.4 Facial detail transfer

Another possible application is transferring fine-scale surface de-
tails from one surface to another. For example, Figure 11 shows
how pores, wrinkles, and creases captured in a highly detailed scan
of a face can be used to synthesize plausible details on smooth face
scan. To do this, we separate the detailed face scan into a smooth
component and a displacement map, and then use the shape features
to guide transfer of the displacement map onto the target smooth
face. Notice that many details have been synthesized plausibly,
including folds in the eyelids, both crows’ feet around the eyes,
and the nasal labial folds extending downwards from the nostrils
along the cheeks. These results compare favorably with Golovin-
sky et al.[2006], who provided the input data for this example –
their parametric synthesis algorithm does not replicate such large
scale structures.

5.5 Performance

Our system runs at interactive rates. The MeshMatch portion of the
algorithm takes only 5 iterations and 6.5 seconds to converge for
a mesh with 64K vertices, each represented by a 182-dimensional
feature vector. This requires no extra storage for spatial indexing
structures, beyond the nearest neighbor field itself.

The texture transfer system based on MeshMatch employs several
mesh processing steps that are not fast, but can be performed offline.
Specifically, for a mesh with 64K vertices, building the multireso-
lution data structure takes 120 seconds and building geodesic fans
takes 40 seconds. However, the remainder of the pipeline runs at
near-interactive rates: at the finest scale (64K vertex mesh), finding
nearest neighbors with MeshMatch takes 6.5 seconds per iteration,
and reconstructing the texture from the correspondence field takes
5.5 seconds per iteration. These runtimes scale linearly with the
number of vertices, so a rough preview at 16K vertices takes only
about 3 seconds. Using five EM iterations at five multiresolution
levels, the total texture transfer time is approximately 100 seconds.
Please see our accompanying video for a real-time demonstration
of our system in use.

Several further speed improvements are possible: For example,
MeshMatch presently uses a fast randomized search for vertices
but exhaustive search over orientations. Barnes et al. [Barnes et al.
2010] have demonstrated that image patch search over orientations

6
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Figure 8: Texture painting by example. Left to right: (a)input meshes with partial painted texture, (b)output meshes with texture propagated
to unpainted regions, (c) output meshes by running our algorithm only with shape (d) output meshes by using a smaller fan with only small
scale HKS to mimic Mertens et al. [2006]. Notice that (b-d) all show the opposite side of the bowl from the side shown on (a).

can also be performed efficiently using randomized search with
propagation, so we believe augmenting our method using a simi-
lar technique could result in a possible additional 10x speedup.

6 Conclusion and Future Work

This paper has described a surface correspondence algorithm based
on PatchMatch [Barnes et al. 2009] and demonstrated its use in a
variety of texture transfer applications. The most important advan-
tage of this algorithm is that it enables finding nearest neighbors be-
tween surface points in a high-dimensional feature space encoding
large-scale geometric and color features. As a result, nonparam-
eteric texture synthesis algorithms can be used to replicate large-
scale patterns like stripes from a zebra and creases from a face, in
addition to small scale patterns like pores on a face.

Our current implementation is just a first prototype and has several
limitations that suggest directions for future work.

First, our system has some parameters that must be adjusted for
each example. The main parameters we have adjusted are the start-
ing scale and the different shape-vs.-color weights for each level of
the multiresolution hierarchy – these are adjusted based on the size
of patterns in the source texture. While these parameters can be use-
ful for artistic control, it would be interesting to investigate future
methods to set them automatically based on scale-space analysis of
the source data.

Second, our interactive shape features were designed for efficient
computation, and not quality. In particular, the mapping becomes
difficult to control when more than about 15 correspondences are
added, as the influence of each point affects a large portion of the
model. In addition, one-to-many correspondences create extreme
distortion in the shape mapping in regions where the one-to-one
mapping is split to one-to-many. Although our method can still syn-
thesize plausible texture in these regions, better methods for both
global and local control are desirable.

Finally, it will be interesting to study which applications can best
leverage the types of surface correspondences found by Mesh-
Match. Unlike much of the previous work in inter-surface map-
ping, our algorithm does not aim to find a smooth, bijective map
between surfaces with low distortion everywhere. Rather, it aims
to find correspondences between points with similar features. We
have demonstrated that correspondences of this type are useful for
texture and label transfer in computer graphics, but it will be inter-
esting to see what other types of applications can benefit from this
approach (e.g., computer vision, archaeology, art, etc.).
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Figure 9: Left to right: (a) input cow with polkadot, transfered results of (b) ours, (c) of using Blended Intrinsic Maps (BIM), and (d) zebra
stripes transfered also using BIM.

Figure 11: Face detail transfer. (a) SRC detailed face (b) DST smooth face 1 with detail transfered (c) DST smooth face 2 with detail
transfered.
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