
In NPAR 2004

Interactive Rendering of Suggestive Contours with Temporal Coherence

Doug DeCarlo
Rutgers University

Adam Finkelstein
Princeton University

Szymon Rusinkiewicz
Princeton University

Abstract

Line drawings can convey shape using remarkably minimal visual
content. Suggestive contours, which are lines drawn at certain types
of view-dependent surface inflections, were proposed recently as
a way of improving the effectiveness of computer-generated line
drawings. This paper extends previous work on static suggestive
contours to dynamic and real-time settings. We analyze movement
of suggestive contours with respect to changes in viewpoint, and
offer techniques for improving the quality of strokes rendered for
a moving camera. We describe practical algorithms for rendering
drawings with contours and suggestive contours at interactive rates.
Finally, we discuss techniques for improving the visual appearance
of suggestive contours, in both the static and dynamic cases.

Keywords: non-photorealistic rendering, line drawings, silhou-
ettes, contours, differential geometry, graphics hardware

1 Introduction

Line drawings based on feature lines such as contours and creases
form the basis for many styles of non-photorealistic rendering
(NPR). DeCarlo et al. [2003] recently augmented the suite of
available line types by introducing suggestive contours—feature
lines drawn along zero crossings of radial curvature. As shown in
Figure 1(a), suggestive contours blend visually with true contours
and help convey 3D shape.

One way to think of suggestive contours is that they are contours
in nearby views. We might therefore deduce that they enjoy a
natural temporal coherence under dynamic viewing conditions:
suggestive contours in the current view are likely to resemble
those in nearby views. For example, the suggestive contours in
Figures 1(a) and (b) are similar because the views are similar. If
this is generally true, they should be amenable to rendering with a
changing camera, making them suitable for both offline animation
and real-time NPR. However, to date there has been no formal
analysis of the stability of suggestive contours in the dynamic
setting, so we do not know the conditions under which parts of
suggestive contours are more or less stable. Furthermore, current
algorithms require traversal of the entire model in order to detect
and render them—a potential challenge for real-time applications.

This paper presents theoretical and algorithmic modifications
that extend suggestive contour rendering to dynamic and real-
time settings. Section 2 offers an analysis of the stability of
suggestive contours under dynamic viewing conditions, together
with observations about where they are most likely to be located
on the surface. We show that most visible regions of suggestive

(a) (b)

(c) (d)

Color key: white = never red = most often

Figure 1: Suggestive contours in a dynamic scene: (a) contours
and suggestive contours seen from view A; (b) seen from view B;
(c) distribution of faces touched by suggestive contours as camera
moves from A to B; and (d) distribution of faces touched for views
uniformly distributed over the sphere.

contours are stable under animation: they drift slowly over the
surface for small camera changes, as seen in Figure 1(c). However,
some regions are fleeting: they move quickly over the surface for
small camera changes. These regions are obvious candidates to be
discarded or faded away.

Informed by this analysis, Section 3 steps through the suggestive
contour extraction pipeline, describing algorithmic modifications
that improve speed and quality. These techniques are largely
adapted from or inspired by methods already described in the
literature for efficient computation or rendering of true contours, for
example by stochastic search [Markosian et al. 1997], hierarchical
culling [Gooch et al. 1999; Hertzmann and Zorin 2000; Sander et al.
2000], or hardware approaches (e.g. [Raskar and Cohen 1999]).
Finally, Section 4 concludes with some areas for future work.

2 Stability and Distribution

A key challenge for various styles of NPR in dynamic settings
is maintaining temporal coherence. In this section we analyze
the stability of suggestive contours with respect to changes in
viewpoint, with the intent of understanding when renderings of
suggestive contours will exhibit good coherence. We present both
qualitative and quantitative observations about the conditions under
which suggestive contours move slowly, and observe that there
is a strong correlation between the (view-dependent) locations of
suggestive contours and the (view-independent) locations at which
the surface’s Gaussian curvature is zero. We conclude the section
with statistical surveys of the distribution of suggestive contours.

1

In NPAR 2004

p

c

w

asymptotic
directions

suggestive
contourv

c

c'

p

n

w
w'

v
v'

(a) (b)

Figure 2: (a) w is the projection of the view direction v onto
the tangent plane. At a suggestive contour, w points in one of
the asymptotic directions of the surface—directions in which the
curvature is zero. (b) Suggestive contours do not move when the
camera motion is in the radial plane (from c to c′) because the
direction of w does not change (only the length of w′ is different,
not its direction)

The remainder of this paper assumes a basic familiarity with
suggestive contours—a summary is presented in Appendix B. The
first definition of suggestive contours is the most relevant: locations
where the radial curvature is zero (κr = 0) and its derivative along
the projected view direction w is positive (Dwκr > 0). Portions
of this section also make use of concepts from the differential
geometry of surfaces, briefly described in Appendix A, but our
main conclusions do not require a detailed understanding of this
mathematical background.

2.1 Motion of Suggestive Contours

Suggestive contours are view dependent; they can slide along the
surface when the viewpoint changes. This, however, occurs only
for some camera motions. For example, in Figure 2(b), as the
camera moves from c to c′ the suggestive contour at p does not
move because the direction of w does not change. In contrast,
any motion of the camera out of the plane of this picture—which
changes w—causes the suggestive contour to move.

When the suggestive contour moves, how do we associate
points on the curve before the motion with those on the curve
afterward? (This question is explored for true contours by
Kalnins et al. [2003].) Of all possible ways of tracking suggestive
contour curves over time, we begin by assuming that the velocity of
points on the curve is perpendicular to the curve itself (on the sur-
face). Our rationale is that on the interior of the curve, the tangential
component of velocity will not be observable from one frame to the
next and can therefore be safely ignored. Since the curves lie along
the zero set of κr, its gradient ∇κr will be perpendicular to the curve
and lie in the tangent plane at such points. Therefore, the direction
of movement is along ∇κr . (Although ∇κr can be computed nu-
merically, analytic expressions for it are derived in Appendix C.)
Next we find the speed (signed magnitude of velocity).

We first discuss qualitatively how the local geometry contributes
to this speed. Consider a point p located on a suggestive contour.
As shown in Figure 2(a), this can only occur when the surface at p is
viewed along one of its asymptotic directions. As the view changes,
the suggestive contour will move to a nearby point at which one
of the asymptotic directions points along the new projected view
direction. If asymptotic directions vary slowly across the surface,
the suggestive contour will tend to travel further to reach a point
with the required asymptotic direction. We therefore expect that
the speed of suggestive contours will be highest in areas where the
asymptotic directions vary slowly.

distance
along

surface

κr

0

κr from c κr from c + δc

slope = ||∇κr|| } ∂κr

∂c
. δc

p p'
∇κr

c + δc

p

p'

c

(a) (b)

Figure 3: Suggestive contours and camera motion. (a) In a normal
slice of the surface that contains ∇κr (but not the camera), as the
camera moves from c to c + δc, a point on the suggestive contour
slides from p to p′. (b) The distance p travels along the surface
in the direction of ∇κr depends on two factors: κr is offset by
∂κr/∂c · δc due to the camera motion δc; and the slope of these
lines denotes the local gradient magnitude of κr. These factors are
the numerator and denominator, respectively, of equation (1).

2.2 Speed of Motion

Let us now quantify the intuition developed above by writing down
the formula for the speed of a moving suggestive contour. We derive
the speed using the implicit function theorem [Munkres 1991],
which explains how an implicit function varying over time induces
motion in its iso-contours. In our case, the implicit function is κr,
and we are interested in the motion of its zeros. The velocity at a
point p for a small camera motion δc can be shown to be

vsc = −
(

∂κr

∂c
·δc

)/∥∥∇κr
∥∥. (1)

The numerator of this expression is the change in κr given a camera
motion δc: if κr changes more quickly, we expect the velocity of
motion to be higher. The denominator1 is the “steepness” of the
zero crossing (Figure 3): a shallow zero crossing will cause more
motion of the suggestive contour. This observation corroborates the
intuitive argument in the end of Section 2.1.

While it would be possible to compute this velocity numerically
(for a particular δc), we prefer the use of analytic expressions
for the derivatives in the above; they are derived in Appendix C.
In particular, ∂κr/∂c is a vector in the tangent plane that is
perpendicular to w. Thus, we see that for the speed of a suggestive
contour to be nonzero, δc must not lie in the radial plane; and the
greatest speed will be achieved when δc is perpendicular to both w
and n.

If we are interested in the maximum magnitude of vsc over any
unit-length direction of camera change, the speed is simply:

max |vsc| =
∥∥∥∥∂κr

∂c

∥∥∥∥
/∥∥∇κr

∥∥ (2)

Multiplying this quantity by ‖v‖ gives the maximum speed for an
angular camera change (about p). Scaling it by cosθ (where θ is
the angle between n and v) gives the projected velocity.

One could determine with a similar computation the speed of
the ending points of suggestive contours (where Dwκr = 0) in a
the direction of w (which is tangent to the curve at such points).
While the effects of such growing and lengthening of suggestive
contours are indeed visible in animations, computing the speed of
this motion would involve fourth derivatives of a surface, which are
difficult to use effectively. Therefore, as described in Section 3.4,
we fade strokes out gradually as Dwκr approaches zero to remove
any visual abruptness that might result from this kind of motion.

1Had we in Section 2.1 defined the velocity of points on the suggestive
contour to be along w (in the radial plane) rather than along ∇κr , the
denominator would instead be |Dwκr |

/‖w‖.

2

In NPAR 2004

Faces 8k 22k 97k 250k
Percentage

of faces 50% 33% 57% 65%
with some K < 0

Percentage
with s. c. 37% 24% 45% 60%

in some view

Table 1: Performance of (view-independent) rejection of faces with
positive Gaussian curvature (K > 0) at all vertices.

2.3 Suggestive Contours and Parabolic Lines

We find that stable suggestive contours are often located near the
parabolic lines—curves where the Gaussian curvature K is zero.
In Figure 4 left, note how the presence of suggestive contours is
most likely (considered across all viewpoints) near parabolic lines
(dark grey lines in the right image). The suggestive contour actually
touches parabolic lines at points where w aligns with the principal
curvature direction whose curvature is zero. Furthermore, at such
points, the suggestive contour is tangent to the parabolic line, and
is very stable (its speed is zero). See Appendix D for details.

2.4 Distribution of Suggestive Contours

When considering whether a given face can contain a piece of a
suggestive contour, there are a few tests we can apply to reject
many faces without performing expensive computation. Here we
consider two simple examples: rejecting locations where K > 0 and
backface culling. The benefit of such strategies becomes clear by
studying the distribution of suggestive contours on typical models.

One of the simplest strategies is to trivially reject all faces that
have positive Gaussian curvature at all three vertices. The reasoning
is simple: because radial curvature κr must be between the principal
curvatures, zeros of κr can only occur if the principal curvatures
have opposite sign. Thus, areas of positive Gaussian curvature (for
which the principal curvatures have the same sign) may not contain
suggestive contours. Such areas are colored white in Figure 4, right.
Because this test is view-independent, it is possible as a preprocess
to extract only those faces of the mesh that have negative Gaussian
curvature at some vertex, and only loop over those at each frame.

Figure 4: Comparison of density of suggestive contours considered
over all viewpoints (left) with lines of zero Gaussian curvature,
drawn in dark grey (right). Colors on left correspond to legend in
Figure 1. Light grey shading on right indicates regions of negative
Gaussian curvature. Note that suggestive contours can only occur
in areas with K < 0, but most frequently appear where K is near 0.
White regions (never touched) correspond with areas where K > 0.

Faces 8k 22k 97k 250k
Avg. percentage

of faces 2% 2% 4% 10%
with s. c.

Avg. percentage
of faces with 0.2% 0.5% 1.6% 4%

frontfacing s. c.

Table 2: Effect of (view-dependent) backface culling on suggestive
contour extraction, averaged over many (evenly-distributed) view-
points. Notice that a surprisingly large fraction of faces containing
suggestive contours (60-90%) are backfacing, suggesting that back-
face culling is strongly effective and should be performed as early
as possible in the suggestive contour extraction algorithm.

Table 1 shows the benefit of rejecting faces where the Gaussian
curvature is positive: we are able to trivially reject (offline or upon
startup) between one third and one half of the faces of the model.

A second trivial test is to reject faces oriented away from the
viewer. In contrast with contours, suggestive contours are always
drawn on faces clearly oriented towards the viewer. It is therefore
safe to perform backface culling and, as shown in Table 2, it
effectively eliminates a large number of faces from consideration.
Surprisingly, while we expect half the faces in the model to be
backfacing, it turns out that a larger fraction (60-90%) of faces
with suggestive contours are backfacing, so the payoff for this test
is substantial. Figure 5 shows an extreme example: roughly 90%
of the suggestive contours on this torus model are backfacing. A
potential avenue for future work is understanding the class of 3D
shapes for which such biases occur.

3 Efficient and High-Quality Extraction

We now consider the problem of visualizing suggestive contours on
large models at interactive rates. The baseline algorithm considers
each face in the mesh independently, evaluates κr at each vertex,
interpolates to find zero crossings, and applies appropriate cutoff
tests [DeCarlo et al. 2003]. We present modifications to each stage
of this algorithm that improve the efficiency and quality of extracted
and rendered strokes. Specifically, we consider techniques for
not searching over all faces (Section 3.1), modifications to how
lines are extracted within a face (Section 3.2), different strategies
for trimming the extracted lines (Section 3.3), and a technique
for fading lines to improve coherence (Section 3.4). Finally, we
consider a fundamentally different rendering approach that exploits
graphics hardware (Section 3.5).

Figure 5: On many objects the backfacing suggestive contours are
more prevalent than frontfacing ones. On this torus, the backfacing
suggestive contours (shown in light blue) are collectively about ten
times the length of the frontfacing ones (dark blue).

3

In NPAR 2004

3.1 Testing Fewer Faces

The brute force method for extracting true contours is to traverse the
entire mesh looking for zero crossings of n · v. Researchers have
investigated a variety of stochastic or hierarchical techniques for
accelerating this process. For suggestive contours we also search
for zero crossings (of κr in our case), but the same general strategies
may be applied. This section compares a few approaches.

Randomized techniques: Markosian et al. [1997] proposed a
stochastic algorithm for finding zero crossings of n · v on a mesh.
Their method searched for zero crossings on edges of the mesh, but
it was later adapted by Kalnins et al. [2002] to search over faces
(producing cleaner loops). The same approach can be applied to
suggestive contours. First, we choose a random face in the mesh
and check for a zero crossing of κr. If one is found, we traverse the
mesh, following the loop until we find a face that has already been
visited. Next we repeat, choosing another face at random. This is
repeated for a small, constant fraction of the faces of the mesh.

Markosian et al. proved that for any acceptably-small probability
of missing a face, a constant fraction of the number of faces of the
mesh may be tested (and that this fraction scales with the square
root of the number of faces in the mesh). Thus, for sufficiently-
large meshes the extra cost of traversing the mesh by following
loops will be outweighed by the benefit of not visiting all faces.
Their proof applies in the case of suggestive contours as well.
They also propose a simple improvement that greatly improves
the performance of the algorithm: in addition to checking random
faces, also check a subset of the faces for which (suggestive)
contours were found in the previous frame. This works well for
suggestive contours as we have found that they are quite stable on
the mesh from one frame to the next.

In addition, we have found that since more than half of the
suggestive contour is backfacing, we get better performance if we
discontinue traversal when a loop turns to be backfacing, in which
case we have to walk both directions along the zero-set because we
do not know whether we will make it around the entire loop. (This
test cannot be applied to contours as they lie on the boundary of
front and backfacing portions of the mesh.)

Finally, we have found that we get a slight performance benefit
if, when testing random faces, we “walk” in the direction in which
we would expect to find a suggestive contour. This is achieved
as follows. Suppose we find that a randomly chosen face (or one
chosen from the previous frame) fails to contain the zero crossing.
In that case all three of the vertices have either positive or negative
κr. Without loss of generality assume they are positive. We know

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1

Fr
ac

tio
n

of
 s

ug
ge

st
iv

e
co

nt
ou

rs
 d

ra
w

n

Fraction of faces used as seeds

Previous frame + random + walk
Previous frame + random
Random + walk
Random

Figure 6: Randomized techniques can reduce the number of faces
that need to be tested for suggestive contours.

that the zero crossing must be somewhere ”downhill” and that the
steepest descent will be in the direction of −∇κr. We want to walk
from face to face in this direction, which we coarsely estimate by
checking κr on the three opposite vertices on neighboring faces and
choosing the face with the smallest value. We continue until either
we find the zero crossing or we have exceeded a maximum traversal
count.

Figure 6 contains a plot showing how many of the suggestive
contours are drawn (not missed) when a given fraction of the overall
number of faces are checked. This data is for a rotation of the
cow model in which consecutive frames are roughly 1 degree of
rotation apart. The random curve is the basic randomized method
with no embellishments. Adding the walk improves the result
slightly, but a much greater improvement comes from checking the
suggestive contours from the previous frame. This is not surprising,
since the cow is rotating fairly slowly and therefore the suggestive
contours have strong temporal coherence. When we move the cow
quickly the coherence is not as strong and the improvement from
checking previous frames is reduced; however, in such cases it is
harder to observe temporal coherence anyway. Furthermore, even
when a suggestive contour is missed in one frame it is likely to
be discovered in the next one or two frames, so the “failure” case
is that the suggestive contour appears one or a couple of frames
late, which is difficult to notice. Finally, the combined effects are
the topmost curve. Based on these data the benefit of walking
probably does not justify the cost (of either the computation or the
implementation) though there may be other situations where the
tradeoffs favor walking.

Hierarchical techniques: Several hierarchical culling methods
have been proposed for avoiding traversal of the entire mesh when
looking for contours (e.g. [Gooch et al. 1999; Hertzmann and Zorin
2000; Sander et al. 2000]). These approaches may be adapted to
work for suggestive contours as well.

We implemented a variation of the cone tree hierarchy used by
Sander et al. [2000] to store cones of normals (which can then be
used to quickly check if there might be a contour in a given subtree).
In our case, rather than storing normals we store the asymptotic
directions (Appendix B), so at each node we store a pair of cones.
To aggregate nodes in order to build nodes interior to the tree we
associate them by checking which pairing is closest (i.e., provides
the narrowest cones).

In our experiments we found that typical meshes are modeled
so coarsely that a significant fraction of the faces contain zero
crossings of κr . In such cases the brute force approach (which
simply traverses arrays in memory and achieves very good cache
performance) is faster than the hierarchical method (which suffers
from poor cache performance when traversing the tree). Therefore
we abandoned this approach after attempting only a fairly naive
implementation. Several strategies might ameliorate this problem.
First, Sander et al. constructed trees where fairly large subtrees
were collapsed into a single node using a compact data structure
that produced good cache behavior at the leaves; perhaps such an
approach would work with suggestive contours as well. Second, we
believe that since significant portions of the loops are backfacing,
perhaps a hybrid structure that allows for fast testing for both the
asymptotic directions and whether these areas are front or back
facing would help.

3.2 Interpolating for Better Approximations

Many of the computations for suggestive contours involve comput-
ing quantities at vertices of the mesh, and interpolating those values
across the polygons. Examples include locating the points where
κr = 0 and determining the value of Dwκr at such points. As these
quantities do not vary linearly across the triangle, barycentric in-

4

In NPAR 2004

Figure 7: Low-resolution model with suggestive contours found
using linear (left) or cubic Hermite (right) interpolation. The latter
approach uses not only the value but also the gradient of κr at each
vertex to improve the estimated locations of κr = 0.

terpolation methods will introduce errors. This section describes
methods we found to be effective in alleviating such errors.

First is a more accurate approach for determining the mesh
locations where κr = 0. This is particularly relevant when the
triangles are large relative to the curvature variation. Determining
these locations is easily accomplished for each mesh triangle by
computing κr at each vertex, and assuming that it varies linearly
across the triangle to find the zeros. This approach has been used
to locate contours by interpolating values of n · v [Hertzmann and
Zorin 2000]. Because suggestive contours are not viewed edge-
on like contours are, errors introduced by the linearization can
become quite visible. Derivatives of κr provide more information
for how κr varies inside each triangle. To keep things simple,
we still only find zeros on the polygon edges, and connect them
with line segments. Furthermore, we only search for potential zero
crossings on an edge when the signs of κr differ at its vertices. (This
retains the ability to trivially reject polygons by checking for sign
changes in κr across their vertices; but this causes problems that are
discussed below.)

We start with an edge consisting of vertices p0 and p1. In
terms of an interpolation parameter α , we compute the curvature
κ(α) along this edge so that it agrees with κr and its derivatives as
follows:

κ(0) = κr(p0)
κ(1) = κr(p1)

κ ′(0) = ∇κr(p0) · (p1 −p0)
κ ′(1) = ∇κr(p1) · (p1 −p0)

We interpolate using Hermite interpolation, and determine its zeros
using a binary search (i.e. the bisection method). Comparative
results are shown in Figure 7, with a notable difference marked by
a circle.

This approach has limitations, however. Hermite interpolation
uses cubic basis functions, which might have three zero crossings,
so that a triangle might contain more than one part of a suggestive
contour. In our implementation, we sidestep this issue. When an
edge is crossed three times, we only find the zero in the middle.
This approach entirely misses cases with two zero crossings, as the
signs at the vertices will not differ in that case. In practice, these
limitations cause the loops of κr = 0 to move discontinuously—
they might skip across one triangle. We have observed that this is
infrequent, and typically happens where Dwκr is nearly zero, and so
may have been discarded. Fixing this limitation is straightforward,
but the implementation is complex (as it has many special cases).

Once the locations where κr = 0 are determined, certain quanti-
ties must be computed at these locations, such as Dwκr or the speed
from equation (2), in order to isolate which of them are in fact sug-
gestive contours. These quantities are computed at the vertices, and
interpolated. We prefer not to use differential information for this—
that would require fourth derivatives. Instead, care is taken to use
expressions that will linearly interpolate effectively.

The derivations in Appendix C are general–they provide expres-
sions for any value of κr. However, we are only interested in
computing quantities such as Dwκr on a suggestive contour, where
κr = 0. κr typically occurs in these expressions, and we can can-
cel the corresponding terms and interpolate the simplified versions.
When we do this, the results improve in locations where the sugges-
tive contours were heavily influenced by noise. We describe and an-
alyze further possible simplifications based on the mathematics of
suggestive contours in Appendix C. This approaches improves the
results in noisy situations, but by no means eliminates the problem.

3.3 Trimming Moving Suggestive Contours

Fast derivative computation: One of the basic tests that must
be applied to trim the full κr = 0 loops to just the suggestive
contours is testing that Dwκr > 0. That is, we must evaluate
how the radial curvature changes in the direction w. A simple,
but slow, method is to evaluate this derivative numerically at each
vertex, by comparing the computed κr to the value computed at the
neighboring vertices [DeCarlo et al. 2003]. We propose a faster
and more direct method based on evaluating Dwκr in terms of the
derivative-of-curvature tensor C, described in Appendix A.

Note that C(w,w,w) by itself is not the value we need: this gives
the directional derivative in direction w of the normal curvature in
the direction w. However, it does not take into account the fact that
w itself varies over the surface; thus, the expression for Dwκr has
an additional term depending on the derivative of the projected view
direction, introduced by the chain rule.

In Appendix C, it is shown that at suggestive contours, the
derivative of radial curvature is just

Dwκr

‖w‖ =
C(w,w,w)

‖w‖3 +2K cotθ (where κr = 0), (3)

which depends only on C, the Gaussian curvature K = κ1κ2,
and θ—the angle between n and v. The curvatures and θ are
available, since they are necessary for contour and suggestive
contour extraction. The tensor C is computed during preprocessing,
using an algorithm analogous to that for computing curvature: just
as II is estimated by considering the variation of the normal in
different directions on the surface, C is estimated by considering
the variation of II in different directions [Rusinkiewicz 2004].
Thus, Dwκr can be evaluated using a simple, local (per-vertex)
computation at run time, and does not require an iteration over the
neighboring vertices.

Other strategies for trimming suggestive contours: As men-
tioned earlier, the original implementation of suggestive contours
uses two formulas for trimming the loops obtained as zeros of κr : a
test on Dwκr/‖w‖ and a test on θ—the angle between n and v. We
have investigated other possible formulas for trimming suggestive
contour loops. In particular, we examine the effects of combining
the tests on Dwκr/‖w‖ and θ into a single test. We also investigate
using a threshold on the speed of suggestive contour motion.

Before we begin, we can produce thresholds that work across
a range of objects by normalizing for object size—curvatures are
not scale invariant. We determine an approximate object scale by
computing s as the median length of an edge in the mesh. If the
mesh has been constructed economically, then s will indicate the
“feature size” of the object. All curvatures (such as κr) are scaled
by s, and derivatives of curvature (such as Dwκr or ∇κr) by s2.

Although the underlying justification for using thresholds on
Dwκr/‖w‖ and θ are distinct, they can be productively combined
into a single test, where suggestive contours are retained when:

sin2 θ
Dwκr

‖w‖ > td . (4)

5

In NPAR 2004

(a) (b) (c)

Figure 8: Effect of adding cutoff based on stroke speed. (a)
Contours and suggestive contours drawn from one view, using
a cutoff based only on Dwκr. (b) Another view: note that the
suggestive contours have moved considerably relative to the model.
(c) The same view as (b), but a cutoff based on suggestive contour
speed has been applied.

The separate test on θ is simply encapsulated in the sin2 θ term:

sin2 θ =
w ·w
v ·v = 1−

(
n ·v
‖v‖

)2

.

Empirically, we have found that no important control is lost with
a single threshold—separating them is not required for obtaining
cleaner results. When multiplied by (v · v)‖w‖, this combined test
is precisely equal to second derivatives of n · v towards w on a
suggestive contour:

Dw (Dw(n ·v)) = Dw ((w ·w)κr) = (w ·w)Dwκr (where κr = 0)

(see [DeCarlo et al. 2003] and Appendix C for details). This is quite
relevant—recall how the second definition of suggestive contours
identifies them as minima of n · v in the direction w. When κr is
scaled by w ·w, the resulting quantity is defined when n and v line
up. At such locations, (w ·w)κr is zero. Nearby these locations,
which is where θ is close to zero, the derivative of (w · w)κr is
likely to be small as ‖w‖ is small—this suggests the two tests can
be merged effectively.

We further discard suggestive contours that move too quickly
across the surface. This is easily accomplished by applying a
threshold to equation (2), so that suggestive contours are retained
when:

‖v‖ max |vsc| < tv (5)

The additional factor of ‖v‖ removes the dependence of vsc on the
distance to the camera, so that only angular motion of the camera
matters. Using equation (2) indicates we are removing suggestive
contours that move quickly across the surface under any camera
motion. This is because any suggestive contour which is unstable
with respect to small camera movements is not likely to convey
shape effectively. Figure 8 shows the effectiveness of this extra
cutoff at removing quickly-moving portions of suggestive contours.

It is also possible to take into account the actual camera motion
δc (by using equation (1), for instance). However, this tends
to produce isolated segments of suggestive contours—where w
happens to be parallel to the camera motion. It also introduces
another coherence problem whereby more suggestive contours
appear as the camera decreases in speed.

Recall how suggestive contours are drawn from loops on the sur-
face which are the solution of κr = 0. As the camera moves, these
loops slide along the surface (with velocity given by equation (1)).
The speed of these loops tends to be high in locations influenced
by noise (the test in equation (2) typically discards these). Aside
from this, the speed of points where the loops are splitting apart or
merging together tends to be quite high as well. It is the sugges-
tive contours at these locations that equation (5) eliminates. The
end result is simply that suggestive contours are not drawn while

splitting and merging, which would otherwise be a distraction in an
animation.

3.4 Fading Strokes on Suggestive Contours

The previous section described tools for discarding suggestive
contours that are unstable (with respect to small changes in
viewpoint)—this greatly improves coherence in animations of sug-
gestive contours. Its output is a series of strokes—sets of line
segments that collectively form the suggestive contour. However,
the use of a single threshold causes breaking-up and flickering of
strokes over time; there are still problems with coherence.

Broken strokes (which can appear as dotted lines in extreme
cases) were addressed by DeCarlo et al. [2003] using a post-
processing phase that fills in small gaps and removes isolated
segments using a method similar to hysteresis thresholding in
Canny edge detection. While this produces reasonable results, it is
not temporally coherent—large strokes appear or disappear across
a single frame. One possible solution keeps track of strokes across
viewpoint changes [Kalnins et al. 2003]. A much simpler approach
varies the thickness or opacity of strokes over time [Freudenberg
et al. 2002; Kowalski et al. 1999; Markosian et al. 2000; Praun
et al. 2001].

The following describes a simple stroke fading scheme suitable
for rendering suggestive contours. It computes a positive weight
w for every point on the stroke—this weight is zero when the
stroke should be drawn invisibly. Our approach varies the darkness
of a stroke in a way that matches the tests in equation (4) and
equation (5). For each stroke point, we compute how much it
exceeded the threshold for each of the two tests–i.e., the difference
between the right and left sides of equations (4) and (5). Then, w
is simply the product of these values. The locations of where the
cutoffs have been applied will be invisible, as they have w = 0. (We
didn’t find it necessary to introduce parameters to control this.)

Our implementation does not vary the thickness of the stroke—
just its color. We compute the adjusted stroke color as blending
between the background color (white) [1,1,1] and the stroke color
[r,g,b] using the weight w:

[1,1,1]+w · [r,g,b]
1+w

Figure 10 demonstrates unweighted (left) and weighted (center)
renderings.

It would also be possible to ensure continuity in stroke weight at
locations where a suggestive contour smoothly extends a contour.
One simply constrains w = ∞ when n ·v = 0. We haven’t found this
to be necessary; the suggestive contours that cross the contours are
quite stable at that location, and w is already sufficiently large.

3.5 Using Graphics Hardware

As an alternative to rendering suggestive contours by extracting
them as strokes, we have investigated a rendering algorithm that
uses the texture mapping capability of graphics hardware. To do
this, we first set up a texture map as shown in Figure 9. The
texture map is mostly white, with a thin stripe of black texels in
the center. At run time, we compute texture coordinates such that
the horizontal dimension is indexed by κr, with κr = 0 accessing
texels near the center. The vertical dimension is indexed by
(sin2 θ)Dwκr

/‖w‖, which effectively implements the single-test
cutoff described in Section 3.3. Note that the different mipmap
levels for the texture map are constructed with a black stripe of the
same width in each level, rather than by successively filtering down
a single high-resolution texture map. This ensures that the rendered
lines will have approximately constant width on the screen.

6

In NPAR 2004

In
de

xe
d

by
 s

in
2 θ

κ r
D

w
w

/ |
|

 ||

κrIndexed by

Figure 9: Texture map used to draw suggestive contours. We
pass in κr and (sin2 θ)Dwκr

/‖w‖ as the texture coordinates at
each vertex, so that the black texels are used for κr near zero and
(sin2 θ)Dwκr

/‖w‖ > ε .

The effect of our texture-mapped suggestive contour rendering
(together with an analogous algorithm for rendering contours) is
shown in Figure 10, right. For comparison, we show renderings
of the same mesh using constant-weight and faded strokes, as
described earlier. Because the bottleneck in all cases is computation
of radial curvature and its derivative, we have observed rendering
performance to be roughly equivalent in both cases. Running on
a PC equipped with a 1.8 GHz P4 CPU and NVidia GeForce 3
graphics card we found the rendering frame rate for all the models
we tested ranged between 400fps for the torus (8k faces) and 10fps
for the David’s head (250k faces).

Although we have implemented only the most basic and portable
algorithm for graphics hardware-assisted suggestive contour ren-
dering, we believe that variants that take full advantage of the capa-
bilities of modern graphics cards would improve performance:

• Multitexturing could be used to combine the rendering of con-
tours and suggestive contours, which are currently rendered in
separate passes.

• Programmable vertex shaders could be used to compute radial
curvature and its derivative in the GPU, given the location of
the viewer and the precomputed (view-independent) values of
II and C.

• Programmable fragment shaders could eliminate the need for
texture lookup by directly comparing the interpolated κr and
Dwκr to the correct thresholds. This might also provide better
control over the screen-space width of the rendered lines.

4 Conclusions and Future Work

As presented previously, suggestive contours complement true
contours as informative components for single-frame line drawings
made from 3D models. In this work we analyze their stability with
regard to a moving camera, and offer ways to improve temporal
coherence and rendering performance in this dynamic setting. This
investigation points toward several areas for future work:

Deforming geometry: Section 2.1 analyzes the stability of sug-
gestive contours in view of a moving camera. This approach might
be adapted to account for deforming geometry, a critical step in the
use of suggestive contours for rendering animation. Furthermore,
to implement a real-time system for drawing animated suggestive
contours, algorithms remain to be found for efficient processing of
the entire range of motion of the model over time.

Faster extraction and rendering: While we offer performance
improvements for extraction and rendering of suggestive contours
in interactive applications, a number of opportunities remain for
further accelerating this process. Section 3.1 touches on a few algo-
rithms for efficient extraction but also mentions some possible areas

Figure 10: Different drawing styles produced by our interactive
suggestive contour viewer. Left: constant-weight strokes. Center:
faded strokes. Right: texture-mapped rendering. We find that
the fading of strokes provided either explicitly (as at center) or
implicitly due to interpolation within texture maps (as at right)
helps the perceived frame-to-frame coherence.

for improvement over these algorithms. Likewise, Section 3.5 de-
scribes our scheme for rendering suggestive contours using texture
mapping and also points out some opportunities to move computa-
tion from the CPU into programmable hardware.

Acknowledgments

Thanks to Spike Hughes, Rob Kalnins, Anthony Santella and
Matthew Stone. This material is based upon work supported by
National Science Foundation under the grant SGER 0227337 and
by Intel Research Labs (AIM program).

References

CIPOLLA, R., AND GIBLIN, P. J. 2000. Visual Motion of Curves and
Surfaces. Cambridge University Press.

DECARLO, D., FINKELSTEIN, A., RUSINKIEWICZ, S., AND SANTELLA,
A. 2003. Suggestive contours for conveying shape. ACM Transactions
on Graphics 22, 3 (July), 848–855.

DO CARMO, M. P. 1976. Differential Geometry of Curves and Surfaces.
Prentice-Hall.

FREUDENBERG, B., MASUCH, M., AND STROTHOTTE, T. 2002. Real-
time halftoning: A primitive for non-photorealistic shading. In Render-
ing Techniques 2002: 13th Eurographics Workshop on Rendering, 227–
232.

GOOCH, B., SLOAN, P., GOOCH, A., SHIRLEY, P., AND RIESENFELD, R.
1999. Interactive technical illustration. In Proc. of the 1999 symposium
on Interactive 3D graphics, 31–38.

GRAVESEN, J., AND UNGSTRUP, M. 2002. Constructing invariant fairness
measures for surfaces. Advances in Computational Mathematics 17, 67–
88.

HERTZMANN, A., AND ZORIN, D. 2000. Illustrating smooth surfaces. In
Proceedings of ACM SIGGRAPH 2000, 517–526.

KALNINS, R. D., MARKOSIAN, L., MEIER, B. J., KOWALSKI, M. A.,
LEE, J. C., DAVIDSON, P. L., WEBB, M., HUGHES, J. F., AND

FINKELSTEIN, A. 2002. WYSIWYG NPR: Drawing strokes directly
on 3D models. ACM Transactions on Graphics 21, 3 (July), 755–762.

KALNINS, R. D., DAVIDSON, P. L., MARKOSIAN, L., AND FINKEL-
STEIN, A. 2003. Coherent stylized silhouettes. ACM Transactions on
Graphics 22, 3 (July), 856–861.

KOENDERINK, J. J., AND VAN DOORN, A. J. 1998. The structure of relief.
Advances in Imaging and Electron Physics 103, 65–150.

KOENDERINK, J. J. 1984. What does the occluding contour tell us about
solid shape? Perception 13, 321–330.

KOENDERINK, J. J. 1990. Solid Shape. MIT press.

7

In NPAR 2004

KOWALSKI, M. A., MARKOSIAN, L., NORTHRUP, J. D., BOURDEV, L.,
BARZEL, R., HOLDEN, L. S., AND HUGHES, J. 1999. Art-based
rendering of fur, grass, and trees. In Proceedings of ACM SIGGRAPH
1999, 433–438.

MARKOSIAN, L., KOWALSKI, M. A., TRYCHIN, S. J., BOURDEV, L. D.,
GOLDSTEIN, D., AND HUGHES, J. F. 1997. Real-time nonphotorealis-
tic rendering. In Proceedings of SIGGRAPH 1997, Computer Graphics
Proceedings, Annual Conference Series, 415–420.

MARKOSIAN, L., MEIER, B. J., KOWALSKI, M. A., HOLDEN, L. S.,
NORTHRUP, J. D., AND HUGHES, J. F. 2000. Art-based rendering
with continuous levels of detail. In NPAR 2000 : First International
Symposium on Non Photorealistic Animation and Rendering, 59–66.

MORETON, H., AND SÉQUIN, C. 1992. Functional optimization for fair
surface design. In Proceedings of ACM SIGGRAPH 1992, vol. 26, 167–
176.

MUNKRES, J. 1991. Analysis on Manifolds. Addison-Wesley.

PRAUN, E., HOPPE, H., WEBB, M., AND FINKELSTEIN, A. 2001. Real-
time hatching. In Proceedings of ACM SIGGRAPH 2001, Computer
Graphics Proceedings, Annual Conference Series, 579–584.

RASKAR, R., AND COHEN, M. F. 1999. Image precision silhouette edges.
In 1999 ACM Symposium on Interactive 3D Graphics, 135–140.

RUSINKIEWICZ, S. 2004. Estimating curvatures and their derivatives
on triangle meshes. Tech. Rep. TR-693-04, Princeton University,
Department of Computer Science.

SANDER, P. V., GU, X., GORTLER, S. J., HOPPE, H., AND SNYDER, J.
2000. Silhouette clipping. In Proceedings of ACM SIGGRAPH 2000,
Computer Graphics Proceedings, Annual Conference Series, 327–334.

WHELAN, J. C., AND VISVALINGAM, M. 2003. Formulated silhouettes for
sketching terrain. In Theory and Practice of Computer Graphics 2003,
90–96.

A Differential Geometry

This section provides the necessary background from differential
geometry to understand the formulas and derivations in this paper.
For more details, consult [Cipolla and Giblin 2000; do Carmo 1976;
Koenderink 1990]. Consider a smooth and closed surface S and a
point p ∈ S sitting on the surface.

First-order structure The first-order approximation of this sur-
face around this point is the tangent plane there; the unit normal
vector n at p is perpendicular to this plane. (We use outward-
pointing normal vectors.) Directions in the tangent plane at p can be
described with respect to three-dimensional basis vectors {su,sv}
that span the tangent plane. Generally, the three-dimensional vec-
tor x that sits in the tangent plane is written in local coordinates as
[u v]T, where x = usu +vsv.

Second-order structure The unit normal n is a first-order quan-
tity; it turns out that the interesting second-order structures involve
derivatives of normal vectors. A directional derivative of a function
defined on the surface (the unit normal being one possible function)
specifies how that function changes as you move in a particular tan-
gent direction. For instance, the directional derivative Dxn at p
characterizes how n “tips” as you move along the surface from p
in the direction x. (This same relationship can be conveyed by the
differential dn(x), which describes how n changes as a function of
a particular tangent vector x.) Since derivatives of unit vectors must
be in perpendicular directions, the derivatives of n lie in the tangent
plane. This directional derivative can be written as:

Dxn = nusu +nvsv, (6)

where [
nu
nv

]
=

[
L M
M N

][
u
v

]
, (7)

where the entries L, M and N depend on the local surface
geometry—see [Cipolla and Giblin 2000] for details. Note that Dxn
depends linearly on the length of x.

Now, suppose we have two tangent vectors x1 = u1su + v1sv
and x2 = u2su + v2sv. The second fundamental form II at p is a
symmetric bilinear form specified by:

II(x1,x2) = (Dx1 n) ·x2 = (Dx2 n) ·x1

=
[

u1 v1
][

L M
M N

][
u2
v2

]
.

(8)

(This differs in sign from [do Carmo 1976] due to our choice of
outward pointing normals.) Since II is symmetric, we use II(x) as
a shorthand to indicate only one vector product has been performed;
so II(x) = Dxn, and II(x1,x2) = II(x1) ·x2 = II(x2) ·x1.

The normal curvature of a surface S at a point p measures its
curvature in a specific direction x in the tangent plane, and is
defined in terms of the second fundamental form. The normal
curvature, written as κn(x), is:

κn(x) =
II(x,x)

x ·x .

Notice how the length and sign of x do not affect the normal cur-
vature. On a smooth surface, the normal curvature varies smoothly
with direction x, and ranges between the principal curvatures κ1
and κ2 at p. These are realized in their respective principal curva-
ture directions e1 and e2, which are perpendicular and unit length.

The Gaussian curvature K is equal to the product of the principal
curvatures: K = κ1κ2, and the mean curvature H is their average:
H = (κ1 +κ2)/2. Wherever K is strictly negative (so that only one
of κ1 or κ2 is negative), there are two directions along which the
curvature is zero. These directions, called the asymptotic directions,
play a central role in where suggestive contours are located.

The vector Dxn can be broken into two components; in the
direction of x, and perpendicular to it. (This will be a useful tool in
simplifying the analytic expressions derived in Appendix C.) The
length of the component in the direction of x is simply the normal
curvature κn. The length of the perpendicular component is known
as the geodesic torsion τg, and describes how much the normal
vector tilts to the side as you move in the direction of x. If we
define its perpendicular x⊥ as:

x⊥ = n×x

then we have:

Dxn = II(x) = κn(x)x+ τg(x)x⊥ (9)

It follows that τg(x) = II(x,x⊥)/x ·x. Furthermore, when x is an
asymptotic direction, Dxn is perpendicular to x and it can be shown
that τ2

g (x) = −K [Koenderink 1990].

Principal coordinates Using the principal directions {e1,e2} as
the local basis leads to principal coordinates. In principal coor-
dinates, the matrix in equations (7) and (8) is diagonal with the
principal curvatures as entries:[

κ1 0
0 κ2

]
.

Given [u v]T = [cosφ sinφ]T, where φ is the angle measured be-
tween a particular direction and e1, this leads to the well-known
Euler formula for normal curvature:

κn(φ) = κ1 cos2 φ +κ2 sin2 φ

and the following for the geodesic torsion:

τg(φ) = (κ2 −κ1)sinφ cosφ

(where the sign of τg depends on our definition of x⊥, above).

8

In NPAR 2004

Third-order structure In describing how suggestive contours
move across the surface, we will need additional notation that de-
scribes derivatives of curvature. We use this to derive analytic
expressions for the third-order quantities Dwκr and ∇κr in Ap-
pendix C. The gradient ∇κr is a three-dimensional vector in the
tangent plane that locally specifies the magnitude and direction of
maximal change in κr on the surface.

In the following, we use principal coordinates, as the third-
order derivatives are much simpler to state. In this case, finding
derivatives of normal curvatures involves taking the directional
derivative of II in a particular tangent direction x. The result is
written in terms of a symmetric trilinear form C, built from a 2×
2×2 (rank-3) tensor whose entries depend on the third derivatives
of the surface [Gravesen and Ungstrup 2002]. Such derivatives
have been ingredients in measures of fairness for variational surface
modeling [Gravesen and Ungstrup 2002; Moreton and Séquin
1992].

We write C with either two or three arguments—indicating
how many times a vector is multiplied onto the underlying tensor.
Thus, C(x,x) is a vector and C(x,x,x) is a scalar. The order
of the arguments do not matter, as C is symmetric. In principal
coordinates, the tensor describing C has 4 unique entries [Gravesen
and Ungstrup 2002]:

P = De1 κ1, Q = De2κ1, S = De1κ2, and T = De2 κ2

This leads to the first-order approximation of the matrix in equa-
tion (8) towards x = ue1 +ve2 as:[

L M
M N

]
≈

[
κ1 0
0 κ2

]
+u

[
P Q
Q S

]
+v

[
Q S
S T

]
(10)

(written with the tensor expanded into two matrices on the right
to avoid cumbersome notation, already multiplied once by [u v]T.)
Finally, we note how to compute the gradient and directional
derivative of the normal curvature κn using C:

∇κn(x) =
C(x,x)

x ·x =
gue1 +gve2

x ·x ,

where [
gu
gv

]
=

[
Pu2 +2Quv+Sv2

Qu2 +2Suv+T v2

]

and

Dxκn(x)
‖x‖ =

C(x,x,x)

‖x‖3 =
Pu3 +3Qu2v+3Suv2 +T v3

‖x‖3 .

B Review of Suggestive Contours

This section provides a brief overview of suggestive contours; for
a more complete exposition see DeCarlo et al. [2003]. Sugges-
tive contours are view-dependent linear features on the surface of
an object that effectively convey its shape in a line drawing. Sug-
gestive contours are related to formulated silhouettes [Whelan and
Visvalingam 2003] and are classified as cliff curves [Koenderink
and van Doorn 1998].

Of particular relevance here is the radial curvature κr(p)—
the normal curvature of the surface at p in the direction of w
[Koenderink 1984; DeCarlo et al. 2003]. As shown in Figure 2(a),
w is the (unnormalized) projection of the view vector v onto the
tangent plane at p. This defines the radial plane, which contains
p, n and v (and w). From its definition it is easy to see that κr
is view-dependent, and that it is undefined wherever v and n are
parallel.

DeCarlo et al. offer three equivalent definitions for suggestive
contours. The first definition is that suggestive contours are portions
of the zero set of radial curvature κr where Dwκr > 0. The zero
set κr = 0 forms a set of closed loops on the surface, as shown

contour
suggestive
contour
generator

r = 0κ

suggestive
contour

x

y
from camera

x

y

(a) (b)

Figure 11: (a) Suggestive contours (shown in blue) extend the
actual contours of the surface (shown in green). (b) A topographic
view showing how the suggestive contour generators cross contours
at the ending contours. The visible portions of the contour and
suggestive contour are drawn solid.

main view
c

nearby
view
c' p

q' q

Figure 12: A situation showing both contours (q) and suggestive
contours (p), as seen by the main viewpoint c. As the viewpoint
moves to c′, a contour suddenly appears at p, while the contour
at q′ slides along the surface from q.

in Figure 11(b). Suggestive contours, the portions of these loops
satisfying the derivative test Dwκr > 0, are shown in blue in the
figure. They meet up with true contours (shown in green in the
figure) at ending contours—where the contour turns away from the
camera and becomes invisible. Where contours meet suggestive
contours, they align with geometric tangent continuity in the image
plane, as in Figure 11(a). Note that since κr = 0 at suggestive
contours, the projected view direction w will align with one of the
asymptotic directions, as in Figure 2(a).

The second definition of suggestive contours is that they are
positive minima of n · v in the view direction. This definition
is motivated by the fact that true contours appear where this
dot product is zero, so suggestive contours appear where the dot
product is almost but not quite zero. We revisit this definition when
trimming suggestive contours in Section 3.3.

The third definition is that suggestive contours are contours in
nearby views that are not in correspondence with points on contours
in any (radially) closer view. This is perhaps best understood with
a picture, shown in Figure 12. The camera c sees a true contour at
q. From a nearby view c′, however, the camera would see a contour
at p. Therefore, from the point of view of c we say that there is a
suggestive contour at p. Note that there is not a suggestive contour
at q′ because it is in direct correspondence with q, whereas p is not
in correspondence with a contour in any closer camera.

The above two definitions motivate two observable properties of
suggestive contours in relation to true contours. First, suggestive
contours visually extend true contours in the image plane, as
shown in Figure 11(a). Second, suggestive contours anticipate true
contours (that would appear in nearby views). These properties
are of particular importance under animation, since suggestive
contours appear in anticipation of contours that will appear soon,
and visually blend with the true contours when they appear.

DeCarlo et al. [2003] propose two filters for suggestive contours
in order to provide greater stability. First, recall that the radial
curvature is undefined wherever the vectors v and n are parallel.
When these vectors are close to parallel, the suggestive contour
becomes unstable. Therefore, we discard regions of suggestive
contour where the angle between these vectors is less than a

9

In NPAR 2004

threshold θc. Furthermore, estimating the curvatures themselves
can be subject to noise in the mesh and can lead to spurious zero
crossings of κr. Therefore, the second filter applies a small positive
threshold in the derivative test, ensuring Dwκr/‖w‖ > td . We
have found empirically that these two filters taken in combination
provide a great deal of stability to suggestive contours in the
dynamic setting. Nonetheless, a proper analysis of the stability
of suggestive contours is merited, and can lead to even greater
temporal coherence.

C Derivations

In order to derive equation (3) and the components of equation (1),
we begin with the definitions of the view direction v and its
projection onto the tangent plane w, in terms of a point p and
camera position c:

v = c−p

w = v−n(n ·v)

We may now find derivatives of these in an arbitrary direction x in
the tangent plane; this just involves applying the product rule:

Dxv = −x

Dxw = −x− (Dxn)(n ·v)−n
(
(Dxn) ·v−n ·x)

= −x− (n ·v)II(x)−n
(
II(w,x)

)

Now, using the definition of κr, we have:

Dxκr = Dx
II(w,w)

w ·w
=

(DxII)(w,w)+2II(w,Dxw)
w ·w − II(w,w)

(w ·w)2 Dx(w ·w)

=
C(w,w,x)+2II(w) ·Dxw−2κrw ·Dxw

w ·w
After substituting, simplifications are accomplished by using equa-
tion (9) where we define τr = τg(w) as the radial geodesic torsion,
and can use the following:

II(w) = κrw+ τrw⊥ (11)

to obtain

Dxκr =
C(w,w,x)−2τr(n ·v)II(w⊥) ·x−2τrw⊥ ·x

w ·w
Now, II(w⊥) can be expressed as:

II(w⊥) = (2H −κr)w⊥ + τrw

since the sum of any two curvatures measured in perpendicular
directions is 2H (and hence κn(w⊥) = 2H −κr). This leads to:

Dxκr =
C(w,w)−2τ2

r (n ·v)w−2τr (1+(2H −κr)n ·v)w⊥
w ·w ·x

We may now substitute in w for x to obtain

Dwκr

‖w‖ =
C(w,w,w)

‖w‖3 −2τ2
r

n ·v
‖w‖ +2(0)

=
C(w,w,w)

‖w‖3 −2τ2
r cotθ

where θ = cos−1(n ·v/‖v‖) is the angle between n and v. When
κr = 0, we also have τ2

r = −K and this simplifies to (3):

Dwκr

‖w‖ =
C(w,w,w)

‖w‖3 +2K cotθ

To find the speed of motion of suggestive contours, we need to
know the magnitude of ∇κr and the derivative of radial curvature

with camera motion ∂κr/∂c. Since the directional derivative can
be also written as Dxκr = ∇κr ·x, and ∇κr sits in the tangent plane,
we have:

∇κr =
C(w,w)−2τ2

r (n ·v)w−2τr (1+(2H −κr)n ·v)w⊥
w ·w

which when κr = 0 reduces to:

∇κr =
C(w,w)+2K(n ·v)w−2

√−K
(
1+2H(n ·v)

)
w⊥

w ·w (12)

The remaining piece of (1) is the derivative of radial curvature
with respect to camera motion, ∂κr/∂c. This is an ordinary
derivative (not a directional derivative or differential) with respect
to a vector—a Jacobian. In this case, since κr is a scalar, this
derivative is a vector. We start with the following:

∂v
∂c

= 1

∂w
∂c

= 1−n(nT1) = 1−nnT,

where 1 is the identity matrix. Notice that ∂w/∂c is the projection
matrix for the tangent plane. We can now determine ∂κr/∂c, again
simplifying using equation (9) to obtain:

∂κr

∂c
= 2

∂ w
∂ c II(w)

w ·w − κr

w ·w
∂ (w ·w)

∂c

=
2κrw+2τrw⊥

w ·w − 2κr

w ·w
∂w
∂c

w

=
2τr

w ·w w⊥

and further that: ∥∥∥∥∂κr

∂c

∥∥∥∥ =
2τr

‖w‖
and when κr = 0: ∥∥∥∥∂κr

∂c

∥∥∥∥ =
2
√−K
‖w‖ . (13)

D Points where κr = 0 and K = 0

Section 2.3 described a situation where the suggestive contours
touch the parabolic lines at a point. This occurs wherever w lines
up with the principal direction e2 (assuming here that |κ2| < |κ1|
and so κ1 �= 0 and κ2 = 0).

First, we prove that these two curves are tangent at such points
by showing that their gradient directions are the same (not counting
sign). We can compute ∇K using a method described in [Gravesen
and Ungstrup 2002], which finds K using equation (10) and evalu-
ates its gradient at u = 0 and v = 0. This results in:

∇K = (κ1S+κ2P)e1 +(κ1T +κ2Q)e2,

and when κ2 = 0, ∇K = κ1(Se1 + T e2). We now find ∇κr using
equation (12). Given K = 0 and that w lines up with e2, we find
that ∇κr = C(w,w)/w ·w = (Se1 +T e2). Since the two gradients
line up, these curves must be tangent at such points.

Furthermore, at these points we have Dwκr = T ; so provided
that κ2 passes through zero quickly (i.e. T is large), there will be
suggestive contours at this location. We see from equations (2) and
(13) that the speed of this point is zero (of course, higher derivatives
will not be zero), which means this point will be stable.

10

