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Abstract

Recent work has shown that sparse lines defined on 3D shapes,
including occluding contours and suggestive contours, are effective
at conveying shape. We introduce two new families of lines called
suggestive highlights and principal highlights, based on definitions
related to suggestive contours and geometric creases. We show
that when these are drawn in white on a gray background they are
naturally interpreted as highlight lines, and complement contours
and suggestive contours. We provide object-space definitions and
algorithms for extracting these lines, explore several stylization
possibilities, and compare the lines to ridges and valleys of intensity
in diffuse-shaded images.
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1 Introduction

Our visual system is remarkably effective at reconstructing a 3D
shape given just a sparse set of lines on the surface, such as
occluding contours and suggestive contours. It seems that line
drawings can be effective as long as they give some evidence about
how a shape behaves. It is not always easy to provide that evidence,
however. In elliptical regions of the shape, for example, there are
no suggestive contours, and depending on the viewpoint there may
be no occluding contours either. However, we would still like to be
able to include markings in a line drawing that suggest the bulge

or indentation. Shading provides another challenge: the dark fills
created by techniques such as toon shading will obscure suggestive
contours and other dark lines drawn to suggest detail, in regions
where the shape is shaded. In this paper, we propose to address
both of these problems by drawing highlight lines in light colors
over dark backgrounds.

We are motivated by artistic styles that supplement dark lines with
highlights by drawing with charcoal and white chalk. This yields
highlights but rarely lines; rubbing and smudging in chalk lets
artists easily fill regions of the image. However, we have been
inspired by a number of artists that do use white lines effectively
to convey shape—particularly the work of Frank Miller (Figure 9)
and Roy Lichtenstein (Figure 12).

Our strategy is to build upon the framework of suggestive con-
tours [DeCarlo et al. 2003; DeCarlo et al. 2004] to characterize
3D linear features on surfaces that can be effectively rendered in
white on dark backgrounds. Recall that suggestive contours are es-
sentially a mathematical exaggeration of occluding contours: they
anticipate the appearance of contours in nearby viewpoints. Draw-
ing these lines also serves to abstract an image produced by diffuse-
shading the object using a light located at the camera (shading based
on n̂ · v̂, where n̂ is the normal and v̂ is the view direction). This is
reflected by the definition of suggestive contours as being minima
of n̂ ·v in the projected view direction, and also by the observation
that suggestive contours seem to closely approximate valleys of in-
tensity in such images (which was the justification for the image-
space algorithm for suggestive contours in [DeCarlo et al. 2003]).
So, suggestive contours abstract the darkest regions of the image by
representing them with lines. We extend the abstraction by depict-
ing the brightest regions of the image—the highlights—with lines,
an approach independently proposed by Lee et al. [2007]. We draw
such lines in white (against a darker background). See Figure 1.
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In this paper, we argue that highlight lines are described by
two types of lines: suggestive highlights (which appear at view-
dependent inflections) and principal highlights (which appear when
the surface is viewed along a principal curvature direction). We will
demonstrate that these lines are maxima of n̂ · v in specific direc-
tions, and present definitions of these lines in terms of local surface
geometry. We continue by describing algorithms for their extrac-
tion, and effective rendering styles that include them.

2 Related Work

Our approach defines new geometric linear features of the surface.
There are a number of such lines that serve as ingredients in
non-photorealistic renderings of shape. They include occluding
contours (interior and exterior silhouettes — locations at which the
surface normal is perpendicular to the view direction) [Elber and
Cohen 1990; Winkenbach and Salesin 1994; Markosian et al. 1997;
Hertzmann and Zorin 2000], sharp creases [Gooch et al. 1999;
Markosian et al. 1997; Saito and Takahashi 1990], ridge and valley
lines (local maxima of principal curvature magnitude in a principal
direction) [Interrante et al. 1995; Thirion and Gourdon 1996; Pauly
et al. 2003; Ohtake et al. 2004], apparent ridges (variants of
geometric ridges that include a view-dependent projection) [Judd
et al. 2007], and suggestive contours (locations at which occluding
contours appear with minimal change in viewpoint) [DeCarlo et al.
2003; DeCarlo et al. 2004]. Such lines are typically drawn
in black on a lighter background, although they are sometimes
drawn in white. For instance, sharp creases that are not on the
contour are drawn in white by Gooch et al. [1999] to depict
highlights. To our knowledge, the two new types of highlight lines
defined here represent the first such object-space description of
these lines on smooth surfaces. Other styles are possible as well,
including non-photorealistic illustration of specular reflections of
the environment [Weidenbacher et al. 2006].

We also compare our results to an image-space algorithm that works
from a rendered image, an approach related to the image-space and
depth-buffer processing performed by Saito and Takahashi [1990],
the image-space algorithm for suggestive contours [DeCarlo et al.
2003], and the GPU algorithm of Lee et al. [2007]. This is also
related to processing of photographs into line drawings [Pearson
and Robinson 1985; Iverson and Zucker 1995].

3 Highlight Lines

This section assumes familiarity with the definitions of suggestive
contours [DeCarlo et al. 2003], although some material is summa-
rized here. We start by defining the contour and suggestive contour.

Consider a smooth, closed surface that is viewed from a point c.
For any point p on the surface, the viewing direction is defined as
v = c−p. The occluding contour [Cipolla and Giblin 2000] is the
boundary between the visible and hidden parts of the surface. It is
generated by the set of points where the surface is viewed edge-on,
where the normal vector n̂ is perpendicular to the viewing direction:

n̂ · v̂ = 0. (1)
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Figure 2: Different types of lines given the viewing direction v (for clarity
this figure uses orthographic projection, hence constant v).

(Here, unit vectors are denoted with hats, so that v̂ = v/|v|.)
Suggestive contours are contours in nearby viewpoints, and three
equivalent definitions were proposed in [DeCarlo et al. 2003] and
extended for back-facing portions of the surface (where the sign of
the derivative test is reversed when n̂ · v̂ < 0) in [Burns et al. 2005].
The definition we will use here is in terms of the radial curvature κr,
which is the curvature measured in the direction ŵ. The direction
ŵ is the normalized projection of the viewing direction v onto the
tangent plane at p. Thus, suggestive contours are defined as:

κr = 0 and

{
Dŵ κr > 0 where n̂ · v̂ > 0
Dŵ κr < 0 where n̂ · v̂ < 0

(2)

which is equivalent to positive minima (or negative maxima) of n̂ ·v
in the direction ŵ.

Examples of surface locations on contours and suggestive contours
are diagrammed in a side-view of a shape in Figure 2; contours
(C) are those locations where the surface is viewed edge-on, and
suggestive contours (SC) are inflections where the convex side is
closer to the camera (on front-facing parts of the surface).

3.1 Mathematical Approach

This diagram also includes the two types of highlight lines: the
suggestive highlight (SH) and the principal highlight (PH). The
motivation for these lines is similar to the motivation for the image-
space algorithm for suggestive contours [DeCarlo et al. 2003],
which put suggestive contours in approximate correspondence to
intensity valleys in images. Here we want to find features on the
surface that roughly correspond to intensity ridges in images.

Ridges can be understood intuitively as regions where the surface
changes quickly in one direction but is comparably flat in a side-
ways direction. The technical difficulty is to characterize these
two directions in terms of geometrical quantities on the surface.
Such an approach is in fact given by the definition of creases due
to Saint-Venant [Koenderink and van Doorn 1993; Rieger 1997]. It
uses second derivatives of the height field, computed in the gradient
and perpendicular directions, to abstract changes in the surface in a
general way. (Other definitions of ridges involve even higher-order
derivatives.) This definition has been explored by Yuille [1989]
and Rieger [1997], but is poorly suited to a direct object-space im-
plementation because it requires finding zeroes of third derivatives
of surface geometry (the image height field already tracks first-
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derivative changes in the surface through n̂). What we will do in-
stead is to attempt to catch most of the meaningful image ridges by
looking for places where intensity changes quickly along either of
the two natural directions for exploring a viewed surface: ŵ, the
projection of the view direction into the tangent plane of the sur-
face; and ŵ⊥ , the perpendicular to ŵ in the tangent plane. The first
case leads to lines we call suggestive highlights, while the second
case leads to lines we call principal highlights. These definitions
prove simple enough to implement but are sufficiently grounded in
the mathematics of shape to convey highlights effectively1.

3.2 Suggestive Highlights

Suggestive highlights are complementary to suggestive contours:
they are positive maxima (or negative minima) of n̂ · v in the
direction ŵ. Equivalently, these are locations at which:

κr = 0 and

{
Dŵ κr < 0 where n̂ · v̂ > 0
Dŵ κr > 0 where n̂ · v̂ < 0

. (3)

(This is based on a derivation that is similar to that of suggestive
contours.) In Figure 2 these points are labeled SH, and account
for the remaining view-dependent inflections on the shape. Thus,
suggestive highlights are simply the “other” part of the solution set
of κr = 0. We will see in Section 5 how both suggestive contours
and highlights can be used effectively in the same line drawing.

3.3 Principal Highlights

Principal highlights (PH) are strong positive maxima (or negative
minima) of n̂ · v in the direction ŵ⊥ . The direction ŵ⊥ = n̂× ŵ
sits perpendicular to ŵ in the tangent plane [DeCarlo et al. 2004].
Deriving a definition of PH in terms of second derivative quantities
is achieved by differentiating n̂ · v in the direction ŵ⊥ and setting
it equal to zero. Maxima occur where the second derivative in this
direction is negative.

The derivation proceeds along similar lines to that in [DeCarlo et al.
2003]. Beginning with the condition for extrema, locations where
Dŵ⊥(n̂ ·v) = 0, we can show that Dŵ⊥(n̂ ·v) = (Dŵ⊥n̂) ·v+ n̂ ·Dŵ⊥v =
II(ŵ⊥) · v + 0 = II(w, ŵ⊥) = τr|w|, where τr is the radial torsion
[DeCarlo et al. 2004]—the geodesic torsion in the direction ŵ.
For the time being, if we disregard locations where n̂ and v are
parallel (where w = 0), then it follows that principal highlights are
in locations where τr = 0 and Dŵ⊥τr < 0 (on front-facing parts of
the shape).

We note that τr is zero at locations where ŵ lines up with either
principal direction, e1 or e2, or where κ1 = κ2. (Here, we assume
|κ1| ≥ |κ2|.) Figure 3(a) shows the solution of τr = 0 on a torus. If
we consider only those cases in which ŵ lines up with e2, as drawn
in Figure 3(b), we note that this corresponds to stronger maxima of

1It is worth noting that we have considered positive minima of n̂ · v̂
in ŵ⊥ as well. Given these are on creases in depth (as shown below),
these will rarely occur on front-facing parts of the surface. Empirically,
we have noticed that while unusual, these do occur nearby locations where
the Gaussian curvature is zero, and are generally redundant with suggestive
contours. It seems safe to leave these out.

n̂ ·v than when ŵ lines up with e1: referring to the diffuse shading
in Figure 3(d), we see that the variation in n̂ · v̂ is larger in the
direction perpendicular to e2 = ŵ. Thus, we restrict our definition
of principal highlights to locations where ŵ lines up with e2, or
ŵ · e1 = 0:

ŵ · e1 = 0 and

{
Dŵ⊥τr < 0 where n̂ · v̂ > 0
Dŵ⊥τr > 0 where n̂ · v̂ < 0

. (4)

(We also add points at which w = 0.)

(a)

(b)

(c)

ŵ

ŵ

(d)

Figure 3: (a) Locations with τr = 0; (b) Locations where ŵ lines up with
e2; (c) With derivative test applied; (d) Diffuse-shaded rendering of a torus.

As with suggestive contours, we have found that we produce
more stable and aesthetically pleasing drawings by changing the
derivative tests to use a small positive constant ε rather than
zero [DeCarlo et al. 2003], and by fading out lines as they approach
the derivative threshold [DeCarlo et al. 2004]. Applying these
effects results in the rendering in Figure 3(c).

It turns out that locations where ŵ ·e1 = 0 are also (view-dependent)
creases in the depth map. In other words, if we consider the surface
as a height field as viewed from the camera, then these locations are
exactly the ridges and valleys, using the particular definition due to
Saint-Venant [Koenderink and van Doorn 1993]. A proof of this
equivalence is presented in Appendix A. To avoid confusion, it is
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worth noting that these ridges and valleys in depth are distinct from
(view-independent) ridges and valleys on the surface [Ohtake et al.
2004] and (view-dependent) apparent ridges on the surface [Judd
et al. 2007], as well as from intensity ridges and valleys of the
rendered image (i.e., interpreting the image intensity as “height”)
[Pearson and Robinson 1985; Iverson and Zucker 1995; Lee et al.
2007]. In the case of principal highlights, we can separate the cases
based on the sign of κ1 (which, as we have seen, is the curvature
roughly perpendicular to the PH lines): ridges have positive κ1, and
valleys have negative κ1. These correspond to the PH+ and PH–
in Figure 2. We have found it helpful to treat them separately at
rendering time, giving artistic control to the user to stylize them
differently or omit one family (for many models, omitting the
valleys results in less-cluttered drawings).

4 Computation

Suggestive Highlights: Computation of suggestive highlights is
straightforward, and proceeds similarly to suggestive contours [De-
Carlo et al. 2003]. We use a separate threshold on the derivative
test, which in practice is set higher than for suggestive contours, to
remove more of the shallow extrema.

Principal Highlights: As we saw in Figure 3(a), solving τr = 0
leads to finding locations at which ŵ · e1 = 0, ŵ · e2 = 0, and
κ1 = κ2. These can form overlapping loops on the surface. Even
worse, the crossing points happen where ŵ is singular—locations
where n̂ · v̂ = 1. The presence of crossing loops leads to difficulty in
extracting the lines using a simple per-triangle strategy of looking
for zeros of τr interpolated from the corners. The artifacts are most
obvious on coarsely sampled meshes, as shown in Figure 4. A better
strategy is therefore to extract just the loops we need. However, if
one solves for ŵ · e1 = 0 directly, the lack of consistency between
the signs of e1 within a triangle causes serious problems—triangles
may contain spurious sign flips due to this. A similar difficulty
is encountered when extracting (geometric) ridges and valleys of
surfaces, and so we can proceed similarly to the strategy adopted for
the latter problem by Ohtake et al. [2004]. (An analogous strategy
is also used for apparent ridges by Judd et al. [2007].)

Figure 4: Difficulties with naive extraction of τr = 0 curves.

When processing a triangle, we flip the directions of e1 at each
of the vertices so they are all consistent with the vertex that
has the largest value of κ1. For triangles having κ1 ≈ κ2—near
an umbilic—this strategy may not work as e1 and e2 may have
interchanged within a triangle. Fortunately, we can skip this case,
as we are not interested in suggestive highlights near umbilics (they
tend to produce “shallow” local maxima). We detect this situation

by noting when the angle between the flipped e1 vector and the
reference e1 exceeds 45 degrees.

We actually solve for zeros of (ŵ · e1) sinθ = v̂ · e1, as this avoids
the singularities in ŵ (which also happen to be local maxima of n̂ · v̂,
so we do want to include them). After this, computation proceeds
normally. We ensure that we are extracting maxima by enforcing
−Dŵ⊥τr > εph > 0 for front-facing parts of the surface (where εph
is a threshold value to eliminate insignificant or noisy lines). Using
derivation methods from [DeCarlo et al. 2004], one can show:

Dŵ⊥τr = C(ŵ, ŵ⊥ , ŵ⊥)− cotθ (2H−κr)(2H−2κr) (5)

= ±De2 κ1− cotθ κ1(κ1−κ2) when ŵ =±e2 (6)

However, instead of this relatively complex test, we have found
in practice that enforcing (κ2

1 − κ2
2 )cosθ > εph > 0 effectively

removes the unwanted lines.

5 Rendering Styles

We have investigated a number of rendering styles that include
contours, suggestive contours, suggestive highlights and principal
highlights. We describe two of the more successful styles here.

Gray Background: The first style simply draws contours and
suggestive contours in black, suggestive and principal highlights in
white, all against a gray background. This style is quite effective,
particularly on models without too many lines. Such an effect
cannot be achieved just using a toon shader—see Figure 5. This
style also combines productively with a toon shader, provided that
the lightest and darkest tones do not hide the lines.

C + SC + SH + PH Toon shader

Figure 5: A rendering with suggestive contours and both suggestive and
principal highlights conveys details across the entire shape (left), unlike
toon shading (right).

There are cases, however, in which this style becomes less effective,
such as when the two halves of the same κr = 0 loop are percep-
tually grouped together in a way that resembles embossing. Shape
is still conveyed, but it does not appear to be the correct shape. An
example is seen in the close-up of the armadillo leg in Figure 6.
This effect is most noticeable when the lines are viewed up close,
perhaps because at a distance the style is essentially a form of ex-
aggerated shading [Rusinkiewicz et al. 2006], although using three
discrete tone levels. Leaving out suggestive highlights (but still in-
cluding principal highlights) avoids this effect. Figure 1 shows re-
sults with different types of highlight lines on the head of the David.
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C + SC + SH + PH + toon shader Close-up of leg

Figure 6: Armadillo in gray style. On the right, notice the incorrect
embossed appearance that can result from rendering suggestive contours
together with suggestive highlights.

Figure 7: A Klein bottle rendered both opaquely and transparently
(C + SC + SH + PH)

Figure 8: The “Heptagonal Toroid” (by Brent Collins and Carlo Séquin)
rendered both opaquely and transparently (C + SC + PH ridges)

Using the definitions of lines on back-facing parts of the shape,
it is straightforward to produce transparent renderings (in which
hidden lines are drawn, faded by a fixed amount, in a separate pass).
Figure 7 shows an example of this on a Klein bottle, and Figure 8
on the Heptagonal Toroid.

Shading in Black and White: The second style is inspired by
the work of certain artists that work in black and white, such as the
comic book creator Frank Miller. The image in Figure 9 is such
an example, where the bricks are depicted while in shadow using

Figure 9: Excerpt from Frank Miller’s Sin City, c©1991 Frank Miller, Inc.
The white lines in the cast shadow depict shape that could not be revealed
with black lines.

C + SC C + SC + SH

Figure 10: In the black and white style, when suggestive highlights are
included, the shape is conveyed in the dark areas.

white lines. Upon closer inspection (at right) it becomes clear that
the white lines are in different places than the black lines: shadows
are not simply negatives of lit areas. Thus, we draw suggestive
contours in black, highlight lines in white, against a two-level toon
shader that is black and white.

The result is more dramatic and less cluttered than the gray style
mentioned earlier. The addition of the highlight lines fills out the
dark regions, as can be seen by comparing the renderings with and
without suggestive highlights in Figure 10. Our results also more
closely resemble the lines drawn by Miller than the simple strategy
of inverting dark regions, as was proposed by Spindler et al. [2006].

Off-center Light: It is also possible to adjust the definition of
the lines to account for a changing light position (for suggestive
contours and both types of highlight lines). We have experimented
with simply replacing all of the ŵ and ŵ⊥ quantities in the line def-
initions with projections of the lighting direction (and its perpen-
dicular). We have found this to be most effective on objects with
many bumps and dimples. However, at times these lines can seem
misplaced as they slide over a ridge, and more investigation on their
behavior is warranted. Two examples are displayed in Figure 13.

6 Discussion and Conclusion

The renderings of golf balls in Figure 11 show how different
types of lines contribute to an effective rendering. All renderings
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include contours and suggestive contours, and the first row shows
suggestive highlights rendered separately from principal highlights.
The second row shows the effects when these lines are combined,
first with a solid gray background, and then with a light toon shader.

Figure 12 shows a comparison between the painting “Golf Ball” by
Roy Lichtenstein and renderings produced by our system. While
our system does not reproduce all of the interesting aspects of
design and stylization in this work, there are similarities: the upper
part of the painting has lines that abstract dark areas, while in
the shadow the lines abstract light areas. This compares well
to a rendering in our black and white style, using suggestive
contours in the light and suggestive highlights in the shadow. It
is worth comparing the orientation of the curved lines that depict
the dimples—they are the same in our rendering as in the painting.
In contrast, we can simply draw suggestive contours in white in
the shadowed areas (labeled inverse(SC) in the figure), which is
comparable to the approach of Spindler et al. [2006]. This produces
lines that disagree with Lichtenstein’s and lead to a conflicted and
ineffective rendering. We believe that this comparison provides one
of the strongest arguments for this work.

Although SH and PH lines are not defined explicitly in terms of
intensity ridges in the image, we have empirically observed that
they typically occur near such ridges (much as suggestive contours
typically occur near intensity valleys). We have adapted the image-
space algorithm described by DeCarlo et al. [2003] for suggestive
contours to extract both ridges and valleys of a diffusely rendered
image. The changes are straightforward, with perhaps the most
substantial being that the rendered diffuse images use 1

2 + 1
2 (n̂ · l̂),

so that lines can still be extracted from locations in shadow. The
results of the image space algorithm are provided for the golf ball—
in Figure 11, and in Figure 13 with an off-center light. We believe
that a better theoretical understanding of this relationship is in
order, though this is future work.

In summary, we have presented two new types of lines that convey
highlights—suggestive highlights and principal highlights. The
lines are defined in a way that extends the concept of suggestive
contours to local maxima of n̂ · v, in the ŵ and ŵ⊥ directions. The
lines can be effectively used in different styles, augmenting existing
lines to convey more information about surface geometry.
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A Principal Highlights and Creases in Depth

In this appendix, we show that principal highlights are equivalent to
(view-dependent) ridges and valleys of the depth image. We begin
by considering an arbitrary height field f with gradient direction ĝ
and its perpendicular ĝ⊥. The Saint-Venant condition for a crease
[Koenderink and van Doorn 1993] can be formulated in terms of
the Hessian of the height, expressed in an orthonormal coordinate
system of the normalized gradient ĝ and its perpendicular ĝ⊥:

H =

[
fĝĝ fĝĝ⊥
fĝĝ⊥ fĝ⊥ĝ⊥

]
(7)

The entries in this matrix are second derivatives of the height. For
instance, fĝĝ is the second derivative in the gradient direction. (The
quantity fĝ is the first derivative in the gradient direction, which is
simply the gradient magnitude.)

The Saint-Venant condition for a crease is:

fĝĝ⊥ = 0 and | fĝĝ|< | fĝ⊥ĝ⊥ | and



Valley:
fĝ⊥ĝ⊥ > 0

or
Ridge:

fĝ⊥ĝ⊥ < 0

(8)

To apply this to depth maps, we first need to compute ĝ. Given
the viewing direction v̂, and its normalized projection ŵ onto the
surface, the gradient of depth along v̂ is simply the unnormalized
projection ŵ sinθ = v̂− n̂ cosθ , where θ is the angle between n̂
and v̂. The Hessian of the depth is:

∇g = ∇(v̂− n̂ cosθ ) = 0− II cosθ +0 =−II cosθ

(Here we use an orthographic view assumption, so that ∇v̂ = 0,
and note that that n̂ ·∇cosθ = 0 because ∇cosθ is in the tangent
plane.)

Thus, using ĝ = ŵ and ĝ⊥ = ŵ⊥ , the location of the crease
is fĝĝ⊥ = −II(ŵ, ŵ⊥)cosθ = −τr cosθ = 0. Similarly, we can
easily determine fĝĝ = −II(ŵ, ŵ)cosθ = −κr cosθ and fĝ⊥ĝ⊥ =
−II(ŵ⊥ , ŵ⊥)cosθ = −(2H − κr)cosθ where 2H − κr is simply
the curvature measured in the direction ŵ⊥ .

Working out the condition | fĝĝ| < | fĝ⊥ĝ⊥ | by canceling the cosθ

and substituting leads to |κr|< |2H−κr|, which excludes the case
where ŵ · e2 = 0. Thus, these creases are equivalent to ŵ · e1 = 0.
The classification into a ridge or valley is simply based on the sign
of−(2H−κr)cosθ , which matches our intuition that κ1 is positive
on a ridge, and negative on a valley (as depicted in Figure 2).
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