
Pixelated Image Abstraction

Timothy Gerstner1,⇤ Doug DeCarlo1 Marc Alexa2 Adam Finkelstein3 Yotam Gingold1,4 Andrew Nealen1

1Rutgers University 2TU Berlin 3Princeton University 4Columbia University

(a) original (b) naive nearest (c) naive cubic (d) superpixels (e) our result

Figure 1: Pixel art images simultaneously use very few pixels and a tiny color palette. Attempts to represent image (a) using only 22 ⇥ 32
pixels and 8 colors using (b) nearest-neighbor or (c) cubic downsampling (both followed by median cut color quantization), result in detail
loss and blurriness. We optimize over a set of superpixels (d) and an associated color palette to produce output (e) in the style of pixel art.

Abstract

We present an automatic method that can be used to abstract high
resolution images into very low resolution outputs with reduced
color palettes in the style of pixel art. Our method simultaneously
solves for a mapping of features and a reduced palette needed to
construct the output image. The results are an approximation to the
results generated by pixel artists. We compare our method against
the results of a naive process common to image manipulation
programs, as well as the hand-crafted work of pixel artists. Through
a formal user study and interviews with expert pixel artists we show
that our results offer an improvement over the naive methods.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation— [I.3.4]: Computer Graphics—Graphics Utilities

Keywords: pixel art, image abstraction, non-photorealistic ren-
dering, image segmentation, color quantization

Links: DL PDF

1 Introduction

We see pixel art every day. Modern day handheld devices such as
the iPhone, Android devices and the Nintendo DS regularly utilize

⇤e-mail:timgerst@cs.rutgers.edu

pixel art to convey information on compact screens. Companies
like Coca-Cola, Honda, Adobe, and Sony use pixel art in their
advertisements [Vermehr et al. 2012]. It is used to make icons for
desktops and avatars for social networks. While pixel art stems
from the need to optimize imagery for low resolution displays, it has
emerged as a contemporary art form in its own right. For example,
it has been featured by MoMA, and there are a number of passionate
online communities devoted to it. The “Digital Orca” by Douglas
Coupland is a popular sight at the Vancouver Convention Center.
France recently was struck by a “Post-it War”1, where people use
Post-It notes to create pixel art on their windows, competing with
their neighbors across workplaces, small businesses, and homes.

What makes pixel art both compelling and difficult is the limitations
imposed on the medium. With a significantly limited palette and
resolution to work with, the task of creating pixel art becomes
carefully choosing the set of colors and placing each pixel such
that the final image best depicts the original subject. This task is
particularly difficult as pixel art is typically viewed at a distance
where the pixel grid is clearly visible, which has been shown to
contribute to the perception of the image [Marr and Hildreth 1980].
As seen in Figure 2, creating pixel art is not a simple mapping
process. Features such as the eyes and mouth need to be abstracted
and resized in order to be represented in the final image. The
end product, which is no longer physically accurate, still gives the
impression of an identifiable person.

However, few, if any methods exist to automatically create effective
pixel art. Existing downsampling methods, two of which are shown
in Figure 1, do not accurately capture the original subject. Artists
often turn to making pieces by hand, pixel-by-pixel, which can
take a significant amount of time and requires a certain degree of
skill not easily acquired by novices of the art. Automated and
semi-automated methods have been proposed for other popular art
forms, such as line drawing [DeCarlo et al. 2003; Judd et al. 2007]
and painting [Gooch et al. 2002]. Methods such as [DeCarlo and
Santella 2002] and [Winnemöller et al. 2006] not only abstract
images, but do so while retaining salient features.

1http://www.postitwar.com/

Figure 2: “Alice Blue” and “Kyle Red” by Alice Bartlett. Notice
how faces are easily distinguishable even with this limited resolu-
tion and palette. The facial features are no longer proportionally
accurate, similar to deformation in a caricature.

We introduce an automated process that transforms high resolution
images into low resolution, small palette outputs in a pixel art style.
At the core of our algorithm is a multi-step iterative process that
simultaneously solves for a mapping of features and a reduced
palette to convert an input image to a pixelated output image. In the
first part of each iteration we use a modified version of an image
segmentation proposed by Achanta et al. [2010] to map regions of
the input image to output pixels. In the second step, we utilize
an adaptation of mass-constrained deterministic annealing [Rose
1998] to find an optimal palette and its association to output
pixels. These steps are interdependent, and the final solution is
an optimization of both the physical and palette sizes specified
by the user. Throughout this process we utilize the perceptually
uniform CIELAB color space [Sharma and Trussell 1997]. The
end result serves as an approximation to the process performed by
pixel artists. Aside from assisting a class of artists in this medium,
applications for this work include automatic and semi-automatic
design of low-resolution imagery in handheld, desktop, and online
contexts like Facebook and Flickr, wherever iconic representations
of high-resolution imagery are used.

2 Related Work

One aspect of our problem is to reproduce an image as faithfully
as possible while constrained to just a few output colors. Color
quantization is a classic problem wherein a limited color palette
is chosen based on an input image for indexed color displays.
A variety of methods were developed in the 1980’s and early
1990’s prior to the advent of inexpensive 24-bit displays, for
example [Gervautz and Purgathofer 1990; Heckbert 1982; Orchard
and Bouman 1991; Wu 1992]. A similar problem is that of selecting
a small set of custom inks to be used in printing an image [Stollnitz
et al. 1998]. These methods rely only on the color histogram of the
input image, and are typically coupled to an independent dithering
(or halftoning) method for output in a relatively high resolution
image. In our problem where the spatial resolution of the output is
also highly constrained, we optimize simultaneously the selection
and placement of colors in the final image.

The problem of image segmentation has been extensively stud-
ied. Proposed solutions include graph-cut techniques, such as
the method proposed by Shi and Malik [1997], and superpixel-
based methods QuickShift [Vedaldi and Soatto 2008], Turbopix-
els [Levinshtein et al. 2009], and SLIC [Achanta et al. 2010]. In
particular, SLIC (Simple Linear Interative Clustering) produces
regular sized and spaced regions with low computational overhead
given very few input parameters. These characteristics make SLIC
an appropriate starting point for parts of our method.

Mass-constrained deterministic annealing (MCDA) [Rose 1998]
is a method that uses a probabilistic assignment while clustering.
Similar to k-means, it uses a fixed number of clusters, but unlike
k-means it is independent of initialization. Also, unlike simulated
annealing [Kirkpatrick et al. 1983], it does not randomly search the
solution space and will converge to the same result every time. We
use an adapted version of MCDA for color palette optimization.

Puzicha et al. [2000] proposed a method that reduces the palette of
an image and applies half-toning using a model of human visual
perception. While their method uses deterministic annealing and
the CIELAB space to find a solution that optimizes both color
reduction and dithering, our method instead emphasizes palette
reduction in parallel with the reduction of the output resolution.

Kopf and Lischinski [2011] proposed a method that extracts vector
art representations from pixel art. This problem is almost the
inverse of the one presented in this paper. However, while their
solution focuses on interpolating unknown information, converting
an image to pixel art requires compressing known information.

Finally, we show that with minor modification our algorithm can
produce “posterized” images, wherein large regions of constant
color are separated by vectorized boundaries. To our knowledge,
little research has addressed this problem, though it shares some
aesthetic concerns with the artistic thresholding approach of Xu
and Kaplan [2007].

3 Background

Our technique for making pixel art builds upon two existing tech-
niques, which we briefly describe in this section.

SLIC. Achanta et al. [2010] proposed an iterative method to
segment an image into regions termed “superpixels.” The algorithm
is analogous to k-means clustering [MacQueen 1967] in a five
dimensional space (three color and two positional), discussed for
example in Forsyth and Ponce [2002]. Pixels in the input image p

i

are assigned to superpixels p
s

by minimizing

d(p
i

, p

s

) = d

c

(p
i

, p

s

) +m

r
N

M

d

p

(p
i

, p

s

) (1)

where d

c

is the color difference, d
p

is the positional difference, M
is the number of pixels in the input image, N is the number of
superpixels, and m is some value in the range [0, 20] that controls
the relative weight that color similarity and pixel adjacency have
on the solution. The color and positional differences are measured
using Euclidean distance (as are all distances in our paper, unless
otherwise noted), and the colors are represented in LAB color
space. Upon each iteration, superpixels are reassigned to the
average color and position of the associated input pixels.

Mass Constrained Deterministic Annealing. MCDA [Rose 1998]
is a global optimization method for clustering that draws upon an
analogy with the process of annealing a physical material. We use
this method both for determining the colors in our palette, and for
assigning one of these palette colors to each pixel—each cluster
corresponds to a palette color.

MCDA is a fuzzy clustering algorithm that probabilistically assigns
objects to clusters based on their distance from each cluster. It relies
on a temperature value T , which can be viewed as proportional to
the expected variance of the clusters. Initially, T is set to a high
value T0, which makes each object equally likely to belong to any
cluster. Each time the system locally converges T is lowered (and
the variance of each cluster decreases). As this happens, objects
begin to prefer favor particular clusters, and as T approaches zero

Figure 3: The pipeline of the algorithm. The superpixels (a) are initialized in a regular grid across the input image, and the palette is set to
the average color of the M input pixels. The algorithm then begins iterating (b). Each iteration has two main steps: (c) the assignment of
input pixels to superpixels, and (d) the assignment of superpixels to colors in the palette and updating the palette. This not only updates each
color, but may also add new colors to the palette. After convergence, the palette is saturated (e) producing the final output.

each object becomes effectively assigned to a single cluster, at
which point the final set of clusters is produced. In Section 4.3 we
provide a formal definition of the conditional probability we use to
assign superpixels to colors in the palette.

Since at high T having multiple clusters is redundant, MCDA
begins with a single cluster, represented internally by two sub-
clusters. At the beginning of each iteration these sub-clusters
are set to slight permutations of their mean. At a high T these
clusters converge to the same value after several iterations, but as
the temperature is lowered they begin to naturally separate. When
this occurs, the cluster is split into two separate clusters (each
represented by their own sub-clusters). This continues recursively
until the (user specified) maximum number of clusters is reached.

4 Method

Our algorithm is an iterative procedure—an example execution is
shown in Figure 3. The process begins with an input image of
width win and height hin and produces an output image of width
wout and height hout which contains at most K different colors—
the palette size. Given the target output dimensions and palette
size, each iteration of the algorithm segments the pixels in the input
into regions corresponding to pixels in the output and solves for
an optimal palette. Upon convergence, the palette is saturated to
produce the final output. In this section, we describe our algorithm
in terms of the following:

Input Pixels The set of pixels in the input image, denoted as p

i

where i 2 [1,M], and M = win ⇥ hin.
Ouput Pixels The set of pixels in the output image, denoted as p

o

where o 2 [1, N], and N = wout ⇥ hout.
Superpixel A region of the input image, denoted as p

s

where
s 2 [1, N]. The superpixels are a partition of the input image.

Palette A set of K colors c
k

, k 2 [1,K] in LAB space.

Our algorithm constructs a mapping for each superpixel that relates
a region of input pixels with a single pixel in the output, as in
Figure 4. The algorithm proceeds similarly to MCDA, with a
superpixel refinement and palette association step performed upon
each iteration, as summarized in Algorithm 1. Section 4.5 describes
how the algorithm can be expanded to allow a user to indicate
important regions in the input image.

Algorithm 1
. initialize superpixels, palette and temperature T (Section 4.1)
. while (T > T

f

)
. refine superpixels with 1 step of modified SLIC (Section 4.2)
. associate superpixels to colors in the palette (Section 4.3)
. refine colors in the palette (Section 4.3)
. if (palette converged)

. reduce temperature T = ↵T

. expand palette (Section 4.3)
. post-process (Section 4.4)

4.1 Initialization

The N superpixel centers are initialized in a regular grid across
the input image, and each input pixel is assigned to the nearest
superpixel (in (x, y) space, measured to the superpixel center). The
palette is initialized to a single color, which is set to the mean value
of the M input pixels. All superpixels are assigned this mean color.
See Figure 3, step (a).

The temperature T is set to 1.1T
c

, where T
c

is the critical tempera-
ture of the set of M input pixels, defined as twice the variance along
the major principal component axis of the set in LAB space [Rose
1998]. The T

c

of a set of objects assigned to a cluster is the temper-
ature at which a cluster will naturally split. Therefore, this policy
ensures that the initial temperature is easily above the temperature
at which more than one color in the palette would exist.

Figure 4: Pixels in the input image (left) are associated with
superpixel regions (middle). Each superpixel region corresponds
to a single pixel in the output image (right).

4.2 Superpixel refinement

This stage of the algorithm assigns pixels in the input image to
superpixels, which correspond to pixels in the output image—see
steps (b) and (d) in Figure 3.

To accomplish this task, we use a single iteration of our modified
version of SLIC. In the original SLIC algorithm, upon each itera-
tion, every input pixel is assigned to the superpixel that minimizes
d(p

i

, p

s

), and the color of each superpixel is set to the mean color
value of its associated input pixels, m

s

. However, in our implemen-
tation, the color of each superpixel is set to the palette color that is
associated with the superpixel (the construction of this mapping is
explained in Section 4.3). This interdependency with the palette
forces the superpixels to be optimized with respect to the colors in
the palette rather than the colors in the input image. Figure 5 shows
the results of using the mean color value instead of our optimized
palette used in Figure 1.

However, this also means the color error will be generally higher.
As a result, we’ve found that minimizing d(p

i

, p

s

) using a value of
m = 45 is more appropriate in this case (Achanta et al. [2010]
suggest m = 10). This increases the weight of the positional
distance and results in a segmentation that contains superpixels with
relatively uniform size.

Next, we perform two steps, one modifies each superpixel’s (x, y)
position for the next iteration, and one changes each superpixel’s
representative color. Each step is an additional modification to the
original SLIC method and significantly improves the final result.

Figure 5: Our method uses palette colors when finding superpixels.
Using the mean color of a superpixel works when the palette is
unconstrained (left), but fails when using a constrained palette
(right). This is because the input pixels cluster into superpixels
based on colors that do not exist in the final image, which creates
a discrepancy. Using the palette colors to represent the superpixels
removes this discrepancy.

Figure 6: Without the Laplacian smoothing step, the superpixels
(left) tend to have 6-connected neighborhoods. This causes small
distortions in the output (center), which are particularly noticeable
on the ear, eye and mouth, when compared to original output that
uses the superpixels that included the smoothing step (right).

As seen in Figure 6 (left), SLIC results in superpixel regions which
tend to be organized in 6-connected neighborhoods (i.e. a hexago-
nal grid). This is caused by how the (x, y) position of each super-
pixel is defined as the average position of the input pixels associated
with it. This hexagonal grid does not match the neighborhoods of
the output pixels, which are 8-connected (i.e. a rectangular grid)
and will give rise to undesirable distortions of image features and
structures in the output, as seen in Figure 6(center).

We address this problem with Laplacian smoothing. Each super-
pixel center is moved a percentage of the distance from its current
position to the average position of its 4-connected neighbors (using
the neighborhoods at the time of initialization). We use 40%. As
seen in Figure 1 (d), this improves the correspondence between the
superpixel and output pixel neighborhoods. Specifically, it helps
ensure that superpixel regions that are adjacent in the input map are
also adjacent pixels in the output. To be clear, it is only in the next
iteration when the superpixels will be reassigned based on this new
center, due to the interleaved nature of our algorithm.

In our second additional step, the color representatives of the
superpixels are smoothed. In the original SLIC algorithm, the
representative color for each superpixel is the average color m

s

of
the input pixels associated with it. However, simply using the mean
color can become problematic for continuous regions in the image
that contain a color gradient (such as a smooth shadowed surface).
While this gradient appears natural in the input image, the region
will not appear continuous in the pixelated output.

To remedy this, our algorithm adjusts the values of m

s

using a
bilateral filter. We construct an image of size wout ⇥ hout where
each superpixel is assigned the same position as its corresponding
output pixel, with value m

s

. The colors that results from bilaterally
filtering this image, m

s

0 are used while iterating the palette.

4.3 Palette refinement

Palette iteration is performed using MCDA [Rose 1998]. Each
iteration of the palette, as seen in step (c) in Figure 3, can be broken
down into three basic steps: associating superpixels to colors in
the palette, refining the palette, and expanding the palette. The
associate and refine steps occur every iteration of our algorithm.
When the palette has converged for the current temperature T , the
expand step is performed.

It is important to note how we handle the sub-clusters mentioned
in Section 3: we treat each sub-cluster as a separate color in the
palette, and keep track of the pairs. The color of each c

k

is the
average color of its two sub-clusters. When the maximum size of
the palette is reached (in terms of the number of distinct colors c

k

),

we eliminate the sub-clusters and represent each color in the palette
as a single cluster.

Associate. The MCDA algorithm requires a probability model that
states how likely a particular superpixel will be associated with each
color in the palette. See Figure 7. The conditional probability
P (c

k

|p
s

) of a superpixel p
s

being assigned color c

k

depends on
the color distance in LAB space and the current temperature, and is
given by (after suitable normalization):

P (c
k

|p
s

) / P (c
k

) e
� ||m

s

0 � c

k

||
T (2)

P (c
k

) is the probability that color c
k

is assigned to any superpixel,
given the existing assignment. Upon initialization, there is only
one color, and thus this value is initialized to 1. As more colors are
introduced into the palette, the value of this probability is computed
by marginalizing over p

s

:

P (c
k

) =
NX

s=1

P (c
k

|p
s

)P (p
s

) (3)

For the moment, P (p
s

) simply has a uniform distribution. This
will be revisited in Section 4.5 when incorporating user-specified
importance. The values of P (c

k

) are updated after the values
of P (c

k

|p
s

) are computed using Equation 2. Each superpixel
is assigned to the color in the palette that maximizes P (c

k

|p
s

).
Intermediate results of this assignment can be seen in Figure 3
(bottom row). The exponential distribution in Equation 2 tends
towards a uniform distribution for large values of T , in which case
each superpixel will be evenly associated with every palette color.
As T decreases, superpixels favor colors in the palette that are
less distant. At the final temperature, the generic situation after
convergence has P (c

k

|p
s

) = 1 for a single color in the palette and
P (c

k

|p
s

) = 0 for the rest. In this case, deterministic annealing is
equivalent to k-means clustering.

Refine. The next step is to refine the palette by reassigning each
color c

k

to a weighted average of all superpixel colors, using the
probability of association with that color:

c

k

=

NX

s=1

m

s

0
P (c

k

|p
s

)P (p
s

)

P (c
k

)
(4)

This adapts the colors in the existing palette given the revised
superpixels. Such changes in the palette can be seen in Figure 3,
as the computation progresses.

Figure 7: Each superpixel (left) is associated by some conditional
probability P (c

k

|p
s

) to each color in the palette (middle). The
color with the highest probability is assigned to the superpixel and
its associated output pixel in the final image (right).

Expand. Expansion only occurs during an iteration if the palette
has converged for the current temperature T (convergence is mea-
sured by the total change in the palette since last iteration being
less than some small value ✏palette). First, the temperature is low-
ered by some factor ↵ (we use 0.7). Next, the palette is expanded
if the number of colors is less than the number specified by the
user. For each c

k

we check to see if the color needs to be split into
two separate colors in the palette. As per MCDA, each color in the
palette is represented by two cluster points c

k1 and c

k2 . We use
||c

k1 � c

k2 || > ✏cluster (where ✏cluster is a sufficiently small num-
ber), to check for palette separation. If so, the two cluster points
are added to the palette as separate colors, each with its own pair of
cluster points. As seen in Figure 3, over the course of many itera-
tions, the palette grows from a single color to a set of eight (which
is the maximum number specified by the user in this example).

After resolving any splits, each color is represented by two sub-
clusters with the same value (unless the maximum number of colors
have been reached). In order for any color’s sub-clusters to separate
in the following iterations, c

k1 and c

k2 must be made distinctly
different. To do so, we perturb the sub-clusters of each color by a
small amount along the principal component axis of the cluster in
LAB space. Rose [1998] has shown this to be the direction a cluster
will split. This perturbation allows the sub-clusters of each color to
merge when T > T

c

and separate when T < T

c

.

Algorithm 1 is defined so that the superpixel and palette refinement
steps are iterated until convergence. The system converges when
the temperature has reached the final temperature T

f

and the palette
converges. We use T

f

= 1 to avoid truncation errors as the
exponential component of the Equation 2 becomes small.

4.4 Palette Saturation

As a post-processing step, we provide the option to saturate the
palette, which is a typical pixel artist technique, by simply multi-
plying the a and b channels of each color by a parameter � > 1.
This value used in all our results is � = 1.1. Lastly, by converting
to from LAB to RGB space, our algorithm outputs the final image.

4.5 Importance Map

As stated, our method does not favor any image content. For in-
stance, nothing is in place that can distinguish between foreground
and background objects, or treat them separately in the output.
However, user input (or the output of a computer vision system)
can easily be incorporated into our algorithm to prioritize the fore-
ground in the output. Thus, our system allows additional input at
the beginning of our method. Users can supply a win⇥hin grayscale
image of weights W

i

2 [0, 1], i 2 [1,M], used to indicate the im-
portance of each input pixel p

i

. We incorporate this map when iter-
ating the palette (Section 4.3) by adjusting the prior P (p

s

). Given
the importance map, the value P (p

s

) for each superpixel is given by
the average importance of all input pixels contained in superpixel
p

s

(and suitable normalization across all superpixels):

P (p
s

) / 1
|p

s

|
X

pixel i2ps

W

i

(5)

P (p
s

) thus determines how much each superpixel affects the
resulting palette, through Equations 3 and 4. This results in a palette
that can better represent colors in the regions of the input image
marked as important.

original input 32 colors 16 colors 8 colors

ou
rm

et
ho

d
ne

ar
es

tm
et

ho
d

cu
bi

c
m

et
ho

d

Figure 8: Varying the palette size (output images are 64⇥58).

original input 48⇥36 64⇥48 80⇥60

ou
rm

et
ho

d
ne

ar
es

tm
et

ho
d

cu
bi

c
m

et
ho

d

Figure 9: Varying the output resolution (palette has 16 colors).

5 Results

We tested our algorithm on a variety of input images at various
output resolutions and color palette sizes (Figures 8–13). For each
example, we compare our method to two naive approaches:

• nearest method: a bilateral filter followed by median cut color
quantization, followed by nearest neighbor downsampling,

• cubic method: cubic downsampling followed by median cut
color quantization.

All of our results use the parameter settings from Section 4. Each
result was produced in generally less than a minute on an Intel
2.67Ghz i7 processor with 4GB memory. Each naive result is
saturated using the same method described in Section 4.4. Please
note it is best to view the results up-close or zoomed-in, with each
pixel being distinctly visible.

In Figure 8, we show the effects of varying the number of colors
in the output palette. Our method introduces fewer isolated colors
than the nearest method, while looking less washed out than the
cubic method. As the palette size shrinks, our method is better
able to preserve salient colors, such as the green in the turban. Our
method’s palette assignment also improves the visibility of the eyes
and does not color any of the face pink.

Similar results are seen in Figure 9 when we vary the output
resolution. Again we see that the cubic method produces washed-
out images and the nearest method has a speckled appearance. At

original input 22⇥32, 8 colors 11⇥16, 6 colors 4⇥6, 4 colors

ou
rm

et
ho

d
ne

ar
es

tm
et

ho
d

cu
bi

c
m

et
ho

d

Figure 10: Examples of very low resolution and small palette sizes.

all resolutions, our method preserves features such as the goggles
more faithfully, and consistently chooses more accurate skin tones
for the faces, whereas both naive methods choose gray.

Using our technique, the image of Barack Obama is recognizable
even at extremely small output resolutions and palette sizes (Fig-
ure 10). At 22⇥32 and 11⇥16, our method more clearly depicts
features such as the eyes while coloring regions such as the hair and
tie more consistently. At 11⇥16, the nearest method produces a re-
sult that appears to distort facial features, while the cubic method
produces a result that “loses” the eyes. At 6⇥4, results are very ab-
stract, but our method’s output could still be identified as a person
or as having originated from the input.

In Figure 11, we compare our output to manual results created by
expert pixel artists. While our results exhibit the same advantages
seen in the previous figures over the naive methods, they do not
match the results made by artists. Expert artists are able to heavily
leverage their human understanding of the scene to emphasize and
de-emphasize features and make use of techniques such as dithering
and edge highlighting. While there are many existing methods to
automatically dither an image, at these resolutions the decision on
when to apply dithering is nontrivial, and uniform dithering can
introduce undesired textures to surfaces (such as skin).

In Figure 12, we present results from our method using an input im-
portance map. For both examples, the importance map emphasizes
the face and de-emphasizes the background; consequently, more
colors are allocated to the face in each example at the expense of
the background.

Figure 13 contains additional results computed using various input
images. Overall, our approach is able to produce less noisy, sharper
images with a better selection of colors than the naive automatic
techniques we compared against.

To verify our analysis, we conducted a formal user study with 100
subjects using Amazon Mechanical Turk. Subjects were shown the
original image and the results of our method and the two naive

original input pixel artist, 8 colors our method, 16 colors

nearest method, 16 colors cubic method, 16 colors

original input pixel artist, 11 colors our method, 12 colors

nearest method, 12 colors cubic method, 12 colors

Figure 11: Comparing to the work of expert pixel artists (64⇥43)

importance map 64⇥58, 16 colors importance map 64⇥43, 12 colors

Figure 12: Results using an importance map.

methods. The results were scaled to approximately 256 pixels
along their longest dimension using nearest neighbor upsampling,
so that user’s could clearly see the pixel grid. We asked subjects
the question, “Which of the following best represents the image
above?” Subjects responded by choosing a result image. The
stimulus sets and answer choices were randomized to remove bias.
The study consisted of the example images and parameters shown
in our paper, excluding the results generated using user-markup,
and each stimulus was duplicated four times (sixty total).

We accounted for users answering randomly by eliminating the
results of any subject who gave inconsistent responses (choosing
the same answer for less than three of the four duplicates) on
more than a third of the stimuli. This reduced the number of
valid responses to forty. The final results show that users choose
our results 41.49% of the time, the nearest method 34.52% of the
time, and the cubic method 23.99% of the time. Using a one-way
analysis of variance (ANOVA) on the results, we found a p value
of 2.12 ⇥ 10�6, which leads us to reject the null hypothesis that
subjects all chose randomly. Using Tukey’s range test we found that
our method is significantly different from the nearest method with
a 91% confidence interval, and from the cubic method with a 99%
confidence interval. While we acknowledge that the question asked
is difficult one given that it is an aesthetic judgment, we believe
the results of this study still show subjects prefer the results of our
method over the results of either naive method.

We also received feedback from three expert pixel artists on our
results; each concluded that out results are, in general, an improve-
ment over the naive approaches. Ted Martens, creator of the Pixel
Fireplace, said that our algorithm “chooses better colors for the

original input our method nearest method cubic method

10
0⇥

10
0,

24
co

lo
rs

54
⇥

64
,1

6
co

lo
rs

64
⇥

64
,1

6
co

lo
rs

48
⇥

64
,1

6
co

lo
rs

Figure 13: Additional results.

palette, groups them well, and finds shapes better.” Adam Saltsman,
creator of Canabalt and Flixel, characterized our results as “more
uniform, more reasonable palette, better forms, more readable.”
Craig Adams, art director of Superbrothers: Sword & Sworcery
EP, observed that “essential features seem to survive a bit better
[and] shapes seem to come through a bit more coherently. I think
the snowboarder’s goggles are the clearest example of an essential
shape—the white rim of the goggle—being coherently preserved in
your process, while it decays in the ‘naive’ process.”

Finally, while not the direct goal of our work, we briefly mention
a secondary application of our method, image posterization. This
artistic technique uses just a few colors (originally motivated by
the use of custom inks in printing) and typically seeks a vectorized
output. LiveTrace, a feature in Adobe Illustrator can posterize the
image in Figure 1(a), yielding Figure 14(a) with only 6 colors. A
simple modification to our optimization that omits the smoothing
step (Figure 6-left) and then colors the original image via associated
superpixels gives us Figure 14(b), which makes a more effective
starting point for vectorization. The resulting Figure 14(c) offers
improved spatial and color fidelity, based on a good faith effort to
produce a similar style in Illustrator.

6 Conclusion, Limitations and Future work

We present a multi-step iterative process that simultaneously solves
for a mapping of features and a reduced palette to convert an input
image to a pixelated output image. Our method shows several
advantages over naive methods. Our results have a more vibrant
palette, retain more features of the original image, and produce
a cleaner output with fewer artifacts. While the naive methods
produce unidentifiable results at very low resolutions and palette
sizes, our approach is still able to create iconic images that conjure
the original image. Thus our method makes a significant step
towards the quality of images produced by pixel artists.

(a) vectorized photo (b) optimize first (c) vectorized from b

Figure 14: (a) Photo posterized with Illustrator (6 colors). (b)
Optimization without Laplacian smoothing, coloring associated
input pixels (6 colors). (c) Vectorizing b in Illustrator yields similar
style with better spatial and color fidelity than a.

Nevertheless, our method has several limitations which we view as
potential avenues for future research. While pixel artists view our
results as an improvement, they also express the desire to have a
greater control over the final product. We partially address this by
incorporating an importance map that guides palette selection, but
there is still room to incorporate additional choices typically made
by a pixel artist. We wish to expand our proposed method to include
the user “in the loop” while generating the final output. We intend
to investigate an interface that will allow users to guide the process
and introduce additional techniques used by pixel artists, such as
edge highlighting. Likewise the ability for the user to specify colors
in the palette would broaden the potential applications of this work
to include, for example, reproduction of an image in repeating
tiles like Lego, or design for architectural facades composed of
particular building materials like known shades of brick.

Another limitation that we would like to address in future work is
the use of selective dithering. Our current framework avoids the
need for dithering by automatically selecting palette colors that
express the most critical shades in the source image. However,
artists often use dithering to simultaneously achieve blended colors
and express texture (for example, the dog in Figure 11). This kind
of effect could be incorporated either by allowing user to specify
dither regions or through texture analysis, but in either case would
make the optimization process more complex.

7 Acknowledgments

We thank the anonymous reviewers for their helpful feedback. We
also wish to thank pixel artists Craig Adams, Ted Martens, and
Adam Saltsman for their advice and comments. This research is
supported in part by the NSF (IIS-09-16845 and DGE-05-49115).
The following copyrighted images are used with permission: Fig-
ure 2 by Alice Bartlett, Figure 8 by Louis Vest, Figure 13 (giraffe)
by Paul Adams, and Figure 13 (pagoda) by William Warby. The
pixel art in Figure 11 is copyright Adam Saltsman (top) and Ted
Martens (bottom).

References

ACHANTA, R., SHAJI, A., SMITH, K., LUCCHI, A., FUA, P.,
AND SÜSSTRUNK, S. 2010. SLIC Superpixels. Tech. rep.,
IVRG CVLAB.

DECARLO, D., AND SANTELLA, A. 2002. Stylization and
abstraction of photographs. ACM Trans. Graph. 21, 769–776.

DECARLO, D., FINKELSTEIN, A., RUSINKIEWICZ, S., AND
SANTELLA, A. 2003. Suggestive contours for conveying shape.
ACM Trans. Graph. 22, 3 (July), 848–855.

FORSYTH, D. A., AND PONCE, J. 2002. Computer Vision: A
Modern Approach. Prentice Hall.

GERVAUTZ, M., AND PURGATHOFER, W. 1990. Graphics gems.
ch. A simple method for color quantization: octree quantization,
287–293.

GOOCH, B., COOMBE, G., AND SHIRLEY, P. 2002. Artistic
vision: painterly rendering using computer vision techniques. In
Non-Photorealistic Animation and Rendering (NPAR), 83–90.

HECKBERT, P. 1982. Color image quantization for frame buffer
display. SIGGRAPH Comput. Graph. 16 (July), 297–307.

JUDD, T., DURAND, F., AND ADELSON, E. H. 2007. Apparent
ridges for line drawing. ACM Trans. Graph. 26, 3, 19.

KIRKPATRICK, S., GELATT, C. D., AND VECCHI, M. P. 1983.
Optimization by simulated annealing. Science 220, 671–680.

KOPF, J., AND LISCHINSKI, D. 2011. Depixelizing pixel art. ACM
Trans. Graph. 30, 4, 99:1–99:8.

LEVINSHTEIN, A., STERE, A., KUTULAKOS, K. N., FLEET,
D. J., DICKINSON, S. J., AND SIDDIQI, K., 2009. Turbopixels:
Fast superpixels using geometric flows.

MACQUEEN, J. B. 1967. Some methods for classification and
analysis of multivariate observations. In Proceedings of 5th
Berkeley Symposium on Mathematical Statistics and Probability,
281–297.

MARR, D., AND HILDRETH, E. 1980. Theory of edge detection.
International Journal of Computer Vision.

ORCHARD, M., AND BOUMAN, C. 1991. Color quantization of
images. IEEE Trans. on Signal Processing 39, 2677–2690.

PUZICHA, J., HELD, M., KETTERER, J., BUHMANN, J. M.,
MEMBER, IEEE, AND FELLNER, D. W. 2000. On spatial
quantization of color images. IEEE Transactions on Image
Processing 9, 666–682.

ROSE, K. 1998. Deterministic annealing for clustering, compres-
sion, classification, regression, and related optimization prob-
lems. Proceedings of the IEEE 86, 11 (nov), 2210–2239.

SHARMA, G., AND TRUSSELL, H. J. 1997. Digital color imaging.
IEEE Transactions on Image Processing 6, 901–932.

SHI, J., AND MALIK, J. 1997. Normalized cuts and image
segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence 22, 888–905.

STOLLNITZ, E. J., OSTROMOUKHOV, V., AND SALESIN, D. H.
1998. Reproducing color images using custom inks. In Proceed-
ings of SIGGRAPH, 267–274.

VEDALDI, A., AND SOATTO, S. 2008. Quick shift and kernel
methods for mode seeking. In In European Conference on
Computer Vision, volume IV, 705–718.

VERMEHR, K., SAUERTEIG, S., AND SMITAL, S., 2012. eboy.
http://hello.eboy.com.

WINNEMÖLLER, H., OLSEN, S. C., AND GOOCH, B. 2006. Real-
time video abstraction. ACM Trans. Graph. 25, 1221–1226.

WU, X. 1992. Color quantization by dynamic programming and
principal analysis. ACM Trans. Graph. 11, 348–372.

XU, J., KAPLAN, C. S., AND MI, X. 2007. Computer-generated
papercutting. In Computer Graphics and Applications, 2007. PG
’07. 15th Pacific Conference on, 343 –350.

