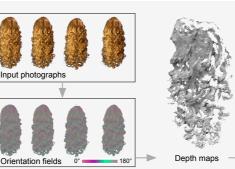


Multi-View Hair Capture using Orientation Fields

Hao Li^{2,1} Sylvain Paris³ Thibaut Weise⁴ Mark Pauly⁴ Szymon Rusinkiewicz¹ Linjie Luo¹ ¹Princeton University ²Columbia University ³Adobe ⁴EPFL


Motivation

Results

- Hair is difficult for conventional passive multi-view stereo due to omni-present occlusions, complex discontinuities and specular appearance
- State-of-the-art active hair capture systems are inefficient or inaccurate

• Average error evaluated on synthetic hairstyle: 3~5mm

• Hair orientation is a prominent feature

Overview

• Reveals finer hair details compared to state-of-the-art method (PMVS + Poisson)

Static reconstruction results on two real hairstyles and one synthetic hairstyle (3 views)

We propose a multi-view stereo algorithm that:

PMVS + Poisson

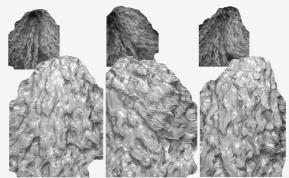
Merged surface

- matches hair's local orientation fields
- enforces continuity along *local hair* structures through aggregation
- fuses multiple depth maps by *iterative* surface deformation
- reveals fine hair structures

Dynamic acquisition setup

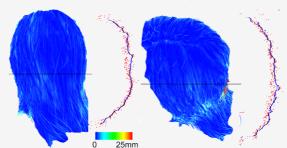
Acquisition

Static setup:


• Wigs

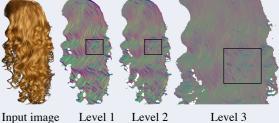
• Real moving hair

Dynamic setup:


- 32 views (8 groups) 4 views (1 group) • 640 × 480
- 1404 × 936 • 100 FPS
- Robotic gantry
- Normal lighting • Strong lighting

Dynamic Hair Capture

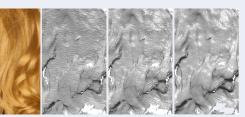
Sample frames of dynamic hair capture results


Ouantitative Evaluation

Depth error map on rendered views and cross sections

7 Multi-resolution Orientation Fields

- Detect orientations at peak responses of oriented filters
- Only consider highlighted hair structures (better SNR)


${\it 2}$ Structure-Aware Aggregation

- Guided filtering on matching energy volume based on orientation similarity
- Improves SNR and disambiguates stereo matching for MRF

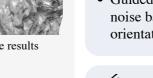
Without aggregation With aggregation

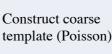
\Im Depth Map Refinement

- Refine depth by fitting quadratic polynomial to the adjacent 3 energy values
- · Guided filtering stereo noise based on orientation similarity

refined

MRF Sub-pixel Input image output


Guided filtered


4 Merging

- Construct coarse template (Poisson)
- Refine template by iterative surface deformation
- Reintroduce geometric details

Combined Coarse depth maps template

Template Details refinement reintroduced

