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Figure 1: Rendering comparisons. (a) Rendering of 3D scanned range image, (b) same scanned geometry, augmented with a measured normal-map (from

photometric stereo), (c) our hybrid surface reconstruction, which combines both position and normal constraints, (d) photograph. Renderings in this paper do

not use color information in order to focus on geometric aspects. Note how our method eliminates noise from the range image while introducing real detail.

The surface normals are of the same quality or better than those from photometric stereo, while most of the low-frequency bias has been eliminated.

Abstract

Range scanning, manual 3D editing, and other modeling ap-
proaches can provide information about the geometry of surfaces
in the form of either 3D positions (e.g., triangle meshes or range
images) or orientations (normal maps or bump maps). We present
an algorithm that combines these two kinds of estimates to produce
a new surface that approximates both. Our formulation is linear, al-
lowing it to operate efficiently on complex meshes commonly used
in graphics. It also treats high- and low-frequency components sep-
arately, allowing it to optimally combine outputs from data sources
such as stereo triangulation and photometric stereo, which have
different error-vs.-frequency characteristics. We demonstrate the
ability of our technique to both recover high-frequency details and
avoid low-frequency bias, producing surfaces that are more widely
applicable than position or orientation data alone.

1 Introduction

Increasingly, scanned 3D models of real-world objects are being
used in rendering, visualization, and analysis applications. Al-
though the absolute accuracy of such scanned data can be high,
even a small amount of noise in measured positions can cause large
errors when surface normals are computed. Lit renderings of such
scanned models may produce low quality images (Figure 1a).

An alternative is to measure a normal field independently of the
depth estimates, instead of computing it from measured positions.
For example, there exist technologies based on shape from shad-
ing or photometric stereo [Woodham 1980] that directly measure
surface orientations. Using these independently-measured fields as
normal maps allows for high-quality renderings from certain view-
points (Figure 1b), even when the actual mesh has low quality or
low resolution. One drawback to simply pasting a “good” normal
field onto “bad” geometry, however, is incorrect parallax and occlu-
sion at grazing views (Figure 2, top left). In addition, some render-
ing and mesh processing effects such as shadowing or accessibility
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Figure 2: Rendering at grazing angles (top) and accessibility shading (bot-

tom). High-quality normal maps are not appropriate in these cases. The

examples require the precise geometry our method can deliver.

shading [Miller 1994] inherently operate on only the surface posi-
tions, not the normals. Thus, the poor performance of such tech-
niques on noisy geometry (e.g., as shown in Figure 2, bottom left)
cannot be directly ameliorated by the availability of high-quality
normals. Although it is sometimes possible to directly integrate
the high-resolution normal field to produce a surface without using
additional geometric information, the lack of constraints between
multiple disconnected patches, as well as the frequent presence of
low-frequency distortion (as shown later in the paper), can lead to
bias in the reconstruction.

We present a hybrid algorithm that produces a surface that opti-
mally conforms to given surface positions and normals, taking ad-
vantage of the information available from both sources (Figures 1c
and 2, right). Although we focus in this paper on combining the
depth information from a triangulation scanner with the normal in-
formation from photometric stereo, the technique is applicable to
positions and normals (or bump maps) acquired through scanning,
manual editing, or signal processing algorithms. Our method is
efficient on dense, real-world datasets, since we formulate our opti-
mization in a way that requires solving only a sparse linear system.
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Figure 3: Range scanners frequently have noise in position measurements

that is on the order of sample spacing, leading to noise in estimated nor-

mals (a). To use this scanned geometry for graphics, a popular approach

is to downsample or smooth the raw measurements, which either leaves re-

maining noise (b) or blurs out relevant surface detail (c). In contrast, our

method combines measured positions with measured normals, leading to

noise elimination while adding real detail (d).

In addition, only the most reliable frequency components of each
source are considered, resulting in a reconstruction that both pre-
serves high-frequency details and avoids low-frequency bias.

Our method is motivated by an analysis of the common error
characteristics of measured normals and positions (section 3). It
proceeds in two stages: first, we correct for low-frequency bias in
the measured normal field with the help of measured surface po-
sitions (section 4.1). Then, we optimize for the final surface posi-
tions (sections 4.2 and 4.3) using linear constraints and an efficient
sparse solver. We analyze the performance and quality of the algo-
rithm on a variety of datasets (section 5), demonstrating its ability
to reconstruct accurate and precise geometry suitable for rendering
and mesh processing.

2 Relation to previous work

Positional measurement: Of the many range scanning technolo-
gies available (see [Besl 1989; Poussart and Laurendeau 1989; Cur-
less 1997] for surveys), methods based on triangulation have be-
come popular, since they can be flexible, inexpensive, and accurate.
However, a fundamental limitation of triangulation-based methods
is that their depth accuracy is some fixed multiple of their (horizon-
tal) sample spacing, which typically results in noisy estimated nor-
mals. Although downsampling or blurring the raw measurements is
sometimes acceptable, it frequently leads to oversmoothing of de-
tail (Figure 3). The only effective means of reducing noise is to
combine multiple measurements. Curless and Levoy [1996] have
investigated a method for combining multiple range scans, show-
ing that their VRIP algorithm is essentially a least-squares estima-
tor that can average away noise while keeping detail. In contrast,
we investigate combining the fundamentally different data types of
measured positions and measured normals.

Orientation measurement: The photometric stereo method
[Woodham 1980], which obtains surface orientation from shading
information, is part of a larger set of methods known as shape-from-
shading [Horn 1970]. These include methods whose outputs are
surface normals, or sometimes simply single components of sur-
face normals. Although it is possible to integrate the normals to

find the shape of the surface, this approach is fragile when accurate
surface reconstruction is desired, largely because integrating nor-
mals is prone to introducing low-frequency biases (recall that the
action of the integration operator in frequency space is to scale en-
ergy at some frequency ω by an amount proportional to 1/ω , hence
exaggerating any low-frequency noise). Furthermore, when the
surface consists of multiple disconnected components, integration
has no way of determining the relative position of those compo-
nents. Therefore, most of the use of measured surface orientations
in graphics has been in rendering, by directly using the measured
normals as normal maps [Bernardini et al. 2002], which produces
effective results in some but not all applications (Figure 2).

Combining positions and orientations: Much of the existing
work on combining measured positions and orientations is intended
for rough surface reconstruction in computer vision [Terzopoulos
1988; Banerjee et al. 1992; Fua and Leclerc 1994; Lange 1999],
rather than for accurate reconstruction of surfaces for rendering
or mesh manipulation. Accordingly, orientation measurements are
taken into account mostly because dense estimates are available,
and can help fill holes left by stereo correspondences based on
sparse features.

Of methods that are general, one class integrates normals to yield
a surface, then merges the resulting mesh with the measured posi-
tions as a final step. As mentioned above, this typically has the
side effect of introducing bias and robustness problems. Some of
these methods [Cryer et al. 1995; Mostafa et al. 1999] address the
problem of low-frequency deformation by performing frequency-
dependent processing. Although our method has a similar effect, it
is inherently more stable in the presence of bias and disconnected
components, as are other techniques that avoid explicit integration
of normals.

A final class of methods combines positions and normals by
formulating the reconstruction as a nonlinear optimization of con-
straints provided by the different measurements [Ikeuchi 1983,
1987; Chen et al. 2003]. However, for the typical scanned meshes
used in computer graphics, which contain 105 polygons and above,
nonlinear optimization methods can be prohibitively expensive.
Our formulation of the optimization using a sparse, typically
diagonally-dominant, linear system results in efficient optimization
for large meshes, such as the ones shown throughout this paper and
accompanying demo.

3 Motivation and Quality Assessment

In this section we motivate our method by showing some of the typ-
ical error characteristics of acquired positions from depth scanners
and acquired normals from photometric stereo techniques. It should
be noted that, although we focus on this application, our method can
be applied to a wider range of scanning, modeling or mesh process-
ing techniques, being independent of the specific methodology or
experimental setup. In the remainder of this section, we first de-
scribe the specific scanner we used in this work, followed by an
assessment of the quality of recovered positions and normals.

3.1 Experimental Setup and Hybrid Scanner Design

Consider the setup shown in Figure 4. To acquire positions, we use
a temporal stereo triangulation scanner [Zhang et al. 2003; Davis
et al. 2005], which combines the accuracy of active triangulation
with the ease of calibration of stereo. It is composed of two Sony
DFW-X700 firewire cameras and a Toshiba TLP511 projector. The
cameras are calibrated using the toolbox by Bouguet [2004] and
synchronized by an external trigger. The projector flashes a series
of stripe patterns onto the object while the cameras simultaneously
capture images from two different viewpoints.

Because each surface point on a given epipolar plane receives
a unique lighting profile through time, it is possible to establish
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Figure 4: Scanner setup. For position measurement, two cameras capture

synchronized images while a projector flashes random stripes at the object.

For normal acquisition, one of the cameras takes pictures under illumina-

tion by 5 different, calibrated light sources. Part of this object is pictured in

Figures 2 and 5.

unique correspondences by simply correlating the intensity varia-
tions in both images. There is no need to calibrate or even synchro-
nize the projector with the cameras. Given the correspondences, the
3D positions of each point as seen by either camera can be deter-
mined by triangulation.

To acquire normals, we augment our scanner with a number of
fixed light sources and use the photometric stereo technique [Wood-
ham 1980]. Although there are more sophisticated formulations for
the method [Tagare and deFigueiredo 1991; Georghiades 2003], we
rely, as others [Epstein et al. 1996], on the redundancy provided by
extra light sources in order to avoid regions that deviate from the
Lambertian assumption. We use 5 white Luxeon® LED emitters
arranged in a pentagon around the reference camera.

In our setup, the triangulation scanner and the photometric stereo
scanner share the same reference camera. Therefore, normals and
positions are automatically registered. Other hybrid scanner de-
signs use independent cameras for depth and normal capture, usu-
ally acquiring normals at a higher resolution [Bernardini et al.
2002]. In these cases, after registration, depth data can be up-
sampled to match the measured normal field, resulting in an output
similar to that of our scanner.

3.2 Quality assessment

We need a way to assess the quality of measured normals and po-
sitions, and the accuracy of our results. Our triangulation scanner
has been tested by scanning simple objects with known geometry,
by comparing results with that of other scanners, and by analyzing
how well different scans from the same object align together. We
are confident that position errors are below 0.2mm.

One way to obtain ground truth for further comparisons is to pro-
duce a high-resolution range image with our triangulation scanner
and use it as ground-truth when comparing to data obtained from
much lower resolution input images. In practice, we compare full
resolution scans with quarter resolution scans.

Following this idea, Figures 5a and 5b present comparisons be-
tween the output of our scanners and ground truth for a closeup of
the target object seen in Figure 4. Position errors are defined as the
distance to ground truth samples along lines of sight of the cam-
era. Normal field errors give the angular deviation with respect to
ground truth normals. To facilitate visualization, error values are
mapped to colors.

Figure 5a shows the results for directly measured positions from
our triangulation scanner. We can also compute normals from this
geometry. Position errors in this example were below 0.5mm and
can result from noise in the captured images, from speckles or from

Position error Normal error

(a) Measured positions: Triangulation Scanner

(b) Measured normals: Photometric Stereo Scanner

(c) Corrected normals: Section 4.1

(d) Optimization results: Section 4.2

45°15° 30° 60°

3/4mm1/2mm1/4mm 1mm

0°

0mm

Figure 5: Quality assessment. (a-b) Notice how measured data contains

considerable error. This takes the form of high-frequency noise for mea-

sured positions from a geometric scanner, and low-frequency bias for mea-

sured normals from a photometric scanner. (c-d) The combination of the

two sources of data corrects most of the error present in the original data.



imperfections in the subpixel estimation of correspondences. The
errors essentially take the form of random high-frequency noise
throughout the object. Although relatively small, such errors can
produce deviations in excess of 30° in the estimated normal field.
When rendered with shading, these deviations are responsible for
the distracting bumps seen in Figure 1a.

Figure 5b shows the results for normals measured by our pho-
tometric stereo scanner. Errors in measured normals are low-
frequency in nature and often manifest themselves in terms of a
systematic bias that can reach 30°. These can be the result of in-
terreflections, shadows, or of the oversimplification of the lighting
model [Rushmeier and Bernardini 1999; Lensch et al. 2003]. When
these normals are used to integrate for positions, large errors appear
in the reconstructed surface.

4 Hybrid reconstruction algorithm

On the basis of the preceding error analysis, we conclude that the
prevailing errors in measured normals, such as from photomet-
ric stereo, are low-frequency in nature, whereas measured posi-
tions, such as from a geometric depth scanner, contain mostly high-
frequency noise. Therefore, our algorithm for combining these data
sources considers frequency components independently. While it is
possible to do this in a single step, we find that it is more efficient to
proceed in two stages: first correcting the bias in the normals, then
optimizing the geometry to conform to both the corrected normals
and the measured positions.

Efficiency is one of our main design goals. Our normal correc-
tion step is very efficient and simply involves low-pass filtering and
rotations. Combining the corrected normals and measured positions
into an improved surface is more challenging. We formulate this as
an optimization problem, with careful development of the objective
function to enable solution as a sparse linear system. This allows
our algorithm to operate efficiently on the large meshes typically
found in computer graphics.

We start with the normal correction, then we describe an algo-
rithm specialized to work on single range images, and finally we
describe a full model method that operates on entire, arbitrarily tes-
sellated triangle meshes.

4.1 Using positions to improve normals

A method to eliminate the bias in the measured normals that takes
advantage of the underlying measured positions was presented
by Rushmeier and Bernardini [1999]. This method is specific to the
photometric stereo setting and therefore we developed a technique
that can be applied to a wider range of input data.

As we have seen, the bias present in measured normals is low-
frequency. On the other hand, the noise in normals computed from
measured positions is high-frequency (compare Figures 5a and 5b).
By combining the appropriate frequency bands, we obtain higher
quality normal estimates.

Let N p and Nm be the normal field indirectly obtained from mea-
sured positions and the directly measured normal field, respectively.
Conceptually, we wish to replace the low-frequency component
of Nm with data from N p. We start by smoothing both fields by
the same amount, which should be enough to eliminate the high-
frequency noise present in N p and the high-frequency detail present
in Nm. The smoothing can be performed by individually convolv-
ing the coordinate functions of the normals with a Gaussian and
then renormalizing (3D distances can be used instead of geodesic
distances). The resulting smoothed fields, S(N p) and S(Nm), cor-
respond to the low-frequency components of the original fields.

We then compute a rotation field R representing the rotations
which move each normal in S(Nm) to the corresponding nor-
mal in Nm. Finally, we compute the corrected normal field
Nc = RS(N p) by applying the rotation field to the smoothed normal

field obtained from measured positions. The rotation field captures
the high-frequency detail in Nm, but is free of low-frequency infor-
mation. The detail is transferred uniformly from one normal field
to the other, regardless of the angular distance between the corre-
sponding smoothed fields. Notice that since the normal field N p

is only used after severe smoothing, it can be obtained by virtually
any method that produces normals from positions.

Figure 5c shows the resulting corrected normals and the im-
proved positions obtained from their integration. We have elimi-
nated the high-frequency noise in Figure 5a, and significantly re-
duced the bias in Figure 5b. There are still some errors, especially
in terms of surface positions due to the inherent problems of inte-
grating the surface normals without depth information. These will
be addressed in the next subsection.

4.2 Using normals to improve positions

Measured positions usually come organized in a range-image.
The pixel coordinates on the reference camera induce a natural
parametrization of the corresponding surface. Accordingly, un-
der perspective projection, the coordinates of a surface point can
be written in terms of a depth function Z(x,y). In other words,
given the pixel coordinates, the position of the corresponding sur-
face point P(x,y) has only one degree of freedom, Z(x,y):

P(x,y) =
[

− x
fx

Z(x,y) −
y
fy

Z(x,y) Z(x,y)
]T

(1)

where fx and fy are the camera focal lengths in pixels. Our problem
is to find a depth function that conforms to the estimates we have
for the position and normal of each point. To do so, we choose
the depth function that minimizes the sum of two error terms: the
position error E p and the normal error En.

The position error is defined as the sum of squared distances
between the optimized positions and the measured positions:

E p = ∑
i

||Pi −Pm
i ||2 (2)

where Pi is the ith optimized position, and Pm
i is the correspond-

ing measured point. To evaluate the position error, we transform
depth values to distances from the center of projection, along lines
of sight:

||Pi −Pm
i ||2 = µ2

i (Zi −Zm
i )2, where (3)

µ2
i =

( xi

fx

)2
+

( yi

fy

)2
+1 (4)

The normal error could be defined in a number of different ways,
including the sum of angular errors between corresponding normals
in the optimized surface and the corrected normal field, or the sum
of squared distances between each normalized or un-normalized
pair. However, most formulations lead to a non-linear optimiza-
tion problem, which is impractical for the size of our datasets. Our
solution is to consider the tangents to the optimized surface instead.
The corrected normals (which are constant) and the tangents to the
optimized surface should be perpendicular. Recall that the surface
tangents Tx and Ty at a given pixel can be written as linear functions
of the depth values and their partial derivatives:

Tx =
∂P

∂x
=

[

− 1
fx

(

x ∂Z
∂x

+Z
)

− 1
fy

y ∂Z
∂x

∂Z
∂x

]T

(5)

Ty =
∂P

∂y
=

[

− 1
fx

x ∂Z
∂y

− 1
fy

(

y ∂Z
∂y

+Z
) ∂Z

∂y

]T

(6)

We now define

En = ∑
i

[Tx(Pi) ·N
c
i ]2 +[Ty(Pi) ·N

c
i ]2 (7)

where Nc
i is the corrected normal corresponding to Pi. En is the

sum of squared projections of the tangents to the optimized surface
into the corrected normal field. It is minimized when all tangents



are perpendicular to the corrected normals. To evaluate Tx(Pi) and
Ty(Pi), we compute the partial derivatives of the depth function and
substitute in equations 5 and 6. Since we are dealing with a uniform
discrete sampling of the depth function, we can approximate the
partial derivatives by considering 3×3 neighborhoods and the fol-
lowing convolution kernels, assuming all neighbors are available:

∂Z

∂x
= Z ∗

1

12

-1 0 1

-4 0 4

-1 0 1
,

∂Z

∂y
= Z ∗

1

12

1 4 1

0 0 0

-1 -4 -1
(8)

Occasionally, around boundaries and depth discontinuities, some
neighbors will not be present. We can detect these cases by an-
alyzing the measured positions and use the best possible discrete
derivative, down to simple one-sided derivatives. When there are
no neighbors, the point can be removed from the minimization.

The optimal surface is then given by

argmin
Z

λE p +(1−λ )En (9)

where the parameter λ ∈ [0,1] controls how much influence the po-
sitions and normals have in the optimization. The two error terms
are measured in units of squared distance and therefore λ is dimen-
sionless. When λ is 0, the algorithm considers normals exclusively,
with help from measured positions only in boundary conditions,
much like shape-from-shading (in fact, this is the method we use to
integrate normals for comparison purposes in this paper). When λ
is 1, the algorithm simply returns the original positions. For inter-
mediate values, the method finds the optimal weighted combination
of normals and positions.

Each pixel generates at most 3 equations: one for the position
error, and one for the normal error in each of the x and y directions.
Before squaring, the equations for the error terms are linear in the
depth values we are solving for. Therefore, the entire minimization
can be formulated as a large over-constrained linear system to be
solved by least squares:





λ µI
. . . .
N ·T





[

Z
]

=





λ µZm

. . . . .
0



 (10)

Here, N · T represents a matrix that, when multiplied by the un-
known vector Z, produces a vector with two rows per point, eval-
uating the normal constraints (1 − λ )Nc · Tx and (1 − λ )Nc · Ty.
Note that Tx and Ty are linear in Z and Nc is independent of Z.
Additionally, the method can be extended to use individual confi-
dence estimates for each normal and position constraint by simply
pre-multiplying the system by a diagonal weight matrix (i.e., using
weighted least squares).

With 3 equations per pixel, a 1024×768 scan can generate hun-
dreds of thousands of equations. Fortunately, the matrix is very
sparse. In fact, the number of non-zero entries is linear in the num-
ber of pixels because there are at most 7 non-zero entries per row
(one coefficient for the depth of the reference pixel and at most
six others for the neighbors used to find the partial derivatives).
The Paige and Saunders [1982] implementation of their Conjugated
Gradient method for solving sparse least squares problems can eas-
ily handle this type of system. The resulting range image is accurate
in both positions and normals, as the example in Figure 5d shows.

4.3 Full model optimization

In some cases, we might be given a full 3D model with a normal
map, and no access to the original range maps. This might be be-
cause the range maps never existed (e.g., a depth acquisition method
that does not yield regularly-spaced range images was used), or be-
cause the normals were obtained from several different sources (as
in Figure 10). A generalization of the 2.5D method presented in the
previous section to arbitrarily tessellated 3D meshes can be useful
in these cases.

The number of variables in the optimization and the number of
equations will usually be larger than for the 2.5D case. Not only
are there more vertices, but we are optimizing for 3 independent
coordinates instead of one depth value per vertex. It is, therefore,
important that our method remains efficient and this entails finding
a linear formulation for the objective function.

In defining the new normal error Ên, we no longer have a trivial
way to compute the partial derivatives of the optimized surface at
each vertex (needed to compute tangents), because there is no obvi-
ous parametrization. A solution that proved adequate is to consider
the polygon formed by the neighbors of each vertex as an approxi-
mation to its tangent space. For each edge in each polygon, we add
a term to the normal error that favors edges that are perpendicular
to the measured normal at the central vertex. This approximation
has the advantage of being linear.

u

v
w

Ên = ∑
v

∑
u,w

[Nm
v ·(Pu−Pw)]2 (11)

The new position error Ê p also requires additional thought. If
we allow too much freedom in moving the vertices, the optimiza-
tion might result in a self-intersecting model. In practice, this does
not happen when the vertices move relatively little compared to the
edge lengths. This is the case if we start from a reasonable approx-
imation to the optimal positions. If, in addition, we restrict vertex
motion to the normal direction, self-intersections are extremely un-
likely. Fortunately, this can be achieved without breaking the lin-
earity of the objective function.

Ê p = ∑
v

||Mv(Pv −Pm
v )||2 (12)

Here, Mv = αNm
v NmT

v +β (I −Nm
v NmT

v ) is a 3× 3 matrix that has
Nm

v and its tangent space as eigenvectors with α and β respective
eigenvalues. Choosing a relatively small value for α allows Pv to
move away from Pm

v in the Nm
v direction without adding much to the

position error. On the other hand, deviations in the tangent direction
are magnified by β and are therefore not favored. Thus, Mv helps
prevent self-intersections in the optimized model, which is given by

argmin
P

λ Ê p +(1−λ )Ên (13)

Since all our constraints are linear, the optimization can pro-
ceed by least squares just like the 2.5D version of the algorithm,
with λ playing the same role. The resulting full model has less
high-frequency noise and more high-frequency detail than the sim-
ple merging of range scans. Examples of full model optimization
are shown in Figures 10 and 9, and discussed in the results section.

5 Results

In this section, we first evaluate the algorithm, discussing the set-
ting of parameter values, and the accuracy and efficiency. We then
discuss some applications, showing examples of some of the recon-
structions we have produced using our method.

Accuracy and robustness: The precision of our method is one
of its key features. The color-coded error renderings of Figures 5c
and 5d provide an indication of the quality of the results. Another
way to assess the accuracy of our method is to analyze depth pro-
files for a reference object, as in Figure 6. The plots show that
measured positions are noisy and integration of corrected normals
creates extraneous detail, whereas the optimized surface eliminates
noise while closely following the ground truth.
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Figure 6: Depth profiles (in 0.5mm) for a reference object. (Left) Measured positions and integration from corrected normals, (Right) optimized surface. Note

how the optimized profile follows the ground truth profile closer than the others.
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Figure 7: Distance between two aligned scans of a 30cm plaster penguin.

(Left) Integration of normals, (Center) directly measured positions, (Right)

optimized surfaces (λ = 0.1). Our method produces unwarped results that

align very well.

Another important measure of surface precision is how well par-
tial scans align with respect to each other. In a standard scan-
ning pipeline, partial scans are first manually brought close to their
aligned positions. Then, ICP [Besl and McKay 1992] is run to pre-
cisely align scans pairwise. A global registration pass [Pulli 1999]
is used to spread registration error evenly across pairwise align-
ments. Finally, all scans are merged into a single model using the
VRIP volumetric method [Curless and Levoy 1996].

Good alignments are vital if details are to be preserved. In ad-
dition, since warped scans do not align properly, it is possible to
use alignment quality to verify that scans are free of warp. Fig-
ure 7 compares our results against the alignment obtained by di-
rectly measured positions and by integration of photometric stereo
normals. Low-frequency warps are clearly visible in the results of
integration of normals. Conversely, high-frequency noise can be
observed in the directly measured positions. By contrast, the re-
sults of our method are free of warp and align very well.

In general, our method is robust with regard to outliers both in
positions and normal estimates. Position outliers can be easily de-
tected and eliminated with the analysis of shapes and sizes of the tri-
angles produced from the measured range images. Although harder
to detect, the influence of normal outliers is limited to a small neigh-
borhood.

Relative importance of positions and normals—setting λ :
The λ parameter provides simple and effective control over the
behavior of the algorithm, which consistently produces good re-

sults. Recall that λ is a dimensionless parameter in the range [0,1]
and controls the relative contribution of normals and positions in
the optimization. For instance, when the measured positions are
noisy, a smaller λ , giving less weight to geometric data, will smooth
the noise away. In general, we find that values in the range of
[0.10,0.30] are most suitable for λ , and the method is not very sen-
sitive to parameters in that range, with satisfactory results obtained
for all the examples we tested. Values outside this range can be
appropriate when the quality of positions and normals is less bal-
anced.

Efficiency: One important characteristic of our method is its ef-
ficiency. By formulating only linear constraints, we are able to
solve the minimization by linear least squares. Since each con-
straint refers to a constant number of variables, and the number
of constraints is linear in the number of variables, the memory re-
quirements are also linear. As the weight λ assigned to measured
positions increases, the identity part of the linear system dominates
(see equation 10) and convergence is greatly improved. Hence, op-
timizing a range image with λ = 0 (corresponding to integrating
the surface normals directly) may require several minutes. How-
ever, using a value of λ within the suitable range [0.10, 0.30] allows
us to obtain high quality results within seconds on models having
hundreds of thousands of vertices.

Reconstruction and Rendering of Complex Objects: Our
method can produce very high-quality reconstructions of complex
objects with hundreds of thousands of triangles, including sharp and
high-frequency spatial features. Our results can be used for render-
ing, as well as other visualization and signal-processing tasks. In
the course of this research, we have used our algorithm to create
reconstructions of several objects, some of which are shown in Fig-
ures 1 and 8 (at the end of paper). The top row in Figure 8 shows
a closeup of 16 aligned scans of the plaster penguin used in Fig-
ure 7. The middle row shows a closeup of illustrations on a porce-
lain gravy boat. The last row shows a model obtained from a sea
shell. As discussed in the introduction, errors in the normals esti-
mated from the scanned geometry produce unpleasant bumps (a).
Using the normals acquired by photometric stereo (b) eliminates
the bumps, but introduces bias. The optimized geometry (c), on
the other hand, is almost free of noise or bias. Furthermore, we
obtain accurate renderings at grazing angles, and with mesh opera-
tions like accessibility shading (Figure 2). Indeed, many rendering
tasks like ray-tracing reflections, silhouette computations, sugges-
tive contours, and lighting will benefit from the noise free, unbiased
normals of our method.

Full Model Optimization: Two examples are presented for the
full model version of our algorithm (subsection 4.3). The model
shown in the left part of Figure 9 is the result of the alignment and
merging of 15 raw range scans into a full model. Normals for the



same object were measured by another 15 photometric stereo scans.
These normals were then corrected for bias (as in section 4.1) and
mapped to the vertices of the merged model. Finally, the vertex
positions were then optimized to conform to a number of overlap-
ping normal constraints. The result, shown in the right of Figure 9,
clearly has less high-frequency noise and more detail.

As an example of application of our method to unconventional
sources of surface normal and geometry information, consider the
quarter in Figure 10. The model was produced by the mesh opti-
mization of flat geometry with a bump map. The flat geometry was
generated procedurally, from the specification of the coin dimen-
sions. The bump maps for the two sides of the coin were produced
with a flat-bed scanner. The bump map for the edge was produced
procedurally from the specification of the number of ridges. The
figure shows a model lit by normals computed from the optimized
geometry.

6 Conclusion

3D geometry is commonplace in computer graphics. Typically, this
information comes in the form of depth and vertex positions, or nor-
mals and surface orientations. However, neither depth information
alone, normal information alone, nor a simple combination such as
a bump map, provide a complete solution for computer graphics
modeling and rendering. In this paper, we have shown that when
we have access to positions and normals for a 3D model, it is pos-
sible to combine these two sources of information into an optimal
surface. If only the most reliable component of each source of infor-
mation is considered, the resulting surface will be more precise than
that obtainable by each source independently. We present an anal-
ysis of the common error characteristics of standard position and
normal acquisition systems, and design our algorithm to account
for these types of errors. By formulating the problem in a particu-
lar way, we reduce it to solving a sparse linear system, enabling
very efficient computation of optimal surfaces for large meshes.
Our algorithm represents the first practical technique in computer
graphics of combining position and normal information for precise
surface reconstruction.
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(a) (b) (c) (d)

Figure 8: Rendering comparisons. (a) Rendering of 3D scanned range image, (b) same scanned geometry, augmented with a measured normal-map (from

photometric stereo), (c) our hybrid surface reconstruction, (d) photograph. The top row is the result of aligning several range images for the penguin shown in

Figure 7. The middle row shows a closeup of a porcelain gravy boat. The bottom row shows scans of a sea shell.

Figure 9: Full model optimization. (Left) Several range scans were aligned

and merged. (Right) The result was later optimized with mapped normals

coming from several independent photometric stereo scans.

Figure 10: Full model optimization, with geometry and normals from a vari-

ety of sources. A model of a quarter was produced from initially flat geometry

and a bump map. The figure shows optimized model with normals recomputed

from geometry.


