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Abstract

Most dense stereo correspondence algorithms start by es-

tablishing discrete pixel matches and later refine these

matches to sub-pixel precision. Traditional sub-pixel refine-

ment methods attempt to determine the precise location of

points, in the secondary image, that correspond to discrete

positions in the reference image. We show that this strategy

can lead to a systematic bias associated with the violation of

the general symmetry of matching cost functions. This bias

produces random or coherent noise in the final reconstruc-

tion, but can be avoided by refining both image coordinates

simultaneously, in a symmetric way. We demonstrate that

the symmetric sub-pixel refinement strategy results in more

accurate correspondences by avoiding bias while preserv-

ing detail.

1. Introduction

The computation of precise sub-pixel stereo correspon-

dences is vital to areas such as 3D scanning and image based

modeling and rendering. Most dense stereo correspondence

algorithms start by determining discrete pixel matches and

later refine these matches to sub-pixel precision [11]. The

initial set of correspondences is usually computed by mini-

mization of a matching cost function that has been laid out

as a disparity space image (DSI) [2, 14].

Sub-pixel refinement of correspondences can be per-

formed over a finely sampled or continuously reconstructed

neighborhood of the DSI around the initial integer match.

The continuous reconstruction strategy has the advantage

of being simple and efficient. On the other hand, although

computationally more expensive, the supersampling alter-

native tends to be more accurate. Efforts have been made

both to improve the quality of reconstruction-based refine-

ment [12, 13] and to improve the efficiency of supersam-

pling [6].

In this paper, we identify a new source of bias for

reconstruction-based sub-pixel refinement strategies (sec-

tion 2). It can be observed when one image is considered

as reference and the refinement is performed on the corre-

sponding coordinate in the matching image. It arises from

the sensitivity of this “traditional” approach to the varying

confidence of the matching cost function when evaluated at

neighboring pixels. In the final reconstruction, the bias can
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Figure 1: Examples of matching cost functions. (a) Sum of squared
differences. (b) Normalized cross-correlation. (c) Birchfield and
Tomasi [1]. (d) Sum of absolute differences. Note the matching
ridge and how the functions are symmetric with regard to it.

be experienced as random or coherent noise, as the “texture

embossing” addressed by Curless and Levoy [4], or as the

“striping effect” addressed by Zhang et al. [16].

To avoid bias, our symmetric sub-pixel refinement strat-

egy refines both the reference and the matching image co-

ordinates simultaneously, in a symmetric way, by looking

for the minimum of the matching cost function along a di-

rection that is insensitive to its confidence variations (sec-

tion 3). We present results on both synthetic data and real

scans obtained using active stereo (section 4), which show

that this new method significantly reduces bias in high-

variance situations. Additionally, we demonstrate that one

of its variants avoids the “pixel locking” effect addressed

by Shimizu and Okutomi [12].

2. The Symmetry of Matching Cost

Consider two rectified cameras C1 and C2, producing im-

ages I1 and I2 of an object, such that the scan-lines in each

image are corresponding epipolar lines [7]. In this setup,

Yang et al. [14] reduced the problem of stereo matching

to that of finding a surface in the disparity-space image

Ξ(x1, y, d), which measures the cost of matching points

(x1, y) in I1 and (x1 + d, y) in I2. The matching cost is de-

fined by a metric M that compares neighborhoods of pixel

values, so that Ξ(x1, y, d) ≡ M(I1(x1, y), I2(x1 + d, y)).
Note that for a given scan-line y, the problem simplifies

even further to that of finding a matching ridge, which is

the extremum curve in Ξy(x1, d).
Instead of working in disparity space, we prefer to work

directly with image coordinates. The concept of disparity

implies taking one camera as reference and, as we shall

see, this is a source of bias. The direct parameterization

Fy(x1, x2) ≡ Ξy(x1, x2 − x1) is more symmetric and sim-

plifies our analysis. Figure 1 shows examples of popular
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Figure 2: The slope of the matching ridge. The geometry of the
setup yields an expression for the slope dr2/dr1, as given by equa-
tion 6. Each intersection U between the object tangent and the
baseline of the cameras produces a different slope.

matching cost functions under this direct parametrization.

In each case, the matching ridge is clearly visible. We also

notice a certain symmetry of the matching cost, which we

explain below.

Consider the intersection between the object being im-

aged and a given epipolar plane, as shown in figure 2. It

defines a curve Oy(t) that is projected into I1 and I2. If

r1(t) and r2(t) are the corresponding parametrizations for

these projections, the matching ridge is simply the curve de-

fined by Ry(t) = (r1(t), r2(t)). Given a perfect matching

pair (x1, x2), it is clear that Ry goes through (x1, x2) for

some t. If r1 and r2 are continuous and smooth at t, then

(x1 + dr1(t), x2 + dr2(t)) is a first order approximation

for Ry . It follows that (x1 ± dr1, x2 ± dr2) are also on the

matching ridge and therefore are also matching pairs.

Comparing the values of Fy(x1 + dr1, x2 − dr2) and

Fy(x1−dr1, x2+dr2), we notice that they must be similar:

Fy(x1 + dr1, x2 − dr2) ≡

≡ M(I1(x1 + dr1, y), I2(x2 − dr2, y)) (1)

= M(I2(x2 − dr2, y), I1(x1 + dr1, y)) (2)

≈ M(I1(x1 − dr1, y), I1(x1 + dr1, y)) (3)

≈ M(I1(x1 − dr1, y), I2(x2 + dr2, y)) (4)

≡ Fy(x1 − dr1, x2 + dr2) (5)

Steps (1) and (5) are by definition. Step (2) follows from

the symmetry of M . Steps (3) and (4) come first from the

fact that, since x1 ± dr1 matches x2 ± dr2, I1(x1 ± dr1, y)
must be similar to I2(x2 ± dr2, y). The continuity of M

then leads to the approximations.

We have thus shown that Fy is locally skew-symmetric

about Ry . The symmetry is such that, if a segment of the

matching ridge is the diagonal of a rectangle, then symmet-

ric pairs can be found along symmetric lines parallel to the

other diagonal. These may or may not be perpendicular to

the matching ridge (see figure 3).

The slope of the matching ridge (which is also the sym-

metry axis) is given by dr2

dr1
. This ratio can can be written as

a function of the baseline distance between the cameras and

Figure 3: The skew-symmetry of matching cost. If a segment of
the matching ridge (shown in red) is the diagonal of a rectangle
(shown in white), symmetric pairs can be found along symmetric
lines parallel to the other diagonal (shown in blue).

the tangent to the object at the point being imaged (equa-

tion 6). For a geometric derivation, assume a linear object

segment PQ as in figure 2. The slope dr2

dr1

is equal to the

ratio between the lengths of segments p2q2

p1q1

. From triangles

UPC1 and UPC2, we have the relation up1

UC1

= up2

UC2

. The

same relation holds for triangles UQC1 and UQC2, from

which uq1

UC1

= uq2

UC2

. Subtracting both relations, we obtain:

dr2

dr1
=

UC2

UC1

=
Z − X2

dZ
dX2

Z − X1
dZ
dX1

(6)

The slope is π
4

if the two cameras coincide or if the ob-

ject tangent is parallel to the baseline. When the tangent

goes through either center of projection, the ridge is per-

pendicular to the corresponding axis. Interestingly, any ob-

ject tangent going through a given point U in the baseline

produces the same matching ridge slope. When U falls be-

tween C1 and C2, only one of the cameras can see the ob-

ject, because the other camera sees it from behind. It fol-

lows that the slope of the matching ridge is always positive.

With these observations in mind, we proceed to an anal-

ysis of the traditional approach to sub-pixel refinement.

2.1. Traditional Sub-pixel Refinement

Assume (i1, i2) is a pair of integer best matches. Consider-

ing C1 as the reference camera, the traditional approach is

to determine a sub-pixel precision correspondence i2 + t̄2
for each i1. To determine the optimal value of the displace-

ment t̄2, a continuous constant-i1 cut is reconstructed from

the matching cost function values neighboring (i1, i2) and

t̄2 is chosen to bring the reconstruction to its extremum. It

is common to fit a parabola or other curve to the values

Fy(i1, i2 − 1), Fy(i1, i2) and Fy(i1, i2 + 1).
Unfortunately, a closer look at the matching ridges of

figure 1 reveals that their “widths” vary considerably. This

variation reflects the changing confidence of matching cost

functions when applied to different pairs of epipolar points.

For example, uneven surface texture and illumination might

cause the matching function to be highly discriminating in

one part of the surface, leading to a higher and narrower
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Figure 4: Uncertainty bumps. (a) Sliding an axis-aligned cut across
uncertainty bumps causes bias. (c) On the other hand, cuts aligned
to the symmetric lines of the matching cost function are insensitive
to the bumps. Figures (b, d) show schematic views of the real data
shown in figures (a, c). Curved lines show a hypothetical uncertainty
bump and dashed lines show the cut directions.

ridge. Elsewhere, the matches might be more ambiguous,

leading to a lower and flatter ridge.

As we compute the sub-pixel matches for each i1, we

slide the constant-i1 cut past several of these uncertainty

bumps in the matching ridge. As each bump goes by, the

fit is biased first to one side, then to the other. Figure 4(a)

shows the phenomenon in real data, and figure 4(b) explains

why it happens schematically. This bias is responsible for

most of the noise seen in the “traditional” reconstructions

of figures 7 and 8.

As suggested by figures 4(c) and 4(d), we can avoid this

problem if we look for the extrema along the symmetric

lines of the matching cost function. Neither camera is con-

sidered as reference, and the refined matches will have sub-

pixel precision in the coordinates of both images. This is

the fundamental idea behind our symmetric sub-pixel re-

finement method.

3. Symmetric Sub-pixel Refinement

Guided by the desire to capture the symmetry of the match-

ing cost function, we consider a 2D neighborhood of match-

ing cost values around (i1, i2), and reconstruct a contin-

uous surface S(t1, t2) from it. We then define C(t) =
S(s1t, s2t), a cut through the reconstruction in the [s1 s2]

T

direction. The symmetric sub-pixel refined match is given

by the pair (i1 + s1t̄, i2 + s2t̄), where [s1 s2]
T follows the

lines of symmetry of matching cost, and t̄ is chosen to bring

the cut to its extremum.

All that is left to do is choose the surface reconstruction

method and find the direction of the cut. Below we investi-

gate some options.

3.1. Quadric Interpolation

One candidate for reconstruction is a quadric that interpo-

lates all 9 values in the 3 × 3 neighborhood N3 around

(i1, i2). This quadric is uniquely defined by the following

formulas:

Sq(t1, t2) = qT (t2)N3 q(t1) (7)

q(t) =





1

2
t(t + 1)
1 − t2

1

2
t(t − 1)



 (8)

Note that, under this reconstruction, the traditional ap-

proach of fitting a parabola to the constant-i1 cut reduces to

finding the extremum in the [0 1]T direction.

Since a cut through a quadric is at most a degree 4 poly-

nomial, there is a closed form expression for the position of

its extremum. Furthermore, since the initial bracket is triv-

ial and the target precision is modest, it can be easily and

efficiently determined with a golden section search [9].

3.2. Uniform B-Spline Approximation

Moving away from interpolation, we can consider a larger

neighborhood and use a B-Spline approximation for the

matching cost function. Consider a 5 × 5 neighborhood

around (i1, i2). It is composed of four overlapping 4 × 4
neighborhoods N

j
4

. We can define cubic patches for each

of these and use their union as the B-Spline approximation:

Sb(t1, t2) = Sj
b (t1 − o

j
1
, t2 − o

j
2
) (9)

Sj
b (t1, t2) = bT (t2)N

j
4
b(t1) (10)

b(t) =
1

6









t3

−3t3 + 3t2 + 3t2 + 1
3t3 − 6t2 + 4

−t3 + 3t2 − 3t + 1









(11)

The offsets o
j
1

and o
j
2

simply adjust (t1, t2) to local patch

coordinates. Note that Sb is C2 continuous everywhere and

only the 3 × 3 neighborhood around (i1, i2) influences the

surface at the center of the parametrization.

3.3. Gaussian Cylinder Approximation

Since the matching cost function neighborhoods we are in-

terested in are part of the matching ridge, we can design a

surface with meaningful degrees of freedom. To this end,

the following surface represents a Gaussian Cylinder gener-

ated by a straight line:

Sg(t1, t2) = G(D(t1, t2)) (12)

G(d) = ae−d2

+ b (13)

D(t1, t2) = s1t1 + s2 t2 − p (14)
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Figure 5: Examples of input images. A close-up is shown from two
of the image pairs used in the reconstruction of the object shown on
the left of image 8. Patterns of varying orientation are required to
ensure that no ambiguities arise when the projector is placed away
from the baseline of the cameras.

This surface enforces a ridge-like shape for the recon-

struction. The parameters a, b, s1, s2, and p can be deter-

mined by non-linear least squares minimization on the 3×3
neighborhood around (i1, i2). The line D(t1, t2) = 0 then

gives the local approximation for the matching ridge, from

which the sub-pixel estimate can be easily found. Usually,

a few iterations of the Levenberg-Marquardt method, as im-

plemented by Lourakis [8], are enough for a good fit.

3.4. Choice of Cut Direction

As suggested by figure 4, the direction [s1 s2]
T that fol-

lows the symmetric lines of the matching cost function is

the right choice for a cut through S. Besides respecting

the symmetry of matching cost, this direction will in gen-

eral be more stable than axis aligned directions. Unfortu-

nately, since formula 6 requires previous knowledge about

the scene, we can not directly use it to determine the cut

direction.

We notice, however, that the direction of highest curva-

ture of S at (0, 0) provides a good estimate for [s2 s1]
T .

This is because the highest curvature happens for cuts al-

most perpendicular to the matching ridge. From that,

[−s1 s2]
T is an approximation for the matching ridge di-

rection and [s1 s2]
T is therefore a good estimate for the di-

rection we are looking for.

In practice, this is how we obtain the cut direction for

the quadric interpolation and the B-Spline approximation.

For the Gaussian cylinder, the estimate (which is directly

available from the surface formulation) is not required.

4. Results

To evaluate our method, we tested it with real and syn-

thetic data, using a temporal stereo triangulation scanner

setup [5, 15]. In this active scanning technique, random

stripe patterns are projected onto the scene while two cam-

eras capture synchronized images. Since each point in the

visible surface receives a unique light profile through time,

it is possible to establish correspondences in a fashion sim-

ilar to the area-based matching of standard stereo, but using

windows that extend only through time (i.e., with spatial

width and height of just one pixel). This strategy has the

advantage of producing perfect correspondences and of be-

ing unaffected by depth discontinuities. It provides us with

a way to isolate the sub-pixel refinement evaluation from

other sources of error that could mask the effects we want

to analyze.

Our real scanner is composed of two Sony DFW-X700

1024 × 768 firewire cameras and a Toshiba TLP511 pro-

jector with the same resolution. The cameras are calibrated

using the toolbox by Bouguet [3] and synchronized by an

external trigger. Our virtual scanner uses similar camera pa-

rameters, but produces image pairs from a 3D model, simu-

lating the stripe patterns with projective textures. Both scan-

ners have an estimated resolution of 0.2mm and a working

volume 2000 times as large. Our tests are performed with

static scenes, using sequences of 32 images, and with the

normalized-cross-correlation metric. Fewer images would

be sufficient, but the additional information improves the

quality of the matching cost function. Figure 5 shows ex-

amples of input images to our system. The close-ups shown

correspond to two of the pairs used to produce the object

reconstruction on the left of figure 8.

We use two synthetic reference models: a sphere, for

its wide range of smooth depth and orientation variation,

and a parametric surface Z(r, θ), for its sharp features and

arbitrarily small details:

Z(r, θ) = −
1

10
r| sin 16θ| (15)

Figures 7 and 8 show renderings of data recovered by

the virtual and real scanners respectively, using the tradi-

tional parabolic fit, the method by Shimizu and Okutomi

[12], and our symmetric method employing each of the pro-

posed reconstruction alternatives. The figures show that our

method eliminates most of the visible noise equally well for

each reconstruction alternative. In particular, note how the

“striping effect” has been eliminated from the Greek panel

in figure 8.

Figures 9 and 10 show depth profiles for the recon-

structed synthetic sphere and parametric surface. The pro-

file for the 5mm radius sphere shows a considerable varia-

tion in object tangent direction (about 115 degrees). This in

turn produces large variations in the matching ridge slope.

The spherical profiles show that our method performs well

across such variations. In the parametric surface, sharp de-

tails are progressively smaller closer to the center. The pro-

files show that our method recovers details up to the same

resolution as the traditional approach. Therefore, it is not

simply eliminating noise at the expense of detail.
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Figure 6: Histograms of sub-pixel deviation from the integer match for the spherical model. The traditional method is biased towards the
center, producing a “pixel locking” effect. The method by Shimizu and Okutomi [12] performs better, but is still biased towards ±0.25. In
contrast, the histogram for the Gaussian cylinder reconstruction is almost flat, as is the ground truth.

The Gaussian cylinder reconstruction also reduces the

“pixel locking” effect addressed by Shimizu and Okutomi

[12]. This is no surprise, since a similar result holds for

the traditional sub-pixel refinement with Gaussian fit [10].

Using the spherical model, we computed histograms of the

estimated sub-pixel displacement from the integer match.

Results are shown in figure 6.

Figure 11 shows the “texture embossing” effect on the

depth profile of a real planar object whose reflectance varies

sinusoidally. The varying reflectance causes the confidence

of the matching cost function to vary wildly along the

matching ridge. Accordingly, severe uncertainty bump er-

rors disrupt the traditional sub-pixel refinement strategy. In

contrast, the noise levels observed in the symmetric recon-

structions are within the expected scanner precision.

5. Conclusion

In this paper, we identified a new source of bias in the

sub-pixel refinement of stereo correspondences. In recon-

structed scenes, it manifests itself as random or coherent

noise. To avoid this bias, we present a novel technique that

exploits the inherent symmetry of matching cost functions

and refines matching coordinates in both images simultane-

ously. Results show that our approach performs better than

previous techniques.
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Sphere Parametric surface

Traditional

Shimizu and Okutomi

Our method with Sq

Our method with Sb

Our method with Sg

Ground truth

Figure 7: Renderings from reconstructed geometry for the virtual
scanner. From the spherical model renderings, note how Sg re-
duces the “pixel locking” effect. From the parametric surface, note
how detail is preserved while noise is eliminated.

Vase Greek panel

Traditional

Shimizu and Okutomi

Our method with Sq

Our method with Sb

Our method with Sg

Photograph

Figure 8: Renderings from reconstructed geometry for the real
scanner. Note how the noise level is reduced by our method. In ad-
dition, note how the “striping effect” was eliminated from the (replica)
Greek panel scan.
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Figure 9: Depth profiles for a synthetic spherical model (5mm radius). For each plot, ground truth is shown in black. Note the reduced noise
level for a variety of matching ridge slopes (produced by the varying object tangent).
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Figure 10: Depth profiles for the synthetic parametric surface. For each plot, ground truth is shown in black. The profiles show that our method
does not simply eliminate detail along with noise.
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Figure 11: Depth profiles for a real planar object whose reflectance varies sinusoidally. The least-squares fit plane is shown in black. The
varying albedo generates severe systematic biases in the traditional sub-pixel estimation. On the other hand, the noise observed in the
symmetric reconstructions is within the scanner precision.
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