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Abstract

Measuring the similarity between 3D shapes is a fundamental problem, with applications
in computer graphics, computer vision, molecular biology, and a variety of other fields. A
challenging aspect of this problem is to find a suitable shape signature that can be constructed
and compared quickly, while still discriminating between similar and dissimilar shapes.

In this paper, we propose and analyze a method for computing shape signatures for arbi-
trary (possibly degenerate) 3D polygonal models. The key idea is to represent the signature
of an object as ashape distributionsampled from ashape functionmeasuring global geomet-
ric properties of an object. The primary motivation for this approach is to reduce the shape
matching problem to the comparison of probability distributions, which is simpler than tradi-
tional shape matching methods that require pose registration, feature correspondence, or model
fitting.

We find that the dissimilarities between sampled distributions of simple shape functions
(e.g., the distance between two random points on a surface) provide a robust method for
discriminating between classes of objects (e.g., cars versus airplanes) in a moderately sized
database, despite the presence of arbitrary translations, rotations, scales, mirrors, tessellations,
simplifications, and model degeneracies. They can be evaluated quickly, and thus the proposed
method could be applied as a pre-classifier in a complete shape-based retrieval or analysis sys-
tem concerned with finding similar whole objects. The paper describes our early experiences
using shape distributions for object classification and for interactive web-based retrieval of 3D
models.
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1 Introduction

Determining the similarity between 3D shapes is a fundamental task in shape-based recognition,

retrieval, clustering, and classification. Its main applications have traditionally been in com-

puter vision, mechanical engineering, and molecular biology. However, due to three recent de-

velopments, we believe that 3D model databases will become ubiquitous, and the applications

of 3D shape analysis and matching will expand into a wide variety of other fields. First, im-

proved modeling tools and scanning devices are making acquisition of 3D models easier and

less expensive, creating a large supply of publically available 3D data sets (e.g., the Protein Data

Bank [34]). Second, the World Wide Web is enabling access to 3D models constructed by people

all over the world, providing a mechanism for wide-spread distribution of high quality 3D models

(e.g., avalon.viewpoint.com). Finally, 3D graphics hardware and CPUs have become fast enough

and cheap enough that 3D data can be processed and displayed quickly on desktop computers,

leading to a high demand for 3D models from a wide range of sources.

Unfortunately, since most 3D file formats (VRML, 3D Studio, etc.) have been designed for

visualization, they contain only geometric and appearance attributes, and usually lack semantic

information that would facilitate automatic matching. Although it is possible to include meaningful

structure and semantic tags in some 3D file formats (the “layer” field associated with entities in

AutoCad models is a simple example), the vast majority of 3D objects available via the World

Wide Web will not have them, and there are few standards regarding their use. In general, 3D

models will be acquired with scanning devices, or output from geometric manipulation tools (file

format conversion programs), and thus they will have only geometric and appearance information,

usually completely void of structure or semantic information. Automatic shape-based matching

algorithms will be useful for recognition, retrieval, clustering, and classification of 3D models in

such databases.

Databases of 3D models have several new and interesting characteristics that significantly affect

shape-based matching algorithms. Unlike images and range scans, 3D models do not depend on

the configuration of cameras, light sources, or surrounding objects (e.g., mirrors). As a result,
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they do not contain reflections, shadows, occlusions, projections, or partial objects, which greatly

simplifies finding matches between objects of the same type. For example, it is plausible to expect

that the 3D model of a horse contains exactly four legs of roughly equal size. In contrast, any 2D

image of the same horse may contain fewer than four legs (if some of the legs are occluded by

tall grass), or it may contain “extra legs” appearing as the result of shadows on the barn and/or

reflections in a nearby pond, or some of the legs may appear smaller than others due to perspective

distortions. These problems are vexing for traditional computer vision applications, but generally

absent from 3D model matching.

In other respects, representing and processing 3D models is more complicated than for sam-

pled multimedia data. The main difficulty is that 3D surfaces rarely have simple parameterizations.

Since 3D surfaces can have arbitrary topologies, many useful methods for analyzing other media

(e.g., Fourier analysis) have no obvious analogs for 3D surface models. Moreover, the dimension-

ality is higher, which makes searches for pose registration, feature correspondences, and model

parameters more difficult, while the likelihood of model degeneracies is higher. In particular, most

3D models in large databases, such as the World Wide Web, are represented by “polygon soups” –

unorganized and degenerate sets of polygons. They seldom have any topology or solid modeling

information; they rarely are manifold; and most are not even self-consistent. We conjecture that

almost every 3D computer graphics model available today contains missing, wrongly oriented,

intersecting, disjoint, and/or overlapping polygons. As a few classic examples, the Utah teapot

is missing its bottom and rim, and the Stanford Bunny [43] has several holes along its base. The

problem with these degenerate representations is that most interesting geometric features and shape

signatures are difficult to compute, and many others are ill-defined (e.g., what is the volume of a

teapot with no bottom?). Meanwhile, fixing the degeneracies in such 3D models to form a con-

sistent solid region and manifold surface is a difficult problem [12, 32, 48], often requiring human

intervention to resolve ambiguities.

In this paper, we describe and analyze a method for computing 3D shape signatures and dissim-

ilarity measures for arbitrary objects described by possibly degenerate 3D polygonal models. The
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key idea is to represent the signature of an object as ashape distributionsampled from ashape func-

tion measuring global geometric properties of the object. The primary motivation for this approach

is that the shape matching problem is reduced to the comparison of two probability distributions,

which is a relatively simple problem when compared to the more difficult problems encountered

by traditional shape matching methods, such as pose registration, parameterization, feature corre-

spondence, and model fitting. The challenges of this approach are to select discriminating shape

functions, to develop efficient methods for sampling them, and to compute the dissimilarity of

probability distributions robustly. This paper presents our initial steps to address these issues. For

each issue, we describe several options and present experimental evaluation of their relative per-

formance. Overall, we find that the proposed method is not only fast and simple to implement,

but it also provides useful discrimination of 3D shapes and thus is suitable as a pre-classifier for a

recognition or similarity retrieval system.

The remainder of the paper is organized as follows. The next section contains a summary

of related work. An overview of the proposed approach appears in Section 3, while detailed de-

scriptions of issues and proposed solutions for implementing our approach appear in Section 4.

Section 5 presents results of experiments aimed at evaluating the robustness and discrimination of

shape distributions. Section 6 describes our initial efforts in building a 3D search engine based on

shape distributions. Finally, Section 7 contains a summary of our experiences and proposes topics

for future work.

2 Related Work

The problem of determining the similarity of two shapes has been well-studied in several fields.

For a broad introduction to shape matching methods, please refer to any of several survey papers

[2, 8, 15, 46, 51, 70]. To briefly review, prior matching methods can be classified according to their

representations of shape: 2D contours, 3D surfaces, 3D volumes, structural models, or statistics.

The vast majority of work in shape matching has focused on characterizing similarity between

objects in 2D images (e.g., [21, 30, 39, 49]). Unfortunately, most 2D methods do not extend
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directly to 3D model matching. The main problem is boundary parameterization. Although the

1D boundary contours of 2D shapes have a natural arc length parameterization, 3D surfaces of

arbitrary genus do not. As a result, common representations of 2D contours for shape matching,

such as Fourier descriptors [6], turning functions [7], bending energy functions [73], arch height

functions [45], size functions [68, 69], and order structures [20] have no direct analogs for 3D

models. Similarly, computationally efficient methods based on dynamic programming (e.g., [63]

and [67]) cannot be applied to 3D objects. Another problem is that the dimensionality of 3D data

is higher, which makes registration, finding feature correspondences, and fitting model parameters

more expensive. As a result, methods that match shapes using deformations [3, 40, 50, 57, 65] are

far more difficult in 3D.

Shape matching has also been well-studied for 3D objects. For instance, representations for

registering and matching 3D surfaces include Extended Gaussian Images [35], Spherical Attribute

Images [24, 25], Harmonic Shape Images [74], and Spin Images [41]. Unfortunately, these pre-

vious methods usually assume that a topologically valid surface mesh or an explicit volume is

available for every object. In addition, volumetric dissimilarity measures based on wavelets [31]

or Earth Mover’s Distance [56] usually rely upon a priori registration of objects’ coordinate sys-

tems, which is difficult to achieve automatically and robustly. Geometric hashing [44] is a potential

solution, but it requires a large amount of storage for complex models.

Another popular approach to shape analysis and matching is based on comparing high-level

representations of shape. For instance, model-based approaches first decompose a 3D object into

a set of features (or parts), and then compute a dissimilarity measure between objects based on

the differences between their features and/or their spatial relationships. Example representations

of this type include generalized cylinders [18], superquadrics [61], geons [72], deformable re-

gions [13], shock graphs [59], medial axes [11], and skeletons [19, 62]. These methods work best

when 3D models can be segmented into a canonical set of features naturally and correspondences

can be found between features robustly. Unfortunately, these tasks are difficult and not always well-

defined for arbitrary 3D polygonal models (e.g., what is the canonical skeleton for an unconnected
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set of polygons?). Moreover, feature detection and segmentation algorithms tend to be sensitive to

small perturbations to the model, placing undue burden on subsequent feature correspondence and

dissimilarity computation steps. Finally, the combinatorial complexity of finding correspondences

in large discrete models usually leads to long computation times and/or large storage requirements.

Finally, shapes have been compared on the basis of their statistical properties. The simplest

approach of this type is to evaluate distances between feature vectors [26] in a multidimensional

space where the axes encode global geometric properties, such as circularity, eccentricity, or alge-

braic moments [52, 64]. Other methods have compared discrete histograms of geometric statistics.

For example, Thacker et al [1, 5, 9, 10, 28, 29, 55, 66], Huet et al. [36], and Ikeuchi et al. [38] have

all represented shapes in 2D images by histograms of angles and distances between pairs of 2D line

segments. Belongie et al. [14] and Mori et al. [47] have represented 2D shapes by the distributions

of points on their boundaries with respect to multiple reference frames. For 3D shapes, Ankerst

et al. [4] has used shape histograms decomposing shells and sectors around a model’s centroid.

Besl [16] has considered histograms of the crease angle for all edges in a 3D triangular mesh.

Besl’s method is the most similar to our approach. However, it works only for manifold meshes,

it is sensitive to cracks in the models and small perturbations to the vertices, and it is not invariant

under changes to mesh tessellation. Moreover, the histogram of crease angles does not always

match our intuitive notion of rigid shape. For example, adding any extra arm to a human body

results in the same change to a crease angle histogram, no matter whether the new arm extends

from the body’s shoulder or the top of its head.

To summarize, many previous approaches have difficulty with 3D polygon soups because they

invariably require a solution to at least one of the following difficult problems: reconstruction,

parameterization, registration, or correspondence. The motivation behind our work is to develop a

fast, simple, and robust method for matching 3D polygonal models without solving these problems.
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3 Overview of Approach

Our approach is to represent the shape signature for a 3D model as a probability distribution sam-

pled from ashape functionmeasuring geometric properties of the 3D model. We call this general-

ization of geometric histograms ashape distribution. For instance, one example shape distribution,

which we callD2, represents the distribution of Euclidean distances between pairs of randomly se-

lected points on the surface of a 3D model. Samples from this distribution can be computed quickly

and easily, while our hypothesis is that the distribution describes the overall shape of the repre-

sented object. Once we have computed the shape distributions for two objects, the dissimilarity

between the objects can be evaluated using any metric that measures distance between distributions

(e.g.,LN norm), possibly with a normalization step for matching scales.

The key idea is to transform an arbitrary 3D model into a parameterized function that can be

compared with others easily (see Figure 1). In our case, the domain of the shape function provides

the parameterization (e.g., theD2 shape distribution is a 1D function parameterized by distance),

and random sampling provides the transformation.

Similarity
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Parameterization

Parameterization
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Figure 1: Shape distributions facilitate shape matching because they represent 3D models as func-
tions with a common parameterization.

The primary advantage of this approach is its simplicity. The shape matching problem is re-
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duced to sampling, normalization, and comparison of probability distributions, which are relatively

simple tasks when compared to prior methods that require reconstructing a solid object or mani-

fold surface from degenerate 3D data, registering pose transformations, finding feature correspon-

dences, or fitting high-level models. Our approach works directly on the original polygons of a

3D model, making few assumptions about their organization, and thus it can be used for similarity

queries in a wide variety of databases, including ones containing degenerate 3D models, such as

those currently available on the World Wide Web.

In spite of its simplicity, we expect that our approach is useful for discriminating whole ob-

jects with different gross shapes (results of experiments testing this hypothesis are presented in

Section 5). The motivations for this hypothesis is that it satisfies several properties desirable for a

shape matching method:

• Invariance: shape distributions have all the transformation invariance properties of the sam-

pled shape function. For instance, theD2 shape function yields invariance under rigid mo-

tions and mirror imaging. In this case, invariance under scaling can be added by normal-

ization of shape distributions before comparing them and/or by factoring out scale during

the comparison. Other shape functions that measure angles or ratios between lengths are

invariant to all similarity transformations.

• Robustness:random sampling ensures that shape distributions are insensitive to small per-

turbations. Intuitively, since every point in a 3D model contributes equally to the shape dis-

tribution, the magnitude of changes to the shape distribution are related to the magnitude of

the changes to the 3D model. For example, if a small percentage of a 3D model is perturbed

(e.g., by adding random noise, by adding a small bump onto a surface, or by adding small

objects arbitrarily throughout space), then a distribution of random samples from the model

must also change by a small percentage. This property provides insensitivity to noise, blur,

cracks, and dust in the input 3D models. We conjecture that the distributions for most global

shape functions based on distances and/or angles also vary continuously and monotonically

for local shape changes.
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• Metric: the dissimilarity measure produced by our approach adopts the properties of the

norm we use to compare shape distributions. In particular, if the norm is a metric, so is our

dissimilarity measure. This property holds for most common norms, includingLN norms,

Earth Mover’s Distance, etc.

• Efficiency: construction of the shape distributions for a database of 3D models is generally

fast and efficient. For instance, the complexity of takingS samples of theD2 shape func-

tion from a 3D model withN triangles isSlog(N). The resulting shape distributions can

be approximated concisely by functions with constant complexity storage and comparison

costs.

• Generality: shape distributions are independent of the representation, topology, or appli-

cation domain of the sampled 3D models. As a result, our shape similarity method can be

applied equally well to databases with 3D models stored as polygon soup, meshes, construc-

tive solid geometry, voxels, or any other geometric representation as long as a suitable shape

function can be computed from each representation. Moreover, a single database (such as

the World Wide Web) can contain 3D models in a variety of different representations and

file formats. Finally, shape distributions can be used in many different application domains

for comparison of natural, deformable shapes (e.g., animals) and/or man-made objects (e.g.,

machined parts).

The interesting issues to be addressed in implementing the proposed shape matching approach

are: 1) to select discriminating shape functions, 2) to construct shape functions for each 3D model

efficiently, and 3) to compute a dissimilarity measure for pairs of distributions.

The following sections describe our initial efforts to address these issues. The goal of our study

is to investigate whether shape distributions can be used to produce a dissimilarity measure with

the desirable properties listed above, while providing enough discrimination between similar and

dissimilar shapes to be useful for a particular application. We consider this work to be a preliminary

investigation, and thus we consider only simple and general-purpose methods to address each
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issue (in Section 4). We evaluate them experimentally for a database of 3D polygonal models

downloaded from the World Wide Web (in Section 5), and we describe a prototype search engine

for retrieval of 3D models based on similarity to interactively sketched queries (in Section 6).

4 Method

In this section, we provide a detailed description of the methods we use to build shape distributions

from 3D polygonal models and compute a measure of their dissimilarities.

4.1 Selecting a Shape Function

The first and most interesting issue is to select a function whose distribution provides a good

signature for the shape of a 3D polygonal model. Ideally, the distribution should be invariant

under similarity transformations and tessellations, and it should be insensitive to noise, cracks,

tessellation, and insertion/removal of small polygons.

In general, any function could be sampled to form a shape distribution, including ones that

incorporate domain-specific knowledge, visibility information (e.g., the distance between random

but mutually visible points), and/or surface attributes (e.g., color, texture coordinates, normals and

curvature). However, for the sake of clarity, we focus on a small set of shape functions based on

geometric measurements (e.g., angles, distances, areas, and volumes). Specifically, in our initial

investigation, we have experimented with the following shape functions (see Figure 2):

• A3: Measures the angle between three random points on the surface of a 3D model.

• D1: Measures the distance between a fixed point and one random point on the surface. We

use the centroid of the boundary of the model as the fixed point.

• D2: Measures the distance between two random points on the surface.

• D3: Measures the square root of the area of the triangle between three random points on the

surface.

• D4: Measures the cube root of the volume of the tetrahedron between four random points

on the surface.
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Figure 2: Five simple shape functions based on angles (A3), lengths (D1 and D2), areas (D3), and
volumes (D4).

These five shape functions were chosen mostly for their simplicity and invariances. In partic-

ular, they are quick to compute, easy to understand, and produce distributions that are invariant to

rigid motions (translations and rotations). They are invariant to tessellation of the 3D polygonal

model, since points are selected randomly from the surface. They are insensitive to small pertur-

bations due to noise, cracks, and insertion/removal of polygons, since sampling is area weighted.

In addition, theA3 shape function is invariant to scale, while the others have to be normalized to

enable comparisons. Finally, theD2, D3, andD4 shape functions provide a nice comparison of

1D, 2D, and 3D geometric measurements.

In spite of their simplicity, we find these general-purpose shape functions to be fairly distin-

guishing as signatures for 3D shape, as significant changes to the rigid structures in the 3D model

affect the geometric relationships between points on their surfaces. For instance, consider theD2

shape function, whose distributions are shown for a few canonical shapes in Figure 3(a-f).Note

how each distribution is distinctive.Note also how continuous changes to the 3D model affect

the D2 distributions. For instance, Figure 3(g) shows the distance distributions for ellipsoids of

different semi-axes lengths (a, b, c) overlaid on the same plot. The left-most curve represents the

D2 distribution for a line segment – i.e., ellipsoid (0, 0, 1); the right-most curve represents theD2

distribution for a sphere – i.e., ellipsoid (1, 1, 1); and, the remaining curves shows theD2 distribu-

tion for ellipsoids in between – i.e., ellipsoid (r, r, 1) with0 < r < 1. Note how the change from

sphere to line segment is continuous. Similarly, Figure 3(h-i) shows theD2 distributions of two

unit spheres as they move 0, 1, 2, 3, and 4 units apart. In each distribution, the first hump resembles

the linear distribution of a sphere, while the second hump is the cross-term of distances between
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the two spheres. As the spheres move farther apart, theD2 distribution changes continuously.

a) Line segment.

d) Cube.

g) Ellipsoids of different radii.

b) Circle (perimeter only).

e) Sphere.

h) Two adjacent unit spheres.

c) Triangle.

f) Cylinder (without caps).

i) Two unit spheres separated
by 1, 2, 3, and 4 units.

Figure 3: ExampleD2 shape distributions. In each plot, the horizontal axis represents distance,
and the vertical axis represents the probability of that distance between two points on the surface.

4.2 Constructing Shape Distributions

Having chosen a shape function, the next issue is to compute and store a representation of its

distribution. Analytic calculation of the distribution is feasible only for certain combinations of

shape functions and models (e.g., theD2 function for a sphere or line). So, in general, we employ

stochastic methods. Specifically, we evaluateN samples from the shape distribution and construct

a histogram by counting how many samples fall into each ofB fixed sized bins. From the his-

togram, we reconstruct a piecewise linear function withV (≤ B) equally spaced vertices, which

forms our representation for the shape distribution. We compute the shape distribution once for

each model and store it as a sequence of V integers.

One issue we must be concerned with is sampling density. The more samples we take, the

more accurately and precisely we can reconstruct the shape distribution. On the other hand, the

time to sample a shape distribution is linearly proportional to the number of samples, so there is

an accuracy/time tradeoff in the choice ofN . Similarly, more vertices yields higher resolution

distributions, while increasing the storage and comparison costs of the shape signature. In our

experiments, we have chosen to err on the side of robustness, taking a large number of samples for
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each histogram bin. Empirically, we have found thatN = 10242 samples,B = 1024 bins, and

V = 64 vertices yields shape distributions with low enough variance and high enough resolution

to be useful for our initial experiments. Adaptive sampling methods could be used in future work

to make robust construction of shape distributions more efficient.

A second issue is sample generation. Although it would be simplest to sample vertices of the

3D model directly, the resulting shape distributions would be biased and sensitive to changes in

tessellation. Instead, our shape functions are sampled from random points on the surface of a 3D

model. Our method for generating unbiased random points with respect to the surface area of a

polygonal model proceeds as follows. First, we iterate through all polygons, splitting them into

triangles as necessary. Then, for each triangle, we compute its area and store it in an array along

with the cumulative area of triangles visited so far. Next, we select a triangle with probability

proportional to its area by generating a random number between 0 and the total cumulative area

and performing a binary search on the array of cumulative areas. For each selected triangle with

vertices(A,B,C), we construct a point on its surface by generating two random numbers,r1 and

r2, between 0 and 1, and evaluating the following equation:

P = (1−√r1)A+
√
r1(1− r2)B +

√
r1r2C (1)

Intuitively,
√
r1 sets the percentage from vertex A to the opposing edge, whiler2 represents the

percentage along this edge (see Figure 4). Taking the square-root ofr1 gives a uniform random

point with respect to surface area.

A

B C

r 1

r 2

Figure 4: Sampling a random point in a triangle.
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4.3 Comparing Shape Distributions

Having constructed the shape distributions for two 3D models, we are left with the task of com-

paring them to produce a dissimilarity measure. There are many standard ways of comparing two

functionsf andg representing probability distributions [53]. Examples include the MinkowskiLN

norms, Kolmogorov-Smirnov distance, Kullback-Leibler divergence distances [42], Match dis-

tances [58, 71], Earth Mover’s distance [56], and Bhattacharyya distance [17]. Other methods,

perhaps based on 2D curve matching [2, 70], could also be used.

In our implementation, we have experimented with eight simple dissimilarity measures. The

first two are theχ2 statistic and the Bhattacharyya distance, which are commonly used for compar-

ing binned data. The remaining six are MinkowskiLN norms of the probability density functions

(pdfs) and cumulative distribution functions (cdfs) forN = 1, 2,∞ (see Figure 5).1 The dissim-

ilarity measures are computed as follows, assumingf andg represent pdfs for two models, while

f̂ andĝ represent the corresponding cdfs – i.e.,f̂(x) =
∫ x
−∞ f :

• χ2: D(f, g) =
∫ (f−g)2

f+g .

• Bhattacharyya: D(f, g) = 1− ∫ √fg.
• PDFLN : MinkowskiLN norm of the pdf:D(f, g) = (

∫ |f − g|N)1/N .

• CDF LN : MinkowskiLN norm of the cdf:D(f, g) = (
∫ |f̂ − ĝ|N)1/N .

Since each shape distribution is represented as a piecewise linear function, analytic computa-

tion of these norms can be done efficiently in time proportional to the number of vertices used to

store the distributions.

For certain shape functions, we must add a normalization step to the comparison process to

account for differences in scale. So far, we have investigated three methods for normalization (see

Figure 6): 1) align the maximum sample values, 2) align the mean sample values (or similarly the

1The cdfL1 and the cdfL∞ norms are theL1 Earth Mover’s [56] and the Kolmogorov-Smirnov distances, respec-
tively.
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Figure 5: Comparison of shape distributions can be performed by computing theLN norm of the
PDF (left) or CDF (right) representations. In this example, areas of the gray regions in each plot
represent the correspondingL1 norm.

median), and 3) search for the scale that produces the minimal dissimilarity measure during each

comparison. The first two of these can be evaluated analytically, and thus are very fast and they can

be applied on a per model basis prior to comparison. However, they may not produce the minimal

dissimilarity measures due to mismatching scales. The third method performs an optimization

procedure during each pair-wise distribution comparison. Specifically, iff andg represent shape

distributions for two models, the minimal dissimilarity measure with normalization is defined as:

min
s
D(f(x), sg(sx)) (2)

We have implemented a simple method to perform the search overs . First, we scale our distribu-

tions so that the mean sample in each distribution has value 1. Then we evaluateD(f(x), sg(sx))

for values oflog s from -10 to 10, in 100 equally spaced intervals. We return the minimum among

the results as the dissimilarity measure for the normalized shape distributions.

5 Experimental Results

The methods described in the preceding sections have been implemented in C++ and incorporated

into a shape matching system that runs on Silicon Graphics and PC/Windows computers. We

have integrated them into a shape-based classifier (Section 5.3) and an interactive search engine

(Section 6).

In order to test the effectiveness of the proposed methods, we executed a series of shape match-

ing experiments with a database of 3D models downloaded from a variety of sites on the World
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Figure 6: Shape distributions can be normalized for scale using the maximum sample value (left),
the mean (middle), or by searching for the best scale factor during comparison (right).

Wide Web. The models comprised sets of independent polygons, without structure, adjacency in-

formation, or registered coordinate systems. The models contained anywhere from 20 to 186,000

polygons, with the average model containing around 7,000 polygons. Very few of the models

formed a single manifold surface or even a well-defined solid region. Instead, they almost all con-

tained cracks, self-intersections, missing polygons, one-sided surfaces, and/or double surfaces –

none of which caused significant artifacts during rendering with a z-buffer, but all of which are

problematic for most 3D shape matching algorithms. The experiments were run on a PC with a

400MHz Pentium II processor and 256MB of memory. In our initial experiments, we used the

D2 shape function, theMEAN normalization method, and the PDFL1 norm for computing our

dissimilarity measure.

5.1 Robustness Results

In our first experiment, we tested the robustness of our dissimilarity measure to transformations

and perturbations of the 3D models. Specifically, we chose ten representative 3D models (shown

in Figure 7), and applied eight transformations to each of them. The resulting database had nine

versions of each model (the original and eight transformed variants), making 90 models in all. The

transformations were as follows:

• Scale:Grow by a factor of 10 in every dimension.

• Anisotropic scale:Grow by 5% in the Y dimension and 10% in the Z dimension.
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Car

Phone

Chair

Plane

Human

Skateboard

Missile

Sub

Table

Mug

Figure 7: Images of the ten 3D models used in our initial robustness experiments.

• Rotate: Rotate by 45 degrees around the X axis, then the Y axis, then the Z axis.

• Mirror: Mirror over the YZ plane, then over the XZ plane, then over the XY plane.

• Shear: Grow the Y and Z dimensions by 5% and 10% of the X dimension, respectively.

• Noise: Perturb each vertex randomly by 1% of the longest length of the model’s bounding

box. As vertices were not shared by adjacent polygons, this transformation introduced thin

cracks (see Figure 8(a)).

• Delete:Randomly remove 5% of the polygons (note the holes in the bumper and windshield

in Figure 8(b)).

• Insert: Randomly insert copies of 5% of the polygons.

We tested the robustness of our sampling method by generating theD2 shape distribution for

each model. The resulting shape distributions for all 90 models are plotted in Figure 9 (scaled

to align their mean values). Note that only ten distinct curves are apparent in the plot. This is

because each “thick” curve appears as the result of seven nearly overlapping shape distributions

computed for different variants of the same model. For instance, the curve containing the tall

spike in the middle is drawn seven times, once for each variant of the mug model. The results
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(a) 1% Noise. (b) 5% Deletion.

Figure 8: Car model after (a) perturbing vertices by 1%, or (b) deleting 5% of polygons.

of this experiment demonstrate our sampling method’s repeatability and confirm its robustness to

similarity transformations, noise, and small cracks and holes.
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Figure 9:D2 shape distributions for seven variants of ten models.

We further investigated the robustness of our method by testing it with different polygon tes-

sellations of two 3D shapes. We used the Simplification Envelopes software provided by Cohen

et al. [23] to produce 8 versions of the Stanford Bunny [43] ranging from 70,000 down to 600

triangles, and 6 versions of a sphere ranging from 200 down to 28 triangles. Then, we constructed

D2 shape distributions for each of these versions. The resulting 14 curves are shown in Figure 10.

Note that the shape distributions vary slightly from original models to the simplified versions, but
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not significantly when compared to differences between the original models. This experiment cor-

roborates our expectation that shape distributions are insensitive to changing tessellation and, more

specifically, stable under model simplification.
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Figure 10:D2 shape distributions for tessellations of two models.

As a final step in this experiment, we investigated the ability of our shape matching method

to discriminate among classes of shapes in this simple database. Specifically, we computed our

dissimilarity measure for all pairs of the 90 shape distributions, using the the mean values for nor-

malization and the pdfL1 norm for comparison. The resulting dissimilarity measures are shown

as a matrix in Figure 11. In this visualization of the matrix, the lightness of each element(i, j)

is proportional to the magnitude of the computed dissimilarity between modelsi andj. That is,

each row and column represent the dissimilarity measures for a single model when compared to all

other models in the database (the matrix is symmetric). Darker elements represent better matches,

while lighter elements indicate worse matches. The ordering of the classes is alphabetical so one

should not expect any particular darkness pattern except the clearly visible 9x9 blocks of matrix

elements with indistinguishable colors. This pattern demonstrates the robustness of our distribu-

tion comparison method, as all variants of the same model produce almost the same dissimilarity

measure when compared to all variants of every other model. Moreover, note the darker blocks of

9x9 matrix elements along the main diagonal. This pattern results from the fact that all 9 variants

of every shape match each other better than they match any other shape. Accordingly, for this sim-

ple database, our method could be used to assign all 90 models perfectly to one of the 10 classes

using a nearest neighbor classifier.
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Figure 11: Similarity matrix for nine variants of ten 3D models. Lightness indicates the dissimi-
larity between models.

5.2 Similarity Results

These initial results are encouraging, but a more interesting and challenging test is to determine

how well our method can match classes of shapes in a larger and more diverse database. To

investigate this question, we executed a series of tests on a database of 133 models retrieved from

the World Wide Web and grouped qualitatively (by function more than by shape) into 25 classes

by a third party. Figure 13 summarizes the types and sizes of these classes.

There are several noteworthy characteristics of this test database. First, note that each class

contains an arbitrary number of objects, usually determined by how many models were found in

a quick search of the Web (e.g., the plane class has significantly more models than the others).

Second, note that thesimilarity between classesvaried greatly. For instance, some classes were

very similar to one another (e.g., pens and missiles look alike), while some were quite distinct

(belts). Third, note that thesimilarity of objects within each classalso varied. Some classes (such

as ball, mug, openbook, pen, and sub) contained 3D models with shapes greatly resembling each

other, while others (such as animal, boat, car, and plane) contained models with a wide variety
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Mug 1

Antique car

Galleon (with sails)

Mug 2

Convertible

Tug boat

Mug 3

Camaro

War ship

Figure 12: Example classes of shapes in our database: mugs (top row), cars (middle row), and
boats (bottom row).

of shapes. This diversity within classes is shown in Figure 12, which contains pictures of three

models from the mug, car, and boat classes. Note that the mugs are visually quite similar, while

the cars and boats are significantly different. Other classes are even more diverse. For instance,

the planes class contains biplanes, fighter jets, propeller planes, and commercial jets, all similar in

function, but quite different in shape.

To investigate the ability of our shape matching methods to match classes of objects, we ran

an experiment by computing theD2 shape distributions for all 133 models. They are shown in

Figure 13 – each plot shows theD2 distribution for all 3D models of one class, normalized by their

means. Examining these distributions qualitatively, we find that the shape distributions for most
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5 Animals

6 Cars

3 Lamps

4 Pens

4 Sofas

4 Balls

8 Chairs

3 Lightnings

4 Phones

6 Spaceships

2 Belts

3 Claws

6 Missiles

27 Planes

3 Subs

3 Blimps

4 Helicopters

4 Mugs

4 Rifles

4 Tables

3 Boats

11 Humans

4 Openbooks

3 Skateboards

5 Tanks

Figure 13: D2 shape distributions for 133 models grouped into 25 classes. Each plot represents a
probability distribution of distance.

objects within a single class are highly correlated, as multiple curves appear almost on top of one

another. Moreover, many of the classes have a distinctive shape distribution that could be used for

classification. For instance, balls have a nearly linear distribution with a sharp falloff on the right,

mugs have one sharp peak in the middle, belts have a peak on the right, and lamps have two large

peaks with a valley in between.

To a limited degree, it is possible to infer the gross shape of some objects from theirD2 shape

distributions. For instance, referring to Figure 14, balls have a distribution resembling a sphere,

belts resemble a circle, mugs resemble a cylinder, and lamps resemble two spheres separated by

some distance.

Although several classes (e.g., cars) have similar-looking unimodal shape distributions, the
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3 Lamps

Two spheres

Figure 14:D2 shape distributions indicate the global shape of an object.

“humps” in the distributions of different classes are usually distinguishable by their locations,

heights, and shapes. For instance, consider the Figure 15, which shows the shape distributions for

5 tanks (gray) and 6 cars (black). Although the gross characteristics of these two classes of shape

distributions are similar (i.e., a single hump), it seems that a computer program should be able to

discriminate between them, generally producing a dissimilarity measure that is lower for pairs of

models within the same class.
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Figure 15: Shape distributions of 5 tanks (gray) and 6 cars (black).

To test this hypothesis, we used theD2 shape function,MEAN normalization method, and

L1 norm to compute the dissimilarity for all pairs of 133 models in our test database. Figure 16

shows the similarity matrix for this test. As in Figure 11, the lightness of each element(i, j) is

proportional to the magnitude of the computed dissimilarity between modelsi andj (i.e., darker

elements represent better matches). Thus, if the similarity metric were ideal (i.e., if it were able
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to read the mind of the human that formed the classes), the dissimilarity measures for models in

the same class would be less (appear darker) than for ones in different classes. That is, we hope to

see a sequence of darker blocks along the main diagonal, with sizes corresponding to the numbers

of models in each class, with mostly lighter colors in the off-diagonal matrix elements. Given the

ambiguity and diversity of the database, we believe that it would be optimistic to expect this result.

Examining the matrix in Figure 16, we see that the dissimilarity values computed with our

method are fairly discriminating in this test. There are many dark blocks readily apparent along

the main diagonal corresponding to groups of objects within the same class that produce good

matches (e.g., mugs, phones, chairs, planes, spaceships, etc.). Meanwhile, most elements off-

diagonal are lighter shades, indicating relatively few false positives. Off-diagonal blocks of dark

elements often represent matches between classes (e.g., spaceship versus plane). Surprisingly,

several of the classes with very diverse models (e.g., cars and planes) can be distinguished very

clearly as dark blocks in this plot, indicating that our method is useful for discriminating them from

other models in the database in spite of their diversity. On the other hand, there are other classes

whose models did not match well in this test (e.g., boats, helicopters, etc.). Some of these failures

are due to the inherent difficulties of shape matching without real world knowledge (e.g., the boats

were more similar in function than shape), while others are probably due to the limitations of

our implementation (e.g.,LN norms produce large dissimilarities for lamps, even though theirD2

distributions are very distinctive).

5.3 Classification Results

To test how well our shape matching method works for object classification and to determine

which combinations of shape functions, normalization methods, and comparison norms yield the

best results, we ran a series of “leave one out” classification tests. In every test, we compared the

shape distribution of each model in the database (the query model) against all others and classified

each model according to its closest matches. The test was repeated 90 times for all combinations of

the 5 shape functions, 3 normalization methods, and 6 comparison norms described in Section 4.
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Figure 16: Similarity matrix for our database of 133 3D models.
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Tables 1-3 contain three cross-sections of the results measured in these tests. In each table, the

first column indicates the shape function, normalization method, or comparison norm used (unless

otherwise specified, theD2 shape function, theMEAN normalization method, and the PDFL1

norm was used). The “First Tier” column lists the percentage of topk − 1 matches (excluding

the query) from the query’s class, where k is the size of the class. This criteria is stringent, since

each model in the class has only one chance to be in the first tier. An ideal matching would give

no false positives and return a score of 100%. The “Second Tier” column lists the same type of

result, but for the top2(k − 1) matches. The “Nearest Neighbor” column lists the percentage of

test in which the top match was from the query’s class. Finally, the right-most column contains the

computation times for sampling and comparison of shape distributions. Note that sampling times

are in seconds, while comparison times are in milliseconds.

From the results in these tables, we make the following observations. First, theD2 shape

function classified objects better than the other four shape functions. There are several plausible

explanations for why the others did not perform as well (see Figure 17). First, theD1 distributions

tend to be sensitive to bumps on the surface of an object (note the spikes in theD1 distributions for

missiles in Figure 17 caused by fins protuding from the missiles’ bodies). Second,D1 distributions

seem to be sensitive to shifts in an object’s center of mass (note the offsets in peaks of theD1

distributions for mugs in Figure 17 caused by different sized handles). Third, theA3, D3 andD4

distributions produce distributions that are similar in shape for diverse object classes, probably due

to averaging (note the smoothness of theD3 andD4 distributions in Figure 17). Although the intra-

class diversity forD3 andD4 is smaller than for the other shape functions, the inter-class diversity

is also smaller, which results in a less discriminating classifier. Overall, in our tests, theD2 shape

function produces distributions with the best combination of distinctiveness and stability, which

leads to the best object classifier. Interestingly, we found that combining all five shape functions

into a voting-based multiclassifier system [26] provides only 2-3% improvement in classification

rates.

Second, in our tests, theMAX scaling method is not as good asMEANor SEARCHas it suf-
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Figure 17: A3, D1, D2, D3, and D4 shape distributions for several object classes. In each plot, the
vertical axis represents probability.
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Shape First Second Nearest Sample
Function Tier Tier Neighbor Time (s)

A3 38% 54% 55% 12.6
D1 35% 48% 56% 8.6
D2 49% 66% 66% 8.6
D3 42% 58% 58% 13.5
D4 32% 42% 47% 15.8

Table 1: Evaluation of shape functions (usingMEANand PDFL1).

Scale First Second Nearest Compare
Method Tier Tier Neighbor Time (ms)
MAX 41% 56% 63% 0.1

MEAN 49% 66% 66% 0.1
SEARCH 49% 66% 68% 9.0

Table 2: Evaluation of normalization methods (usingD2 and PDFL1).

Norm First Second Nearest Compare
Method Tier Tier Neighbor Time (ms)
χ2 48% 63% 64% 0.1

Bhattacharyya 45% 60% 63% 0.1
PDFL1 49% 66% 66% 0.1
PDFL2 47% 64% 62% 0.1
PDFL∞ 42% 59% 61% 0.1
CDFL1 46% 63% 59% 0.2
CDFL2 44% 63% 59% 0.1
CDFL∞ 43% 59% 57% 0.1

Table 3: Evaluation of comparison methods (usingD2 andMEAN).

fers from instability due to high variation in the maximum sample found. Scaling the entire shape

distribution based on the maximum sample affects the signature for the entire object. This result

is intuitive, as the mean is a more stable statistic than the maximum. For the other normalization

methods (MEANandSEARCH) the classification results were approximately the same. We found

that searching helps minimize the difference between shape distributions, but this did not signifi-

cantly improve the discriminability of the method on this database. As a result, we conclude it is

better to normalize shape distributions according to the means, which can be done once per model

and can be incorporated into an indexed shape-based retrieval system.
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Third, the PDFL1 norm performed the best for comparing shape distributions in our test.

While the differences are small, it outperformed even theχ2 statistic and Bhattacharyya distance.

In general, the pdfs did better than the cdfs, possibly because peaks and valleys of pdf curves are

easier to discriminate usingLN norms than the steep areas and plateaus of cdf curves. Meanwhile,

theL2 andL∞ norms performed worse than theL1 norms, in general. For higherN , theLN

norms become less forgiving of large differences, and thus perhaps our comparisons became more

sensitive to outliers or normalization errors.

Overall, using theD2 shape distribution, mean normalization, andL1 norm, our system pro-

duced a top-match within the same class for 66% of the models. This result is shown visually in

Figure 18. Each rowi represents a shape matching query with theith object. Black matrix elements

in each row indicate the two top matches (the query object and its nearest neighbor); red elements

indicate other objects matching in the first tier; and, blue elements represent other matches in the

second tier. Looking at the matrix, we conclude that the top matches are mostly from the same

class as the query object and that shape distributions provide a useful signature for shape-based

retrieval of 3D models.

5.4 Comparison to Moments

As a final test, we compare our shape distribution method against a classifier that represents 3D

models with a sequence of discrete surface moments:

mpqr =
∫
boundary

xpyqzr dx dy dz (3)

In our implementation of the moments-based classifier, the first two moments are used to reg-

ister the models in a common coordinate system (as in [27]):

1. Translation: translate so first moments vanish.

2. Rotation: calculate second moments and assemble the associated covariance matrix. Factor

the covariance matrix using Singular Value Decomposition (SVD), and orient the model by

applying the unitary matrix of this decomposition.
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Figure 18: Matrix representing results of classification queries (rows) for each of 133 3D models.
Black matrix elements indicate the query object and its nearest neighbor. Red elements indicate
other top matches in the first tier. Finally, blue elements represent the remaining matches in the
second tier.
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3. Scale:scale so that the maximum eigenvalue value of the SVD is 1.

After registration, moments up to a user-specified order are calculated and stored as a shape

signature. In our notation,M3 specifies that 3rd order moments and lower were used as shape

descriptors (i.e.,p + q + r ≤ 3), and similarly forM4 throughM7. The shape signatures are

compared using a component-by-component L2 norm.

Table 4 and Figure 19 compare the results achieved with this moment-based classifier versus

the method proposed in this paper. Specifically, Table 4 reports “First Tier,” “Second Tier,” and

“Nearest Neighbor” statistics, while Figure 19 shows plots of precision-recall curves averaged

over all objects in the test database. We find thatD2 shape distributions outperform moments

in these for classification of models in our tests. The differences are more significant for more

stringent classification criteria (i.e., First-Tier) and for higher-order moments, which are known

to be sensitive to noise [52]. Further studies are required to test whetherD2 shape distributions

perform better than moments for larger databases or for other shape matching applications.

First Second Nearest
Method Tier Tier Neighbor

D2 49% 66% 66%
M3 35% 46% 63%
M4 41% 52% 64%
M5 28% 38% 55%
M6 34% 44% 54%
M7 27% 33% 51%

Table 4: Comparison of classification results achieved with shape distributions versus moments of
different orders.

6 3D Search Engine

As an initial study of applications for shape distributions, we have developed a web-based search

engine for 3D polygonal models. The motivation is to provide a tool with which users can retrieve

models from a 3D database based on their shape attributes.
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Figure 19: Precison-recall plots comparing retrieval results achieved with shape distributions ver-
sus moments of different orders.

In the early prototype system [22], the user draws a 3Dquery modelusing a Java applet

(Teddy [37]) running in any web browser. The resulting set of polygons is sent to a web server,

which computes itsD2 shape distribution and a dissimilarity measure for all models in a 3D

database using the methods described in this paper. Links to images and 3D data for theK most

similar models are returned in a web page for the user to peruse.

Sample results obtained with this 3D search engine are shown in Table 5 (these queries rep-

resent typical results – they are not a sampling of our best results). The images in the leftmost

column show the query 3D models drawn by the user, while the columns on the right show the

closest matches among the 3D models in our test database of 133 models (dissimilarity values are

shown below each match). For instance, a query with a crudely drawn chair (top row) returned

four chairs and a table in the top five matches; a query with a cartoonish four-legged animal (sec-

ond row) returned a triceratops, a cow, two tanks, and a blimp; and, so on. In all examples, the

3D query models were drawn in a couple of minutes or less by an undergraduate student, Joyce

Chen, and the results were returned within ten seconds or so. In these experiments, almost all of

the time was spent building the shape distribution for the query model, while comparing the shape

distributions was almost instantaneous. For larger databases, more sophisticated indexing methods
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would be required for interactive performance.

Even though this simple 3D search engine is rather crude, it seems to provide a useful tool

for retrieving models based on their gross shapes. Further investigation is required to determine

whether this tool is useful in practice and which query interfaces are most useful for shape-based

retrieval of models from large databases.

7 Discussion and Conclusion

The main contribution of this paper is the idea of using random sampling to produce a continuous

probability distribution to be used as a signature for 3D shape. The key feature of this approach

is that it provides a framework within which arbitrary and possibly degenerate 3D models can be

transformed into functions with natural parameterizations, allowing simple function comparison

methods to produce robust dissimilarity metrics.

Our initial experiences verify many of the expected features of this approach. First, it is simple

to implement – e.g., our whole system requires around 2000 lines of C++ code. Second, it is

fast – e.g., the system takes around ten seconds to construct a shape distribution for typical 3D

models containing thousands of polygons, and it computes the dissimilarity measure for any pair

of shape distributions in less than a millisecond. Third, invariance and robustness properties can

be ensured by choosing shape functions and norms with the desired properties – e.g., theD2

shape function is invariant to rigid body and mirror transformations, and it is insensitive to noise,

blur, cracks, tessellation, and dust in the input 3D models. Normalization of shape distributions

provides invariance to scale, and using theLN norm for comparison of distributions ensures that

our dissimilarity measure is a metric.

Our experimental results demonstrate that shape distributions can be fairly effective at discrim-

inating between groups of 3D models. Overall, we achieved 66% accuracy in our classification

experiments with a diverse database of degenerate 3D models assigned to functional groups. The

D2 shape distribution was more effective than moments during our classification tests. Unfor-

tunately, it is difficult to evaluate the quality of this result as compared to other methods, as it

33



Query Five Top Matches

0.060 0.066 0.078 0.079 0.086

0.051 0.052 0.073 0.086 0.101

0.050 0.088 0.096 0.108 0.132

0.073 0.073 0.079 0.087 0.087

0.064 0.065 0.071 0.088 0.090

Table 5: 3D query models (left column) and the five top matches for each query returned by web-
based search engine.D2 dissimilarity measures are shown below each match.
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depends largely on the details of our test database. However, we believe that it demonstrates that

our method is useful for the discrimination of 3D shapes, at least for preclassification prior to more

exact similarity comparisons with more expensive methods.

An important issue for further research in 3D shape matching is development of benchmark

databases containing degenerate 3D polygonal models so that different shape analysis methods

can be compared. Of course, there are also many improvements that could be made to our initial

prototype system in future work. First, one could investigate more sophisticated shape functions,

possibly based on domain specific information or local geometric properties suitable for articu-

lated figures. Second, it would be possible to develop more efficient shape distribution sampling

and reconstruction methods, possibly based on adaptive strategies. Third, one could investigate

using shape distributions with more sophisticated classifiers, possibly based on neural networks.

Fourth, combining shape distributions with other attributes (e.g., surface colors, moments, etc.)

for improved discriminability is an interesting topic for further investigation. Finally, we are cur-

rently investigating a variety of user interfaces for specifying 3D shape-based queries in interactive

retrieval systems.

Another important topic for future work is to study the theoretical properties of shape distri-

butions. For instance, it would be nice to develop a theory concerning which shape functions and

norms will be good classifiers of shape. We are investigating provable properties for theD2 shape

function. Uniqueness properties for homometricdiscretepoint sets (ones with the same distance

distribution) have been proven by Skiena et al. [60]. They developed upper and lower bounds on

the number of non-congruent homometric discrete point sets in arbitrary dimensions. Properties

have also been proven for the Radon transform for a convex regionC in the plane [54, 33]. This

transform maps any oriented line to the length of its intersection withC. It completely specifies

the regionC, and it can be inverted fairly efficiently. The Radon transform has found many uses

in X-ray tomography. Proving uniqueness properties for other continuous shape functions may

have similar implications for reconstruction and manipulation of 3D models represented by shape

distributions.
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Finally, it would be interesting to investigate whether the proposed shape matching method is

useful in other application domains, such as mechanical CAD, medicine, or molecular biology.

Acknowledgements

We would like to thank Patrick Min, David Jacobs, Adam Finkelstein, and Adam’s dad for their

valuable discussions. Patrick also helped by assembling a bibliography on 3D shape matching, and

Mao Chen retrieved and labeled the 3D models from the World Wide Web for our experiments.

Joyce Chen and Patrick Min implemented the web-based search engine. Thanks also go to Alfred

P. Sloan Foundation and the National Science Foundation for partial funding of this work.

References

[1] F.J. Aherne, N.A. Thacker, and P.I. Rockett. Optimal pairwise geometric histograms.BMVC,

pages 480–490, 1997.

[2] Helmut Alt and Leonidas J. Guibas. Discrete geometric shapes: Matching, interpolation, and

approximation: A survey. Technical Report B 96-11, EVL-1996-142, Institute of Computer

Science, Freie Universit¨at Berlin, 1996.

[3] Y. Amit, U. Grenander, and M. Piccioni. Structural image restoration through deformable

templates.J. Am. Statistical Assn., 86(440):376–387, 1991.

[4] Mihael Ankerst, Gabi Kastenm¨uller, Hans-Peter Kriegel, and Thomas Seidl. Nearest neigh-

bor classification in 3d protein databases.ISMB, 1999.

[5] A.P.Ashbrook, N.A.Thacker, P.I.Rockett, and C.I.Brown. Robust recognition of scaled shapes

using pairwise geometric histograms.BMVC, pages 503–512, July 1995.

[6] Klaus Arbter, Wesley E. Snyder, Hans Burkhardt, and Gerd Hirzinger. Application of affine-

invariant fourier descriptors to recognition of 3-d objects.IEEE Transactions on Pattern

Analysis and Machine Intelligence, 12(7):640–647, July 1990.

36



[7] Esther M. Arkin, L. Paul Chew, Daniel P. Huttenlocher, Klara Kedem, and Joseph S.B.

Mitchell. An efficiently computable metric for comparing polygonal shapes.IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 13(3):209–216, March 1991.

[8] F. Arman and J.K. Aggarwal. Model-based object recognition in dense-range images - a

review. ACM Computing Surveys, 25(1):5–43, 1993.

[9] A.P. Ashbrook, P.I. Rockett, and N.A. Thacker. Multiple shape recognition using pairwise

geometric histogram based algortihms.IEEE Image Processing, July 1995.

[10] A.P. Ashbrook, N.A. Thacker, and P.I. Rockett. Pairwise geometric histograms: A scaleable

solution for recognition of 2d rigid shapes.9th SCIA, 1:271–278, 1995.

[11] Eric Bardinet, Sara Fern´andez Vidal, Sergio Damas Arroyo, Gr´egoire Malandain, and Nico-
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