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1 INTRODUCTION
The supplementary material describes additional details about the
printing hardware (Section 2), numerical simulation (Section 3), and
reinforcement learning formulation (Section 4). We also include the
full physical results manufactured for this paper, (Section 5).

2 HARDWARE APPARATUS
We developed a direct write 3D printing platform with an optical
feedback system that can measure the dispensed material real-time,
in-situ. The 3D printer is comprised of a pressure-driven syringe
pump and pressure controller (Enfield Technologies), a 3-axis Carte-
sian robot (Hiwin KK), an optical imaging system, a back-lit build
platform, 3D-printer controller, and CPU, (Figure 1). The 3-axis
Cartesian robot is used to locate the build platform in the x and
y-direction and the print carriage in the z-direction. The pressure-
driven syringe pump and pressure controller are used to dispense
an optically translucent material onto the back-lit build platform.
∗Both authors contributed substantially to this research.

Authors’ addresses: Michal Piovarči, michael.piovarci@ist.ac.at, ISTA, Austria; Michael
Foshey, mfoshey@mit.edu, MIT CSAIL, USA; Jie Xu, jiex@csail.mit.edu, MIT CSAIL,
USA; Timmothy Erps, terps@csail.mit.edu, MIT CSAIL, USA; Vahid Babaei, vbabaei@
mpi-inf.mpg.de, MPI Informatics, Germany; Piotr Didyk, piotr.didyk@usi.ch, Univer-
sità della Svizzera italiana, Switzerland; Szymon Rusinkiewicz, smr@princeton.edu,
Princeton University, USA; Wojciech Matusik, wojciech@csail.mit.edu, MIT CSAIL,
USA; Bernd Bickel, bernd.bickel@ist.ac.at, ISTA, Austria.

© 2022 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3528223.3530144.

The back-lit platform is used to illuminate the dispensed material.
The movement of the robot, actuation of the syringe pump, and
timing of the cameras are controlled via the controller. The CPU
is used to process the images after they are acquired and compute
updated commands to send to the controller.
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Fig. 1. The printing apparatus consisting of a 3-axis Cartesian robot, a direct
write printing head, a camera setup, illuminated build plate, calibration
facilities, and a orange UV-cover.

2.1 Vision Module
To enable realtime control of the printing process, we implemented
an in-situ view of the material deposition. Due to the occlusions
caused by the dispensing nozzle, no single camera can capture the
full view. Therefore, we opted for a two-camera setup. More specifi-
cally, we place two CMOS cameras (Basler AG, Ahrensburg, Ger-
many) at 45 degrees on each side of the dispensing nozzle, (Figure 1).
We further process the images from the cameras to obtain a single
top-down view of the deposition. We start by calibrating the camera
by collecting a set of images and estimating its intrinsic parameters,
(Figure 2 calibration). To obtain a single top-down view, we capture
a calibration target aligned with the image frames of both cameras,
(Figure 2 homography). We can stitch the images into a single view
from an over-the-top virtual camera by calculating the homography
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between the captured targets and an ideal top-down view. Finally,
we mask the location of each nozzle in the image (Figure 2 nozzle
masks) and obtain the final in-situ view, (Figure 2 stitched image).

Le
ft

R
ig

ht

Calibration Nozzle
Masks

Image
Locations

Homography
Image

Stitched
Image

St
itc

he
d

Left
Right
Combined

Fig. 2. The calibration of the imaging setup. First intrinsic parameters are
estimated from calibration patterns. Next, we compute the extrinsic calibra-
tion by calculating homographies between the cameras and an overhead
view. We extract the masks by thresholding a photo of the nozzle. The final
stitched image consists of 4 regions: (1) view only in the left camera, (2) view
only in the right camera, (3) view in both cameras, (4) view in no camera.
The final stitched image is shown on the right.

To extract the thickness of the deposited material, we rely on its
translucency properties. More precisely, we correlate the material
thickness with its optical intensity, (Figure 3). We do this by deposit-
ing the material at various thicknesses and taking a picture with
our camera setup. The optical intensity then decays exponentially
with an increased thickness.
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Fig. 3. Calibration images for correlating deposited material thickness with
optical intensity and the corresponding fit.

2.2 Mechanical Calibration
In our simulation, we assume the needle is centered with respect
to the in-situ view. To ensure that this assumption holds with the
physical hardware, we calibrate the location of the dispensing needle
within the field of view of each camera and with respect to the build
platform. First, a dial indicator is used to measure the height of the
nozzle in z, and the fine adjustment stage is adjusted until the nozzle
is 254 microns above the print platform. Next, using a calibration
target located on the build platform and the fine adjustment stage,
the nozzle is centered in the field of view of each camera. This
calibration procedure is done each time the nozzle is replaced during
the start of each printing session.

3 SIMULATION DETAILS
The discretization choice of the numerical model affects the learn-
ing process. We experimented with two options: (1) time-based and
(2) distance-based. We originally experimented with time-based
discretization. However, we found out that time discretization is
not suitable for printer modeling. As the velocity in simulation ap-
proaches zero, the difference in deposited material becomes progres-
sively smaller until the gradient information completely vanishes,
(Figure 4 top). Moreover, a time-based discretization allows the pol-
icy to affect the number of evaluations of the environment directly.
As a result, it can avoid being punished for bad material deposition
by quickly rushing the environment to finish. Considering these
factors we opted for distance-based discretization, (Figure 4 bottom).
The policy specifies the desired velocity at each interaction point,
and the environment travels a predefined distance (0.315 mm) at
the desired speed. This helps to regularize the reward function and
enables learning of varying control policies.
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Fig. 4. The amount of material deposited between two simulation steps
depends on the discretization choice. With time-based discretization, the
reward gradient vanishes at low speeds. In contrast, distance-based dis-
cretization produces a more uniform response.

An interesting design element is the orientation of the control
polygons created by the slicer. When the outline is defined as points
given counter-clockwise, then due to the applied rotation, each
view is split roughly into two half-spaces, (Figure 5). The bottom
one corresponds to outside i.e., generally black, and the upper one
corresponds to inside i.e., generally white. However, the situation
changes when outlining a hole. When printing a hole the two half-
spaces swap location. We can remove this disambiguity by changing
the orientation of the polylines defining holes in the model. By
orienting them clockwise, we will effectively swap the two half-
spaces to the same orientation as when printing the outer part. As
a result, we achieve a better usage of trajectories and a more robust
control scheme that does not need to be separately trained for each
print’s outer and inner parts.

4 REINFORCEMENT LEARNING FRAMEWORK
To train our control policy, we start with a g-code generated by
a slicer. As inputs to the slicer, we consider a set of 3D models
collected from the Thingy10k dataset. To train a controller, the
input models need to be carefully selected. On the one hand, if we
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Fig. 5. The observation space is split into two half-spaces corresponding to
the target printout and void. Therefore, it is advantageous to pick different
printing directions for objects’ outlines and holes inside to minimize the
observation space and reuse trajectories. By picking different directions, we
guarantee that material is always deposited only on one side.

pick an object with too low-frequency features with respect to the
printing nozzle size, then any printing errors due to control policy
will have negligible influence on the final result. On the other hand,
if we pick a model with too high-frequency features regarding the
printing nozzle, the nozzle will be physically unable to reproduce
these features. As a result, we opted for a manual selection of 18
models that span a wide variety of features, (Figure 6). Each model
is scaled to fit into a printing volume of 22 × 22 mm and sliced at
random locations.

Fig. 6. Models contained in our training curriculum.

Our policy is represented as a CNN modeled after Mnih et al.
[2015]. The network input is a 84 × 84 × 3 image. The image is
passed through three hidden layers. The convolution layers have
the respective parameters: (32 filters, filter size 8, stride 4), (64 filters,
filter size 4, stride 2), and (64 filters, filter size 3, stride 1). The final
convolved image is linearized and passed through a fully-connected
layer with 512 neurons connected to the output actions. Each hid-
den layer uses the nonlinear rectifier activation. We formulate our
objective function as in [Schulman et al. 2017]:

argmax
\

EC𝑡

[
𝜋\𝑡 (𝑎𝑡 |𝑠𝑡 )
𝜋\𝑡−1 (𝑎𝑡 |𝑠𝑡 )

𝐴𝑡

]
, (1)

where 𝑡 is a timestep in the optimization, \ are the hyperparameters
of a neural network encoding our policy 𝜋 that generates an action
𝑎𝑡 based on a set of observations 𝑠𝑡 , 𝐴𝑡 is the estimator of the
advantage function and the expectation EC𝑡 is an average of a finite
batch of samples generated by printing sliced models from our

curriculum C. To maximize Equation 1 we use Principal Policy
Optimization (PPO) algorithm [Schulman et al. 2017].

4.1 Learning Curves
We conducted several ablation studies during which we observed
the convergence of our learning process. When experimenting with
the observation space, we did not observe a significant difference
in learning convergence between our full observation space and its
reduced variants, (Figure 7). During our experiments with action
space, we found that a policy that optimizes only the velocity of the
nozzle can learn faster than a policy that adjusts the deposition path,
(Figure 8 left). Lastly, we observed the convergence rate between dif-
ferent reward computation strategies, (Figure 8 right). The delayed
reward converges significantly slower than a reward function with
instantaneous feedback, and it is unclear if a performance similar
to our privileged reward can be achieved.
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Fig. 7. Training curves for controllers with constant material flow.
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Fig. 8. Training curves for controllers with variable material flow.

5 RESULTS
For evaluation, we constructed a dataset consisting of freeform and
CAD geometries that were not present in training. A subset of the
dataset is visualized in Figure 9.

Fig. 9. Exemplar models from the evaluation dataset.

5.1 Slices Used to Estimate Outline Improvement
We estimate the quality of deposition by evaluating the under and
over deposition histograms on a subset of the evaluation dataset,
(Figure 10).
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Fig. 10. Recovered histograms for a subset of slices from the evaluation
dataset show tighter deposition of material achieved by our closed-loop
control policy.

5.2 Detailed Physical Results
We fabricated 11 shapes from the training and 11 shapes from the
evaluation dataset on a physical apparatus using a low and high
viscosity material, (Figure 11).
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Fig. 11. Policy evaluation on physical hardware.
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