
Real-Time 3D Model Acquisition

Szymon Rusinkiewicz Olaf Hall-Holt Marc Levoy
Princeton University

�
Stanford University†

Abstract

The digitization of the 3D shape of real objects is a rapidly expand-
ing field, with applications in entertainment, design, and archaeol-
ogy. We propose a new 3D model acquisition system that permits
the user to rotate an object by hand and see a continuously-updated
model as the object is scanned. This tight feedback loop allows the
user to find and fill holes in the model in real time, and determine
when the object has been completely covered. Our system is based
on a 60 Hz. structured-light rangefinder, a real-time variant of ICP
(iterative closest points) for alignment, and point-based merging
and rendering algorithms. We demonstrate the ability of our proto-
type to scan objects faster and with greater ease than conventional
model acquisition pipelines.

Categories and Subject Descriptors: I.3.1 [Computer Graphics]:
Hardware Architecture – Input devices; I.4.8 [Image Processing
and Computer Vision]: Digitization and Image Capture – Imag-
ing geometry, scanning; B.4.2 [Input/Output and Data Communi-
cations]: Input/Output Devices.

Additional Keywords: 3D model acquisition, 3D scanning, range
scanning, real-time modeling.

1 Introduction

The desire to reduce the dependence on human input in making
realistic images of complex scenes has, over the past ten years, re-
sulted in an increased role for measurements of the real world in
the computer graphics pipeline. In this paper, we focus on using
3D scanning to build detailed models of complex objects for use in
rendering.

Although for some uses of range scanning it is sufficient to ob-
tain a single range image of the object, many applications require
a complete 3D model. Since most 3D scanners only obtain data
from one side of an object (or even a small region of one side)
at a time, it is necessary to move the scanner (or, equivalently, to
move the model relative to a stationary scanner) to cover the ob-
ject from multiple views. These views must then be registered to
each other and merged into a single, consistent model. Thus, for
these 3D model acquisition applications, the range scanner itself is

�
Department of Computer Science
35 Olden St.
Princeton University
Princeton, NJ 08544
smr@cs.princeton.edu

†Department of Computer Science
Gates Building 3B
Stanford University
Stanford, CA 94305�
olaf,levoy � @graphics.stanford.edu

(a) Layout of our
system. It consists of
a DLP projector that
displays structured
light patterns and an
NTSC video camera.
The green and blue
lines have been added
in this visualization.

(b) Photograph of a
turtle figurine,
approximately 18
cm. long.

(c) Shortly after the
start of scanning, data
has been accumulated
relatively sparsely.
The individual point
primitives used by our
merging data structure
are visible.

(d) After a few
seconds of scanning,
the front part of the
turtle has been
covered relatively
well. However, the
user sees a few
remaining holes.

(e) The user turns the
object to fill the holes.
The user may try a
number of different
positions until the
holes are filled –
immediate feedback is
available about the
effectiveness of each
orientation.

(f) Once all the data
has been gathered,
high-quality offline
global registration and
surface reconstruction
algorithms are used to
produce a final model.

Figure 1: Our real-time 3D model acquisition system was used to scan a
small turtle figurine. The total scanning time was 4 minutes and the final
model, at 1 �

2 mm. resolution, contains approximately 200,000 polygons. (c)
through (e) are rendered using splats (see Section 2.3), and (f) is rendered
as a polygon mesh (see Section 2.4).



only one part of a pipeline that must also include deciding where to
take scans (view planning), aligning the scans (registration), and re-
constructing a surface (merging). Unless the pipeline is completely
automatic it is also necessary to present intermediate results to the
user, so a final piece of the pipeline is rendering.

Previous implementations of this pipeline have been
proposed, with a variety of technologies at each of the
stages [Soucy and Laurendeau 1992; Turk and Levoy 1994;
Curless and Levoy 1996]. Although such systems have been
used to create complex, high-resolution models, as in several
recent sculpture digitization projects [Rushmeier et al. 1998;
Levoy et al. 2000; Miyazaki et al. 2000], doing so is neither fast
nor easy. One of the reasons for this difficulty is that, in most
existing pipelines, human intervention is needed at several stages.
First, most range image registration algorithms require the user
to provide an initial guess by roughly aligning new scans to
the existing 3D model. Next, all scans are rendered together
and the operator uses this information to perform view planning
(e.g., to find holes). Each iteration of this alignment / view
planning cycle is time consuming, and feedback about the
effectiveness of the scanner’s position is not available until the
next scan is performed and aligned. Automated next-best-view
systems have been proposed to eliminate the user from this loop
[Maver and Bajcsy 1993; Stamos and Allen 1998], but they are
often computationally intensive and require computer control over
the position of the scanner.

We propose a new system that returns range images in real time
(60 Hz.) and lets the user perform hole detection and view plan-
ning interactively. Our system is based on a consumer video pro-
jector, used to generate sequences of structured light patterns, and
a consumer video camera, used to observe those patterns. The user
holds the object in his or her hands and moves it slowly. As range
images are acquired, they are automatically aligned to the exist-
ing scans and merged together to create a 3D model. Our align-
ment and merging algorithms are optimized to work well given the
small translations and rotations that occur when the object is moved
slowly by hand. By displaying a rough merged model in real-time
on a computer screen, the user can find holes (unscanned areas) vi-
sually, and move the object to fill them. Although our approach
requires a human in the loop, it eliminates the need for expensive
calibrated motion control stages, and it eliminates the time delay in-
curred by offline view planning algorithms. This tradeoff makes our
system fast and inexpensive, although not automatic. An overview
of the system is presented in Figure 1.

In Section 2, we describe the design of our system. We review
the structured-light rangefinder [Hall-Holt and Rusinkiewicz 2001]
and real-time alignment algorithm [Rusinkiewicz and Levoy 2001]
used by our system, then describe our real-time merging and dis-
play algorithms. In Section 3 we investigate how to choose which
scans to align to each other, and describe what happens when the
system loses track of the correct alignment (e.g., because the object
is moved out of the field of view of the scanner). In Section 4 we
present a few notes on implementation, and in Section 5 we present
sample results from our prototype. In Section 6 we analyze the per-
formance of our system, and in Section 7 we present some ideas for
future research.

2 Real-Time Range Scanning Pipeline

As stated above, our model acquisition system consists of a real-
time pipeline integrating a rangefinder and algorithms for align-
ment, merging, and rendering. In order to implement a prototype of
this pipeline that operates at interactive rates on current hardware,
it was necessary to make some tradeoffs in the technologies and al-
gorithms that were used. In the following sections we present the
structured-light rangefinder, real-time alignment algorithm, voxel-

based merging algorithm, and splat-based renderer used by our sys-
tem.

2.1 Structured-Light Range Scanning

Our 3D model acquisition pipeline begins with a real-time (60
Hz.) rangefinder. Previous real-time 3D scanning systems
have been proposed based on defocus [Pentland et al. 1989;
Nayar et al. 1996], stereo [Kanade et al. 1996], silhouettes
[Matsumoto et al. 1997; Matusik et al. 2000], structured light
[Gruss et al. 1992; Proesmans et al. 1998], and time of flight
(commercial systems by 3DV and Perceptron). We chose to use
a system based on projected structured-light triangulation, since
it uses off-the-shelf hardware, permits (slowly) moving objects,
and returns a full range image, as opposed to a single point or
line of 3D data, every 60th of a second. Here we present a brief
summary of the design of this system; a full description appears in
[Hall-Holt and Rusinkiewicz 2001].

Simple Structured-Light Systems: Our rangefinder is based on
the principle of structured-light triangulation. As shown in Figure
2, the simplest such system consists of a projector that emits a stripe
(plane) of light and a camera placed at an angle with respect to the
projector. At each point in time, the camera obtains 3D positions
for points along a 2D contour traced out on the object by the plane
of light.

In order to obtain a full range image, it is necessary either to
sweep the stripe along the surface (as is done by many commer-
cial single-stripe laser range scanners) or to project multiple stripes.
Although projecting multiple stripes leads to faster data acquisi-
tion, such a system must have some method of determining which
stripe is which. There are three major ways of doing this: assum-
ing surface continuity so that adjacent projected stripes are adja-
cent in the camera image [Proesmans et al. 1998], differentiating
the stripes based on color [Boyer and Kak 1987], and coding the
stripes by varying their illumination over time. The first approach
(assuming continuity) allows depth to be determined from a sin-
gle frame but fails if the surface contains discontinuities. Using
color allows more complicated surfaces but fails if the surface is
textured. Temporal stripe coding is robust to moderate surface tex-
ture but takes several frames to compute depth and, depending on
the design, may fail if the object moves.

In the simplest systems using temporal coherence, the entire ac-
quisition process takes some number of frames n, and in each frame
any given stripe is either turned on or off. The on-off pattern of each
stripe is chosen to uniquely identify that stripe. For example, sup-
pose that we wish to use 2n different stripes. We assign each stripe
a code from 0 to 2n � 1 and look at each of these codes as an n-bit
binary number. We project n different patterns, where in pattern k
each stripe is on if and only if the k-th bit of its code is a 1. Thus,
after any given pixel has been observed for n frames, the identity of
the stripe that illuminated that pixel may be determined.

Searching for Stripe Boundaries: The type of time-coded
structured-light system described above has one significant disad-

CameraCamera

ProjectorProjector

Light stripe
Object

(x,y)

Figure 2: Schematic layout of a single-camera, single-stripe-source trian-
gulation system. The 3D positions of points on the object are determined
from the intersection between the camera ray and the plane of light produced
by the illumination source.



Space

T
im

e

Figure 3: A four-frame sequence of projected patterns. Each pattern has
110 stripe boundaries (111 stripes), with the property that each stripe bound-
ary has a unique code (consisting of the black/white illumination history on
either side of the boundary over the sequence of four frames).

Time

Figure 4: A sequence of video frames of an elephant figurine illuminated
with a stripe boundary code. The projector cycles among these patterns at
60 Hz., and the illuminated object is photographed by an NTSC camera
synchronized to the projector.

vantage: the object being scanned must not move while the n coded
frames are being obtained. If the object does move, the system is
likely to obtain an incorrect stripe code, and hence incorrect 3D
data.

In order to allow object motion during scanning, it is necessary
to add frame-to-frame tracking into the general framework of time-
coded structured light. In particular, if the object moves slowly
enough that stripes may be tracked over time, it is possible to ac-
cumulate the bits of the code over time, despite the fact that they
do not come from the same camera pixel. In practice, one can only
track a region by tracking its boundaries. Therefore, we design a
system around the idea of tracking projected stripe boundaries, and
using these boundaries to convey codes over time.

Given the framework of tracking stripe boundaries as they move
from frame to frame, we search for a way of coding stripes that is
optimized for this application. First, we observe that it is desirable
for stripes to be as narrow as possible, so that the set of boundaries
we are tracking is as dense as possible. Since the bit-plane tech-
nique of simple binary coding results in very wide stripes in some
frames, this is not a desirable code for our application. Second, our
shift of focus from stripes to boundaries permits us to convey infor-
mation more efficiently: instead of obtaining one bit of information
per frame, we may obtain two bits of information by looking at the
on/off status on both sides of the boundary. Thus, we wish to de-
sign a code such that every pair of adjacent stripes has a unique
code over time.

The final criterion in designing our codes is the observation that,
since we are looking at both sides of a stripe boundary, that “bound-
ary” will not be visible at every frame, since the stripes on either
side of that boundary might both be either on or off. Thus, we de-
sign a code that minimizes the number of these invisible “ghosts,”
to maximize the chances of tracking these boundaries even if they
disappear. Note that this is just a special case of the general strat-
egy of making stripes as narrow as possible, as described above.
As described in [Hall-Holt and Rusinkiewicz 2001], it is possible
to design a code that never contains two ghosts adjacent in space or
in time.

Figure 3 shows the sequence of illumination patterns used by our
system. There are four different patterns, which can uniquely code
110 stripe boundaries. The system cycles among these frames at

Video
frames

Edge
detection

Boundary
tracking

Decoding

Time

0

0

0

11

1

1

0

0

0 0

0 11

1 0

0

0

0

1 1

0

0

0 11

1 0

0

0

0

1 1

0

0 1 0 10 1 0 10 1

Code = 01 10 10 11

Code = 10 01 11 01

Code = 01 00 01 00

Figure 5: Tracking stripe boundaries. Our system identifies edges in the
video frames, tracks the stripe boundaries over time, and propagates the
illumination history of each boundary over four frames to determine the
boundary’s code. Note that the tracking stage has to infer the presence of
“ghost” boundaries (shown as dashed lines) in some of the double-wide
black and white regions. Our projected patterns are designed to minimize
the presence of such invisible “boundaries,” and have the property that there
are never two ghosts adjacent in space or in time.

60 Hz., captures video with a synchronized NTSC camera (Figure
4), performs the boundary tracking and decoding (Figure 5), and
returns a range image at each point in time. Since we may use
any sequence of four consecutive frames to obtain depth, there is a
latency of 4 frames in identifying a new stripe boundary but depths
are obtained at every frame thereafter.

2.2 Fast 3D Registration

The previous section described the design of a range scanner ca-
pable of returning the 3D shape of a moving object as seen from
a single viewpoint in real time. As mentioned in the introduction,
however, the goal of our system is to produce complete models of
rigid objects. Therefore, we must align the range images from dif-
ferent viewpoints that are produced as a rigid object is moved rela-
tive to the range scanner.

There are three classes of methods that have been considered for
this application. The first relies on known motion: the object and
scanner are moved relative to each other by a calibrated rotational
or translational stage. As mentioned earlier, however, a key usabil-
ity improvement in our design comes from lifting the restriction to
calibrated motion and allowing the object and scanner to be moved
freely with respect to each other. In addition, avoiding calibrated
motion helps reduce the cost of building and calibrating the scan-
ner [Davis and Chen 2001].

A second way of obtaining the alignment between range images
is to place a tracker on either the object or the scanner (whichever
is moved relative to the other). Although we have chosen not to use
this option because of accuracy and cost considerations, we believe
that in many circumstances it would provide substantial benefits
in the context of our proposed pipeline. As discussed in Section
6, a separate tracker would be especially useful for preventing the
global drift that results from our use of scan-to-scan alignment.

The option we use for alignment in our pipeline is based on reg-
istering individual scans to each other based on the geometry in
overlapping areas. The algorithm we have chosen is a variant of



(a) (c)(b)

Figure 6: Schematic view of projection-based ICP. (a) A random subset of
points on one scan (shown at top in blue) is selected. For each point, a ray
is found through the point of projection of the other scan (shown below in
red). The point along this ray that intersects the red range image is taken
as the matching point. (b) For each such pair, the distance is minimized
between one of the points and the plane through the other point and perpen-
dicular to its normal. (c) One scan is moved to minimize the sum of squared
point-to-plane distances, bringing the two scans into closer alignment. The
process may now be repeated until the scans are aligned, according to some
convergence criterion.

ICP (Iterative Closest Points), which is widely used for geometric
alignment of three-dimensional models when an initial estimate of
the relative pose is known. In the real-time range scanner appli-
cation, the relative motion between two consecutive range images
is small, so in the simplest case we may simply align each range
image to the previous one.

The ICP algorithm [Besl and McKay 1992] has become the
dominant method for aligning three-dimensional models based
purely on the geometry, and sometimes color, of the meshes.
ICP starts with two meshes and an initial guess for their rela-
tive rigid-body transform, and iteratively refines the transform
by repeatedly generating pairs of corresponding points on
the meshes and minimizing an error metric. As described in
[Rusinkiewicz and Levoy 2001], it is possible to decompose the
ICP algorithm into six stages:

1. Selection of some set of points in one or both meshes. This is
typically uniform or random subsampling.

2. Matching these points to samples in the other mesh. In the
original ICP algorithm, this was done by matching to the clos-
est point in the other mesh, though other approaches are pos-
sible.

3. Weighting the corresponding pairs appropriately, for example
based on the distance between the points or compatibility of
normals.

4. Rejecting certain pairs based on looking at each pair individ-
ually or considering the entire set of pairs. This is done to
eliminate outliers.

5. Assigning an error metric to the current alignment, based
on the point pairs. This is usually point-to-point distance,
but Chen and Medioni have observed that it is more effec-
tive to minimize the distance from one point to the plane
containing the other point and perpendicular to its normal
[Chen and Medioni 1991].

6. Minimizing the error metric (e.g. via least squares).
By choosing a different variant at each stage, we obtain a variety of
algorithms with different stability, robustness, and efficiency char-
acteristics.

For our current needs, we are interested in an algorithm that of-
fers the highest possible performance. After some experimentation,
we have chosen the following variant, described in more detail in
[Rusinkiewicz and Levoy 2001]:

1. Random sampling of points on one mesh.
2. Projection-based matching [Blais and Levine 1995] – see Fig-

ure 6.
3. Uniform weighting of all point pairs.

4. Rejection of pairs with point-to-point distance greater than a
threshold.

5. Point-to-plane error metric [Chen and Medioni 1991].
6. The “standard” iterative minimization.

The result is an algorithm that, in our application, aligns scans in
a few milliseconds, fast enough to be incorporated into our real-
time pipeline. The main gain in speed over most other ICP-like
algorithms comes from the use of projection-based matching. This
relies on the fact that a range image is naturally organized as a 2-
D array of samples. Finding a matching point by projecting into
the range image is therefore just indexing into the array, and does
not require a comparatively slow 3D closest-points search. An
overview of the algorithm is presented in Figure 6.

2.3 Merging and Rendering

The goal of a live preview of the scanned model is to give the user
feedback about which areas of the model have been scanned, and
whether any holes are left. Since the model accumulates incremen-
tally in our system, some way must be found to display this con-
stantly increasing set of range samples. The traditional way to dis-
play multiple scans is to merge them using a surface reconstruction
algorithm, thereby forming a 3D model represented by a polygon
mesh. Although there are many such algorithms that produce high-
quality results, running times are typically on the order of several
seconds or minutes for models of moderate complexity. To avoid
these long running times, we have chosen to avoid reconstructing
a surface in our merging step, instead directly displaying the raw
range samples.

The difficulty with this approach is that in a real-time scanning
system, data is accumulating rapidly – hundreds of thousands of
points per second in our case. Thus, to maintain an acceptable in-
teractive frame rate, it is necessary to perform some sort of merging
or discarding of redundant 3D data in order to reduce the number of
primitives that must be rendered. Our approach relies on collapsing
points in cells of a voxel grid.

Our merging algorithm first triangulates each new range image
and computes per-vertex surface normals. Next, after aligning the
range image, we discard the connectivity information and perform
merging based only on the points themselves. This consists of
quantizing all points to a 3D grid and combining all points that map
to the same location in this grid (the idea of collapsing all points in
a voxel grid cell is similar to the one used in the mesh simplifica-
tion method of Rossignac and Borrel [1993]). A running-average
normal is maintained at each grid cell for use in rendering.

The rendering is done using a method called “splatting,” which
has recently seen increased interest for rendering large, detailed 3D
models [Rusinkiewicz and Levoy 2000; Pfister et al. 2000]. In this
technique, a screen-aligned splat (e.g. an alpha-blended Gaussian
or an opaque circle or square) is drawn for each point, scaled such
that the splats for neighboring points overlap without leaving a gap.
When the points are regularly arranged on a grid, such as in this ap-
plication, their spacing is known a priori and it is simple to select
a splat size for a given viewpoint that guarantees that the splats for
adjacent samples overlap without leaving holes. Thus, a rendering
is produced that gives the appearance of a merged surface without
the need to triangulate the points or to reconstruct a consistent poly-
gon mesh. The merging and rendering algorithms are illustrated in
Figure 7.

Although this merging algorithm runs quickly, it does not pro-
duce the highest-quality results. If scans are misaligned by more
than the grid spacing, samples from those scans will not be merged,
creating two or more layers of occupied voxels. After many range
images have been incorporated, the result is a region of occupied
voxels in the vicinity of the true surface (see Figure 8). Since these
voxels are rendered with Z-buffering, the visible voxels will be
those that are outermost, causing our surface to appear thickened



Lit Splat Rendering

Merged Grid with

Quantized Positions

Voxel Grid Cells

Range Images

Averaged Normals

Figure 7: Grid-based merging and rendering. Samples from each range
image are quantized in a voxel grid and are merged with samples from other
scans. An average normal is accumulated at each grid cell, and splatting is
used to render the merged samples. All of these illustrations represent plan
views, but the splats in the bottom row have been turned to face the reader
so that their shape and color may be seen.

ThickenedIdeal

Figure 8: If there were no noise in the scans and alignment were perfect,
only a thin later of voxels would be accumulated in our grid-based merg-
ing data structure (left). In practice, we see a wider layer of voxels (right).
This results in thickened silhouettes and a noisier rendering. The overall vi-
sual effect is still acceptable, however, since splats are shaded using average
normals.

and possibly noisy. However, the quality of the real-time recon-
struction only needs to be good enough to guide the user in position-
ing the object and determining the presence of holes in the model;
a high-quality reconstruction may be performed offline at the con-
clusion of the scanning process. Moreover, the visual quality of the
thickened surface is better than one might expect: although the sur-
face geometry is noisy, voxels are rendered with averaged normals
so the shading appears relatively smooth.

Outlier Elimination: As mentioned above, moderate misalign-
ment and noise does not degrade the appearance of the merged
grid unacceptably. Large outliers, however, are visible, and it is
necessary to eliminate them before merging. Fortunately, since we
acquire data at such a high rate, we can be aggressive in eliminat-
ing outliers; any correct data that is mistakenly discarded is highly
likely to be acquired again, because the user will see a hole and ac-
quire replacement data on the spot. Thus, the rapid feedback given
to the user, in addition to helping with view planning, actually sim-
plifies the problem of dealing with noisy data.

Our outlier rejection algorithm operates after a range image has
been triangulated. We eliminate all long and thin triangles, as well
as triangles that are backfacing with respect to the camera or pro-
jector. If this results in points that are not part of any triangle, those
points are eliminated.

Depending on the parameter in the above algorithm (that is, the
“skinniest” permitted triangles), this method may eliminate a cer-
tain amount of data that was seen at a large tilt with respect to the
camera. This is not necessarily a drawback, since that data is likely
to be of lower quality anyway. Discarding this data encourages the
user to turn those regions of the object towards the range scanner
(so that higher-quality data may be obtained). For creases in some
objects, however, it may be impossible to orient the object such that
a given portion of the surface is both visible from and normal to the
camera. Therefore, the outlier elimination should not be set to be
too aggressive. In practice, we currently discard triangles in which
the smallest angle is less than 10 degrees.

Grid Size: In order to perform this voxel-based merging and ren-
dering, it is necessary to choose an appropriate grid size. Smaller
grid cells result in greater detail, but at the expense of greater mem-
ory usage, lower frame rates, and greater sensitivity to noise. Larger
grids give higher frame rates, but the individual splats become more
visible. In addition, when using larger grids the user may not be
able to see small holes in the data.

In practice, we use a grid size on the order of the spacing of sam-
ples given by the range scanner; higher grid resolution results in
substantially lower frame rates without corresponding increases in
perceived quality. For our prototype, we usually use a grid size of
1 �

2 mm., which is roughly equal to the range sample spacing near
the front of our working volume.

2.4 Offline Registration and Surface Reconstruction

As mentioned above, the quality achievable with the real-time
pipeline is not as high as that of state-of-the-art offline registration
and surface reconstruction algorithms. Thus, once the user has
acquired data for the entire object, an offline post-process may be
run to reconstruct a final, high-quality surface. Because the user is
confident that all necessary data has been acquired and because the
results of the real-time registration are available as an initial guess,
this process may run completely automatically, without further
user intervention.

We use the following post-processing pipeline:
� The grid data structure used for real-time merging is dis-

carded, and all further processing is performed on the original
range images.

� Starting from scan positions and transforms computed by
the real-time algorithm, ICPs are performed on consecutive
scans, as well as additional pairs of overlapping scans. The
algorithm used at this stage is not the high-speed ICP variant
used in the real-time pipeline but a slower, higher-quality
algorithm [Pulli 1999].

� A globally-optimal alignment is computed by simultaneously
considering the results of all the scan-to-scan alignments and
performing a global relaxation [Pulli 1999].

� The range images are triangulated, and merged using the
VRIP algorithm [Curless and Levoy 1996].

� A final, merged triangular mesh is extracted using marching
cubes [Cline et al. 1988].

Additional processing (such as decimation, smoothing, or filling of
inaccessible holes) may now be performed on the model.

3 Anchor Scans and Restarting Alignment

So far, we have suggested that the alignment stage of the pipeline
always involves performing an ICP between a range image and the
previous one. Under ideal conditions, this usually works, but in
practice an ICP will occasionally fail. This might happen if the
object is moved too fast, such that the stripe boundary tracking fails,
and it will certainly happen if the object is moved out of the field of



view of the scanner. Once such a situation has been corrected (i.e.,
the object slows down to a reasonable velocity and/or comes back
within the field of view), it is necessary to regain the alignment of
the new scans to the previously-acquired model.

A reasonable approach to restarting after a failed alignment
might be to treat it as a general problem of aligning two 3D models
given an unknown initial pose. There exist algorithms to solve this
problem [Johnson and Hebert 1997; Chen et al. 1999], but they are
typically slow and not robust. Instead, we may take advantage of
the human operator’s strengths in performing pattern matching by
simply displaying one or more range images, asking the user to
position the object so it roughly lines up with one of them, and
attempting to perform ICP to those range images until one of the
ICPs succeeds.

If we adopt this strategy, we must choose which range images
to present to the user. We have observed that just using the last
range image before the ICP failure is not a good choice. If the ob-
ject is moving out of the field of view, the last few range images
see smaller and smaller pieces of the object. A user is likely to
have difficulty in aligning the object to one of these. More seri-
ously, having smaller and smaller amounts of range data decreases
the constraints on ICP, thus increasing the likelihood of obtaining
an incorrect alignment.

Anchor Scans: In order to make it possible to display good range
images for restarting ICP, we maintain some number of anchor
scans to which we attempt to align. We would like these to have
the following characteristics:

� The anchor scans should be large enough to be recognizable
to the user and for ICP to operate reliably.

� We would like the anchors to have relatively low overlap
among themselves, so that they cover as much of the object
as possible.

In order to maintain the above properties, we define a set of an-
chors A1 ����� An, initially consisting of only the first scan taken. As
each additional range image R is acquired, the alignment and re-
covery algorithms are as follows:

1. If R is empty or has fewer than align min points we do not
attempt alignment, since such an alignment would be more
likely to be incorrect. We indicate to the user that the object
is out of the working volume.

2. Otherwise, we attempt to align R to A1. Our initial guess for
the transform is the result of the last successful ICP.

3. If the ICP succeeds, we evaluate whether R should become a
new anchor. This is done if:

� R is large (more than anchor min points), and
� The overlap between R and the anchor for which ICP

succeeded is less than overlap thresh.
If both of these conditions hold, R becomes A1, the old an-
chors A1 ����� An � 1 become A2 ����� An, and the old An is deleted.

4. If the initial ICP fails, we retry it a number of times using
more iterations, larger thresholds, and several perturbations
to the starting position of R . If all of these attempts fail, we
try to align R to each of A2 ����� An. If any of these succeeds,
we move that anchor to the front of the list (so it becomes A1).

5. If ICP to all of the anchors has failed, we draw R and A1 ����� An
in different colors and ask the user to move the object to line
up R with one of the anchors.

The effects of this algorithm are shown in Figure 9.
The above rules for deciding when a scan becomes an anchor

were chosen so that anchors tend to be large and reasonably spaced
out (in practice, we observe that 5–10% of scans become anchors).
This makes it easy for the user to restart the “normal” ICP after a
failed alignment. In addition, it has the benefit of preventing the
accumulation of alignment errors when the object is not moving.
This is because, when the object is not moving, the overlap be-

A1

Edge of working volume

R

1. R too small (e.g., out
of working volume):
No ICP performed

A1
R

2. Regular ICP succeeds:
A1 remains the anchor

A1
R

overlap < overlap_thresh

3. ICP succeeds, small overlap:
R becomes new anchor

A1 A2

R

4. Alignment to A1 failed:
R aligned to A2

A1
A2

R

5. All ICPs failed: User is
asked to move the object
to align with anchors

Figure 9: As described at left, our system maintains a number of “anchor
scans” A1 ����� An to which each new scan R is aligned. The different cases
of the algorithm ensure that the anchors are relatively large and spread out
over the surface, leading to easier (manual) error recovery and less accumu-
lated drift in alignment. Except in case 5, the different colors used in this
visualization are not visible to the user.

tween each new scan and the anchor will be large, so the anchor
will not change. Thus, all of the scans will be aligned to the same
anchor. If instead we performed simple scan-to-scan alignment, the
small errors introduced by each ICP would have the potential of
accumulating, leading to more global drift in the alignment.

4 Implementation

Hardware: The system uses a Compaq MP1800 DLP projector,
with a maximum resolution of 1024x768. Because of the need to
synchronize it with the video camera, we currently send an S-Video
signal to the projector, limiting us to a resolution of 640x240 inter-
laced. The camera we use is a Sony DXC-LS1 NTSC camera, with
a 1/500 sec. shutter speed. The video is digitized by a Pinnacle Stu-
dio DC10+ capture card, yielding interlaced 640x240 video fields
at 60 Hz.

CPU Usage: Our prototype uses a dual-CPU system, with Intel
Pentium III Xeon processors running at 1 GHz. One CPU is used
for the first few stages of the range scanning pipeline, namely grab-
bing video frames, finding stripe boundaries, matching the bound-
aries across time, and identifying the boundaries from the accumu-
lated illumination history. The second CPU performs triangulation
to find 3D points, aligns the scans using the fast ICP algorithm,
integrates range images into the 3D grid, and renders the updated
grid. The first piece of this pipeline operates at full speed (60 Hz.),
while the second operates slower, approximately 10 Hz.

The reason for choosing this unequal division of stages among
CPUs is to ensure that the matching stage does not drop frames;
this permits the highest-possible speeds for object motion. It is not
as critical for the rest of the pipeline to run at the full 60 Hz. camera
rate, since this only results in a lower frame rate for the display.

Layout: The layout of the system determines its working volume
and resolution. For the scans presented here, we have positioned
the camera and projector 20 cm. apart, with a triangulation angle of
21 degrees. This configuration produces a working volume approx-
imately 10 cm. across. Near the front of the working volume, sam-
ples are spaced roughly every 0.5 mm. in Y (parallel to the stripe
direction) and every 0.75 mm. in X (perpendicular to the stripes).



(a) (b)

(c)
(d)

Figure 10: Post-processing stages for the turtle figurine shown in Figure 1. (a) The grid data structure at the completion of scanning (similar to Figure 1c–e).
The black speckles are due to undetected outlier points with incorrect normals, not holes. (b) The data from the grid is displayed as triangulated range images,
each in a different color. For clarity, we show only every tenth range image. (c) The range images have been aligned with a global registration algorithm. Note
that fewer regions of constant color are visible (i.e., more interpenetration of scans), showing that a better alignment has been achieved. (d) The VRIP surface
reconstruction algorithm has been used to generate a single, merged surface (same as Figure 1f).

Cyberware Model 15 Cyberware Model 15, subsampled 2x

Our scanner Cyberware Model 15 Cyberware, subsampled
Range images 1,830 22 22
Avg. samples / scan 3,140 75,380 18,845
Sample spacing (x) 0.75 mm. 0.25 mm. 0.5 mm.
Sample spacing (y) 0.5 mm. 0.33 mm. 0.66 mm.
Alignment automatic manual manual
Scanning time 4 min. 30 min. 30 min.

Figure 11: Scans of the turtle figurine performed with a Cyberware Model 15 single-stripe laser triangulation scanner (compare Figure 10d). The scans have
been aligned using the algorithm of [Pulli 1999] starting from a manual initial alignment, and have been merged using VRIP [Curless and Levoy 1996]. Since
our scanner has a lower resolution than the Cyberware, we also show a model generated by subsampling the original Cyberware scans by a factor of 2 in each
dimension.



5 Results

In Figure 10, we focus on the turtle figurine of Figure 1, and com-
pare the results of the real-time pipeline to the post-processed ver-
sion (after global registration and VRIP surface reconstruction).
Figure 11 compares our scanner to a commercially-available single-
stripe laser triangulation scanner. The results are similar, though
the model we generate is not as high-quality as that produced by
the Cyberware scanner, chiefly because of digitizer noise and mis-
calibration (see the following section). Finally, some other objects
scanned using our prototype system are shown in Figure 12.

(a) (b)

Figure 12: Additional examples of objects scanned using our system. (a)
An angel statuette is shown at an intermediate point during scanning (see
video). (b) The final model for the elephant figurine of Figure 4.

6 Analysis

Accuracy and Precision: There are several ways in which the
accuracy of our range scanner may be characterized. We may look
at the spacing between samples on the surface, the noise in the lo-
cation of each sample, and the distortion in each range image due
to miscalibration. All of these depend on the physical arrangement
of camera and projector, and so must be compared to the size of
the working volume. The figures below all apply to the front 10
cm. section of the working volume discussed above.

The sample spacing in our prototype, as we have stated, is 0.5-
0.75 mm. The noise in each of these samples is primarily due to the
error in locating a stripe boundary, which may be due to noise in
the camera and digitizer or due to object texture. For surfaces with-
out high-frequency texture, we may find the locations of the stripe
boundaries with subpixel precision, and we estimate the noise in
each sample to be under 0.1 mm. (ignoring, for the moment, out-
liers and distortion). This is due almost entirely to noise in the
camera and capture card: using a higher-quality camera and dig-
itizer (Toshiba IK-TU40A 3-CCD camera and DPS-465 digitizer)
we obtain lower per-sample noise – under 0.03 mm.

Ultimately, using a high-quality camera and digitizer, the limit
on the minimum achievable local noise depends on two factors.
The first is the focus of the camera and projector. Using a smaller
aperture (especially on the projector – most commercially-available
models use large apertures) would permit better localization of
stripe boundaries. The second major limit on the accuracy of this
system is scene texture. When the reflectance of the surface varies
rapidly (on the order of the camera pixel spacing), we are not able to
perform accurate subpixel estimation, and so the per-sample error
is substantially larger, on the order of 0.2 mm.

Calibration and Warping: In addition to noise in the samples,
the accuracy of our scans is degraded by the distortion in our scan-
ner due to miscalibration. We have adopted a calibration procedure
in which known 3D points in the scene are measured using a Faro
arm touch probe, and their

�
u � v � camera locations as well as pro-

jector p coordinate are found. The optimal intrinsic and extrinsic

calibration parameters are found by minimizing the error in all the�
u � v � p ��� �

x � y � z � mappings simultaneously.
Although we may estimate the error in the calibration directly

from the convergence of the minimization algorithm, a more mean-
ingful estimate arises from considering the maximal misalignment
between range images of the same object taken at a variety of differ-
ent positions and orientations. For the turtle data set of Figure 10,
we observe a misalignment of approximately 0.5 mm. (after high-
quality ICP and global registration), leading us to conclude that the
distortion is of this order of magnitude.

Registration Drift and Effects on Scanning Strategy: Even
though the distortion in each individual scan due to miscalibration
is fairly small, the effects of this distortion can easily add up from
frame to frame, contributing to the “registration drift” problem
mentioned in Section 3. Despite the use of anchor scans (which
reduce the occurrence of the problem by a large factor) in some
cases this drift is sufficiently severe that it becomes impractical to
use the system to scan completely around an object. In this case,
the system may be used to scan the object in a small number of
pieces, and the pieces joined together at the end of scanning (an
initial guess for the relative alignment must be obtained from the
user). Alternatively, a small number of scans may be taken around
the object, a global registration algorithm [Pulli 1999] may be run
to align them, then the real-time pipeline may be used to fill holes
in this “skeleton,” by always using the pre-aligned scans as the
anchors. Regardless of the strategy chosen, the pipeline retains its
main advantage of simplifying the process of hole-filling.

An alternative approach to solving the registration drift problem
would be to integrate our system with conventional 6-DOF track-
ers, placed either on the object or the scanner depending on which
is moved relative to the other. Using such trackers (either jointed
digitizing arms or untethered systems) would permit the scanner to
be applied to larger objects or environments by eliminating the reg-
istration error due to noise or miscalibration. In addition, it would
make the system more stable in the presence of degenerate geome-
try (such as planes or cylinders) for which ICP is not able to deter-
mine all six degrees of freedom of the alignment.

7 Conclusions and Future Work

This paper has described a new 3D model acquisition system de-
signed to be inexpensive, fast, and easy to use, and demonstrated
results from a prototype implementation. In contrast with previous
systems, our design permits the user to rotate an object by hand
and see a continuously-updated model as the object is scanned,
thus providing instant feedback about the presence of holes and the
amount of surface that has been covered. The system uses off-the-
shelf components and runs on today’s CPUs.

The ability to provide real-time feedback to the user has yielded
benefits throughout the model acquisition pipeline. In addition
to simplifying the view planning problem, it has proven useful in
restarting after a failed alignment and prompted an aggressive strat-
egy for outlier rejection. We anticipate future work in exploring the
ways that a high data rate and instant user feedback affect the 3D
scanning pipeline. Here we suggest only a few ideas for future
work; a more complete list may be found in [Rusinkiewicz 2001].

There are several ways in which the system described here could
be improved. Some, such as obtaining texture, would be relatively
easy to incorporate into our pipeline. Others might involve changes
in hardware, such as higher-resolution cameras and projectors (for
higher-quality data or larger working volumes), high-speed cameras
and projectors (for faster allowable motion), or multiple cameras or
projectors (for faster scanning and better coverage).

In addition to improvements in hardware, one possible algorith-
mic improvement, possible with increasing CPU speeds or custom



hardware, would be to improve the quality of the real-time merg-
ing and rendering algorithms. For example, with an order of mag-
nitude faster CPU it would be possible to implement an implicit-
surface reconstruction algorithm, such as VRIP, and either extract
a polygon mesh or use volume rendering hardware to display it
interactively. Another potential improvement would be to allow
the pipeline to use available data from later stages to help the ear-
lier stages. For example, ambiguities in edge detection or tracking
might be resolved by looking at other range images, or even at the
accumulated model. By casting the entire pipeline in a probabilis-
tic framework, one could maintain multiple hypotheses, with confi-
dence estimates, and delay making irrevocable decisions as long as
possible.

For certain classes of objects, one might consider solving the
model acquisition problem in the presence of nonrigid deformation.
Although the first stage of our current pipeline (the 3D scanner) can
handle deformation, the alignment and merging stages would re-
quire considerable changes. There has been recent work on tracking
non-rigid objects [Costeira and Kanade 1998; Bregler et al. 2000],
though much of it assumes either that an initial model is available
or that the deformation is heavily constrained. Acquisition of de-
formable models would be especially attractive for capturing hu-
man animation [Allen et al. 2002].

Finally, we note that one major benefit of using a triangulation-
based system is that it potentially scales to many different work-
ing volumes. One could imagine scaling the system up for scan-
ning building interiors or movie sets, or scaling it down for appli-
cations in industrial inspection or medicine. The major problems
when scaling up would be the physical size of the baseline, emit-
ting enough light by the projector (relative to ambient light), and
depth of field of the camera and projector. When scaling down, the
major challenges would involve focus and the diffraction limit of
light.

Acknowledgments

This research grew out of a system built together with Li-Wei He,
and benefitted from conversations with Lucas Pereira, Sean Ander-
son, James Davis, and many others at the Stanford Graphics Lab.
We would also like to thank Intel, Sony, and Interval for their finan-
cial support.

References

ALLEN, B., CURLESS, B., AND POPOVIC, Z. 2002. “Human
Body Deformation From Range Scans,” Proc. ACM SIG-
GRAPH 2002.

BESL, P. AND MCKAY, N. 1992. “A Method for Registration of
3-D Shapes,” Trans. PAMI, Vol. 14, No. 2.

BLAIS, G. AND LEVINE, M. 1995. “Registering Multiview Range
Data to Create 3D Computer Objects,” Trans. PAMI, Vol. 17,
No. 8.

BOYER, K. L. AND KAK, A. C. 1987. “Color-Encoded Structured
Light for Rapid Active Ranging,” Trans. PAMI, Vol. 9, No. 1.

BREGLER, C., HERTZMANN, A., AND BIERMANN, H. 2000.
“Recovering Non-Rigid 3D Shape from Image Streams,”
Proc. CVPR 2000.

CHEN, C., HUNG, Y., AND CHENG, J. 1999. “RANSAC-Based
DARCES: A New Approach to Fast Automatic Registration of
Partially Overlapping Range Images,” Trans. PAMI, Vol. 21,
No. 11.

CHEN, Y. AND MEDIONI, G. 1991. “Object Modeling by Registra-
tion of Multiple Range Images,” Proc. IEEE Conf. on Robotics
and Automation 1991.

CLINE, H. E., LORENSEN, W. E., LUDKE, S., CRAWFORD,
C. R., AND TEETER, B. C. 1998. “Two Algorithms for the

Three-Dimensional Reconstruction of Tomograms,” Medical
Physics, Vol. 15, No. 3.

COSTEIRA, J. AND KANADE, T. 1998. “A Multi-Body Factoriza-
tion Method for Motion Analysis,” IJCV, Vol. 29, No. 3.

CURLESS, B. AND LEVOY, M. 1996. “A Volumetric Method for
Building Complex Models from Range Images,” Proc. ACM
SIGGRAPH 96.

DAVIS, J. AND CHEN, X. 2001. “A Laser Range Scanner Designed
for Minimum Calibration Complexity,” Proc. 3DIM 2001.

GRUSS, A., TADA, S., AND KANADE, T. 1992. “A VLSI Smart
Sensor for Fast Range Imaging,” Proc. IEEE Int. Conf. on In-
telligent Robots and Systems 1992.

HALL-HOLT, O. AND RUSINKIEWICZ, S. 2001. “Stripe Bound-
ary Codes for Real-Time Structured-Light Range Scanning of
Moving Objects,” Proc. ICCV 2001.

JOHNSON, A. AND HEBERT, M. 1997. “Surface Registration by
Matching Oriented Points,” Proc. 3DIM 1997.

KANADE, T., YOSHIDA, A., ODA, K., KANO, H., AND TANAKA,
M. 1996. “A Stereo Machine for Video-rate Dense Depth
Mapping and Its New Applications,” Proc. CVPR 1996.

LEVOY, M., PULLI, K., CURLESS, B., RUSINKIEWICZ, S.,
KOLLER, D., PEREIRA, L., GINZTON, M., ANDERSON, S.,
DAVIS, J., GINSBERG, J., SHADE, J., AND FULK, D. 2000.
“The Digital Michelangelo Project: 3D Scanning of Large
Statues,” Proc. ACM SIGGRAPH 2000.

MATSUMOTO, Y., TERASAKI, H., SUGIMOTO, K., AND
ARAKAWA, T. 1997. “A Portable Three-Dimensional Digi-
tizer,” Proc. 3DIM 1997.

MATUSIK, W., BUEHLER, C., RASKAR, R., GORTLER, S., AND
MCMILLAN, L. 2000. “Image-Based Visual Hulls,” Proc.
ACM SIGGRAPH 2000.

MAVER, J. AND BAJCSY, R. 1993. “Occlusions as a Guide for
Planning the Next View,” Trans. PAMI, Vol. 15, No. 5.

MIYAZAKI, D., OOISHI, T., NISHIKAWA, T., SAGAWA, R.,
NISHINO, K. TOMOMATSU, T., TAKASE, Y., AND IKEUCHI,
K. 2000. Proc. VSMM 2000.

NAYAR, S. K., WATANABE, M., AND NOGUCHI, M. 1996. “Real-
Time Focus Range Sensor,” Trans. PAMI, Vol. 18, No. 12.

PENTLAND, A., DARRELL, T., TURK, M. AND HUANG, W. 1989.
“A Simple, Real-Tie Range Camera,” Proc. CVPR 1989.

PFISTER, H., ZWICKER, M., VAN BAAR, J., AND GROSS, M.
2000. “Surfels: Surface Elements as Rendering Primitives,”
Proc. ACM SIGGRAPH 2000.

PROESMANS, M. VAN GOOL, L., AND DEFOORT, F. 1998.
“Reading Between the Lines – A Method for Extracting Dy-
namic 3D with Texture,” Proc. ICCV 1998.

PULLI, K. 1999. “Multiview Registration for Large Data Sets,”
Proc. 3DIM 1999.

ROSSIGNAC, J. AND BORREL, P. 1993. “Multi-Resolution 3D
Approximations for Rendering Complex Scenes,” Geometric
Modeling in Computer Graphics.

RUSHMEIER, H., BERNARDINI, F., MITTLEMAN, J. AND
TAUBIN, G. 1998. “Acquiring Input for Rendering at Appro-
priate Levels of Detail: Digitizing a Pietà,” Proc. Eurograph-
ics Rendering Workshop 1998.

RUSINKIEWICZ, S. AND LEVOY, M. 2000. “QSplat: A Multireso-
lution Point Rendering System for Large Meshes,” Proc. ACM
SIGGRAPH 2000.

RUSINKIEWICZ, S. 2001. “Real-Time Acquisition and Rendering
of Large 3D Models,” Ph. D. Dissertation, Stanford University.

RUSINKIEWICZ, S. AND LEVOY, M. 2001. “Efficient Variants of
the ICP Algorithm,” Proc. 3DIM 2001.

SOUCY, M. AND LAURENDEAU, D. 1992. “Multi-Resolution Sur-
face Modeling from Multiple Range Views,” Proc. CVPR
1992.

STAMOS, I. AND ALLEN, P. 1998. “Interactive Sensor Planning,”
Proc. CVPR 1998.

TURK, G. AND LEVOY, M. 1994. “Zippered Polygon Meshes from
Range Images,” Proc. ACM SIGGRAPH 94.


