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ABSTRACT

Speech generation and enhancement have seen recent breakthroughs
in quality thanks to deep learning. These methods typically oper-
ate at a limited sampling rate of 16-22kHz due to computational
complexity and available datasets. This limitation imposes a gap be-
tween the output of such methods and that of high-fidelity (≥44kHz)
real-world audio applications. This paper proposes a new bandwidth
extension (BWE) method that expands 8-16kHz speech signals to
48kHz. The method is based on a feed-forward WaveNet architec-
ture trained with a GAN-based deep feature loss. A mean-opinion-
score (MOS) experiment shows significant improvement in quality
over state-of-the-art BWE methods. An AB test reveals that our 16-
to-48kHz BWE is able to achieve fidelity that is typically indistin-
guishable from real high-fidelity recordings. We use our method to
enhance the output of recent speech generation and denoising meth-
ods, and experiments demonstrate significant improvement in sound
quality over these baselines. We propose this as a general approach
to narrow the gap between generated speech and recorded speech,
without the need to adapt such methods to higher sampling rates.

Index Terms— bandwidth extension, audio super resolution,
generative adversarial networks, deep features, speech enhancement

1. INTRODUCTION

A variety of speech generation and processing applications target
16kHz audio signals, including vocoders for text-to-speech (TTS)
synthesis [1], voice conversion [2], source separation [3], and speech
denoising and enhancement [4, 5]. This 16kHz sampling rate con-
stitutes a “sweet spot” in the trade-off between intelligibility and
computational cost: speech content is fully encompassed within the
corresponding frequency range, while audio processing is not too ex-
pensive. However, the resulting sound quality remains unsatisfactory
for some user listening experiences, as a sense of presence and envi-
ronment is lost. Of course it is possible that these methods could be
adapted to wider bandwidth in the future when greater computational
resources and more high-quality speech data are available. Instead,
this paper argues that: (Claim 1) bandwidth extension from 16kHz
to 48kHz can yield convincing results, and therefore (Claim 2) there
is no need to adapt existing methods to higher sampling rates, as we
can simply use methods native to 16kHz and then expand the output
to 48kHz. In short, bandwidth extension is all you need.

The first claim is not obvious because traditional bandwidth ex-
tension (BWE) research has focused on lifting narrow-band signals
to 16kHz (from 4-8kHz), primarily for telephony. As far as we are
aware, the only previous work that extends to as high as 44kHz (with
moderate success) is that of Feng et al. [6].

This paper introduces a new BWE method capable of extending
recorded speech from 16kHz to 48kHz, such that the result is typi-
cally indistinguishable from real full bandwidth recordings. More-
over, even when the method extends audio from 8kHz to 48kHz, it
significantly improves quality, and outperforms baseline methods.

The key ideas of the new approach are adapted from the HiFi-GAN
method of Su et al. [5], which employs adversarial training together
with deep feature matching in multi-domain and multi-scale discrim-
inators. HiFi-GAN was designed and evaluated for speech enhance-
ment (denoising, dereverb, and equalization correction), but here we
adapt it to the BWE setting.

Many deep learning based audio generation methods operate at
moderate bandwidth. For example, the state-of-the-art voice conver-
sion methods such as the zero-shot AUTO-VC [2] as well as speech
denoising methods such as HiFi-GAN [5], DEMUCS [7] and Deep-
MMSE [8], all generate audio at 16kHz. Likewise, many source
separation methods such as deep clustering [3] and Conv-TasNet [9]
work with audio at an even lower rates like 8kHz. This limitation
is partly due to efficiency concerns, since doubling the sampling
rate will double (or worse) the computational cost. Higher sampling
rates also present more modeling challenges relating to longer time
series and complex high-frequency structures. For example, mod-
ifying vocoders based on WaveNet [1], Parallel WaveNet [10], or
MelGAN [11] for higher sampling rates would vastly increase their
model sizes in order to achieve a sufficient receptive field. The re-
current neural network (RNN) architecture limits the temporal span
of the “memory” in WaveRNN [12], and thus the use of higher sam-
pling rate would likely result in lower quality. In addition to the
computation challenges associated with such large models, many
speech datasets on which those data-driven methods rely are them-
selves limited to 16-22kHz. Therefore, rather than adapting such
methods to higher sampling rates, we propose to achieve higher tem-
poral resolution simply by applying BWE as a post-process.

To support our claims, we conduct two sets of experiments.
First, subjective tests show that the proposed BWE method out-
performs several baselines, and achieves perceptual quality that is
close to that of real full bandwidth recordings. Next, subjective
experiments show that our bandwidth extension method consistently
offers significant perceptual quality improvement to the results of
speech denoising systems including HiFi-GAN [5], DEMUCS [7]
and DeepMMSE [8]. It also improves the quality of vocoders in-
cluding WaveNet [1], WaveRNN [12] and HiNet [13] which could
potentially be applied to TTS as well.

2. RELATED WORK

Bandwidth extension aims to estimate the missing high-frequency
content, or in other words, to increase the resolution of speech
signal, usually from 4-8kHz to 16kHz. The early works estimate the
wideband spectral parameters, such as its spectral envelope and gain,
from those of the narrowband. They utilize techniques including
non-negative matrix factorization [14], linear predictive coding [15],
hidden Markov models [16] and Gaussian mixture models [17]. The
use of deep learning has significantly improved performance over
the traditional methods by enabling greater modeling power.

Li et al. [18] proposed to use deep neural network for estimation
of the log-power spectrogram (LPS) of the upperband from that of
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Fig. 1. Comparing the log spectrograms of various bandwidth extension methods. Narrowband is the 16kHz input; Wideband is the 48kHz
target; LP, Spec, Time and FFTNet are baselines; HiFi-GAN+ is our proposed approach. It can be observed that our method generates the
most plausible details for the missing frequencies, while the others have either blurred energy or artifacts.

the narrowband. Various network architectures have been explored,
such as variational auto-encoders [19], U-Nets [20] and recurrent
neural networks [21]. While the spectral methods are good at com-
pensating energy for the missing frequencies, the estimated spectro-
gram usually lacks details due to the smoothing effects of the com-
monly used MSE and MAE objective functions. They do not elimi-
nate noise or artifacts not represented in the time-frequency domain
either. To reconstruct waveform from the estimation, the wideband
phase is approximated by repeatedly flipping the narrowband phase,
but this process often introduces artifacts.

The recent advances in network architectures have enabled audio
processing directly on waveform. Kuleshov et al. [22] used a
convolutional encoder-decoder network inspired by image super
resolution. WaveNet [23] and its variants for BWE [24, 25] use
dilated convolutions to enable large receptive field while preserving
the original resolution. Feng et al. [6] used FFTNet [26] which
resembles the classical FFT process. Ling et al. [27] proposed a
hierarchical RNN to utilize the waveform structures. Several other
efforts incorporated time-frequency information while still operating
in the time domain. Li et al. [28] adapted an EnvNet structure to
approximate the spectral feature extraction from waveform. Time-
Frequency Networks [29] use dual branches with a spectral fusion
layer to combine the information. In addition, time-frequency losses
have been widely adopted by time-domain methods to encourage
matching of the upperband spectral energy [28, 30].

Generative Adversarial Networks (GAN) have recently been
explored in audio processing to improve authenticity of speech.
The generator is driven to approximate the real data distribution
via the dynamic competition with the discriminator. For BWE, its
variable discrimination helps to refine details in the high frequencies.
The previous GAN works in BWE [31, 20, 19] typically follow
simple designs, using a discriminator of a few fully connected
layers or convolutional layers on the spectral features, while the

Fig. 2. Networks. The feed-forward WaveNet super-resolves the
interpolated narrowband signal. Adversarial training with deep
feature matching involves a spectrogram discriminator and multiple
waveform discriminators for the signal at different resolutions.

discrimination directly on waveform has rarely been employed.
The usage of GAN for sound quality has been more thoroughly

explored in other domains such as speech synthesis [32, 11] and
speech enhancement [33]. HiFi-GAN [5] shows that discrimination
in both the time domain and the time-frequency domain is necessary
to achieve the best sound quality. MelGAN [11] proposed to use
the learnt feature space of the discriminator as a distance metric
as it dynamically picks up the noticeable differences between the
generated audio and the real audio. This feature matching loss
stabilizes GAN training and avoids the notorious mode collapse
issue by forcing content consistency. Similar ideas and properties
of adversarial training can be transferred to the BWE problem.

3. METHOD

The bandwidth extension problem can be viewed as a special case of
the speech enhancement problem, since both require transforming
degraded audio signal to its high-quality form. Therefore, we adopt
the HiFi-GAN approach [5] from speech enhancement, which is
shown successful for obtaining clean high-fidelity audio recordings
from noisy reverberant conditions. It uses an end-to-end feed-
forward WaveNet structure together with deep feature matching in
multi-scale multi-domain discriminators to identify artifacts from
various aspects and resolutions.

This WaveNet takes in narrowband signal (resampled to the
same length as the fullband signal) and outputs fullband signal. It
uses non-casual dilated convolutions with exponentially increasing
dilation rates to achieve sufficient temporal context for estimating
the high frequency structures. We use a power of three (1 to
2187) as dilation rate as we are working with 3× and 6× up-
sampling. In our experiments, two WaveNet stacks with channel
size 128 are used. We did not use the postnet module in the
original HiFi-GAN, because extra convolution layers can smooth the
output signal, reducing high frequency resolution. We use weight
normalization [34] across all the networks to speed up convergence.

3.1. Perceptually-motivated loss

To regularize the network and speed up early convergence, we put
loss on both the waveform and spectrograms. The waveform loss
is the absolute difference between prediction and target waveform.
It helps to match the overall shape and the phase, but it can hinder
further optimization once the output signal is close to the ground
truth. This is due to the fact that noise is unpredictable: when
the ground truth contains high-frequency noise, minimizing L1 or
L2 distance will result in predicting the average of noise, which is
0, and thus a loss of high frequency content. Therefore, we also
use spectrogram loss, defined as L1 distance of log spectrograms
with different FFT window sizes (i.e 512, 1024, 2048, and 4096
for 48kHz fullband signal, each with one-fourth as its hop size).



In addition, we compute the L1 log mel-spectrogram loss using
128 coefficients for the upperband to focus on the missing high
frequencies. These spectrogram losses help to match high frequency
components especially noises (presented as predictable constant in
spectrogram). However, the use of L1 or L2 distance may still
introduce over-smoothing effects that cause new artifacts. This is
where adversarial training helps.

3.2. Adversarial training

Our adversarial training takes the similar design as HiFi-GAN.
Discrimination in spectral domain encourages generation of details
for the missing bands. We use a discriminator on the full-band
128-coefficient log mel-spectrogram. It consists of four stacks of
2D convolution layer, batch normalization and Gated Linear Unit
(GLU), and lastly a convolution layer followed by global average
pooling, similar to the one used in StarGAN-VC [35]. It uses kernel
sizes of (7, 7), (4, 4), (4, 4), (4, 4) and stride sizes of (1, 2), (1, 2), (1,
2), (1, 2) for the stacks, and the last convolution layer uses a kernel
size of (15, 5). The channel sizes is 32 across all the layers.

Meanwhile, we use a set of waveform discriminators, respec-
tively operating at the fullband signal down-sampled by different
ratios as a power of two, following the design in MelGAN [11].
Thus, each waveform discriminator learns features for a different
frequency range. The number of waveform discriminators is deter-
mined based on the up-sampling scale from the narrowband signal to
the fullband signal in the task. For example, for BWE from 8kHz to
48kHz, we used four waveform discriminators operating at 48kHz,
24kHz, 12kHz and 6kHz sampled versions of the fullband signal.
Each waveform discriminator is composed of a set of grouped con-
volutions and global average pooling at the end, with Leaky Relu
used between the layers. Specifically, the kernel sizes are 15, 41, 41,
41, 41, 5, 3; stride sizes 1, 4, 4, 4, 4, 1, 1; channel sizes 16, 64, 256,
1024, 1024, 1024, 1; and group sizes 1, 4, 16, 64, 256, 1, 1.

In experiments, we found that the waveform discriminators
contribute significantly to the perceptual qualities of the resulting
fullband audio by removing commonly observed metallic artifacts
and improving naturalness of unvoiced sound.

As is identified previously, the common metric functions are not
able to evaluate the overall perceptual quality of the generated full-
band signal. However, our discriminators essentially learn a repre-
sentation space for real fullband audio while trying to discriminate
whether a provided audio falls in the same representation space as
the real ones. Thus, we also impose the feature matching loss from
each discriminator to the generator, which calculates the L1 distance
between the deep features of the generated audio and those of the
corresponding real fullband audio.

3.3. Noise augmentation

When used as a post-processing step for other audio applications,
the BWE model needs to be robust to various artifacts in the input
narrowband signal. For example, the recordings from denoising
algorithms may contain residuals of noise and reverberation, and
the synthesized speech from vocoders may contain robotic sound.
Therefore, to match the test-time conditions, we add 15-25dB noise
randomly drawn from the DNS Challenge Dataset [36] to the input
narrowband signal during training.

4. EXPERIMENTS

Throughout the experiments, we used the architecture described in
Section 3. Training happens in two stages. First we train WaveNet
for 1000k steps with learning rate 0.001, using the waveform loss

and the spectrogram losses. Then we train the generator at learning
rate 0.00001 with the randomly initialized discriminators at learning
rate 0.001 for 100k steps, including adversarial losses, deep feature
matching losses and the previously used losses. We update the
discriminators twice for every step of the generator with Adam
optimizers. A batch size of 4 is used on a Tesla V100 with each
input of 48k samples (i.e. 1 second).

We evaluated our model on three different tasks: (1) BWEs
from 8kHz to 48kHz and from 16kHz to 48kHz on clean speech to
compare our method with baselines, (2) applying our BWE method
to the results of speech denoising algorithms, and (3) applying our
BWE method to the results of speech generation algorithms. The
experiments are to demonstrate that our proposed BWE method
achieves high quality results comparable to real fullband audio
and it can be applied as a post-processing step for various audio
applications. Audio samples for the experiments are available at:
https://daps.cs.princeton.edu/projects/Su2020BWE/

4.1. Comparison study

In this study, we compare three variants of our proposed BWE
method, including the base feed-forward WaveNet (Base), the use of
the spectrogram discriminator alone (SpecGAN), and the full model
(HiFi-GAN+), i.e. using both the spectrogram discriminator and the
waveform discriminators. We also compare to four other state-of-
the-art baselines: a traditional method using linear prediction based
analysis synthesis [15] (LP), a spectral-domain method using 1D
convolutional U-Net with GAN [20] (Spec), a time-domain method
using EnvNet structure with GAN [28] (Time), and FFTNet variant
for BWE [6] (FFTNet). Note that all the baseline methods except
for FFTNet were originally designed for BWE up to 16kHz, and
therefore, we adapted their methods to this new BWE setting by
either adjusting the filter designs (i.e. for LP), or changing the ratios
of up-sampling layers (i.e. for Time).

We use the VCTK dataset [37] to train models for both 8kHz
to 48kHz and 16kHz to 48kHz extensions, following the same
split as Kuleshov et al. [22]: the first 99 speakers for training and
the remaining 9 speakers for validation. The evaluation is then
conducted on a separate dataset: the Device and Produced Speech
(DAPS) Dataset’s clean set [38] using the last four male and four
female voices. Note that the DAPS dataset has different recording
conditions from the VCTK dataset in that VCTK contains slight
background noise in the recordings while DAPS is made in studio
and has been professionally treated. This examines whether our
approach generalizes well across different datasets and conditions.

Table 1(a) shows the scores of PSNR (Peak Signal-to-Noise
Ratio) and LSD (Log-Spectral Distance) on the VCTK test set and
the DAPS test set. While the two metrics have been commonly
used for BWE evaluations, we observe that they do not correlate
with perceptual quality in this fullband setting. Any processing to
the narrowband input simply lowers its PSNR. Also GAN-based
methods learn to generate plausible high frequencies rather than the
exact same as ground truth, and thus their objective scores tend to
be lower. In contrast, the methods trained with just spectrogram
loss (FFTNet, Base) achieve smallest LSD but their results contain
noticeable artifacts, possibly due to over-fitting to matching the
spectrogram which introduces over-smoothing effects.

Therefore, we also conduct a subjective evaluation using Ama-
zon Mechanical Turk. A subject needs to first pass a pre-test to iden-
tify 44kHz recordings out of 5 recordings (the other 4 are 16kHz or
less). This is to make sure the subjects are using headphones and
can hear high frequencies. The pre-test is followed by a series of
Mean Opinion Score (MOS) tests, where a subject is asked to rate the

https://daps.cs.princeton.edu/projects/Su2020BWE/


Table 1. Objective measures.
 
Method PSNR↑ LSD↓ PSNR LSD PSNR LSD PSNR LSD 
Input SR 8k 16k 8k 16k 
 VCTK Dataset DAPS Dataset 
NB Input 38.56 15.81 44.40 14.84 35.95 12.87 41.98 11.50 
LP 15.74 4.06 15.74 3.83 15.78 5.00 13.73 4.61 
Spec 26.19 2.42 35.74 2.06 36.26 3.06 40.65 2.58 
Time 22.99 2.03 29.90 1.92 31.60 2.82 31.07 3.10 
FFTNet 36.33 2.00 40.59 1.67 35.38 2.80 39.62 2.44 
Base 31.70 2.26 32.40 2.03 29.26 2.67 30.08 2.34 
SpecGAN 12.75 2.15 31.78 1.95 10.57 2.85 26.56 2.45 
HiFi-GAN+ 33.53 2.13 32.16 1.83 30.60 2.80 29.28 2.35 

(a) BWE on VCTK and DAPS datasets. 

 PSNR↑ LSD↓  PSNR LSD PSNR LSD 
Method     Method   With BWE 
Noisy-16k 
Clean-8k 
Clean-16k 

27.69 
37.57 
43.93 

12.04 
13.95 
12.78 

  DeepMMSE 
  DEMUCS 
  HiFi-GAN 

35.29 
34.76 
28.98 

13.28 
12.77 
13.17 

29.24 
29.37 
26.81 

3.04 
2.81 
2.86 

(b) Denoising with BWE on DEMAND dataset. 

sound quality of an audio recording on a scale of 1 to 5, with 1=Bad,
5=Excellent. The audio recordings are randomly picked from the re-
sults of the seven methods (three ours and four baselines), as well as
8kHz, 16kHz and 48kHz versions of the clean recordings. We also
include 4 validation tests to exclude workers who are not paying at-
tention. 382 unique workers participated in this experiment, and we
collected 23,400 ratings in total.

The MOS scores are shown in Figure 3. Figure 3(a) shows
BWE from 8kHz to 48kHz, in which our full method significantly
outperforms all baselines by a large margin. Figure 3(b) shows BWE
from 16kHz to 48kHz. Visually, all BWE methods perform well
while our full method HiFi-GAN+ stands out with the highest MOS
(4.35). The second best is Time with MOS (4.04). It is also worth
noting that the full bandwidth recording has a MOS score of 4.48
and it is not statistically significant enough to say that our method is
inferior to real 48kHz samples. Therefore we conducted additional
pairwise comparison study (AB test) to reveal the actual gap between
our method and real 48kHz samples.

In this AB test, a subject is presented with two test audio clips,
the real 48kHz recording and the 16kHz recording expanded to
48kHz using our HiFi-GAN+, with a reference clip being the real
48kHz recording. The task is to select the sample that sounds closest
to the reference. The test used the same pre-test and validation
strategy presented before. We collected 2,675 answers from 200
subjects, in which 1,139 prefers our method and 1,536 prefers the
real samples. This means in 42.6% cases (7.4% above random)
people prefer our method; or in average 85.2% of the subjects have
no preference and thus answer randomly. Though there is still a
small gap between our method and real 48kHz samples, it is fair to
say that our method is able to improve fidelity of 16kHz audio to
48kHz that is typically indistinguishable from real 48kHz samples.

4.2. Bandwidth extension for speech denoising

We apply our full BWE method to three state-of-the-art speech
denoising algorithms, including HiFi-GAN [5], DeepMMSE [8]
and DEMUCS [7], and use the benchmark DEMAND Dataset’s
test set [39] for evaluation. Since the VCTK dataset we previously
trained on overlaps with the DEMAND dataset and contains back-
ground noise, we specifically train a new HiFi-GAN+ model on
DAPS’s clean set for this task. We generated the denoised audio
samples using DEMUCS’s and DeepMMSE’s official implemen-
tations and pre-trained models, and also took the denoised audio
samples from HiFi-GAN’s project website. We evaluate the same
set of objective measures (PSNR, LSD) on the results of denoising
with and without BWE (Table 1(b)). As the reasons mentioned
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Fig. 3. MOS Scores for BWE experiments. (a) 8kHz to 48kHz;
(b) 16kHz to 48kHz; (c) 16kHz to 48kHz for the outputs of denoising
methods; (d) 16kHz to 48kHz for the outputs of vocoders. Green is
the fullband reference; yellow is our methods; red is the baselines.

previously, the scores do not correspond with human perception
well. The same MOS test is conducted as in Section 4.1 for 16kHz
noisy recordings, clean recordings sampled at 8kHz, 16kHz and
48kHz, the denoised samples from the methods, and the bandwidth-
extended denoised samples from our BWE model. We collected
8,589 answers from 180 workers. The result is shown in Figure 3(c)
where our method improves all speech enhancement quality by
a large margin. HiFi-GAN-48k (4.32) and DEMUCS-48k (4.23)
perform the best and receive the most quality boost; both are compa-
rable to the real 48kHz samples (4.50). This experiment shows our
BWE method is an effective post-processing technique for speech
denoising and enhancement.

4.3. Bandwidth extension for waveform generation

We use the same trained model as in the denoising task in Sec-
tion 4.2, and apply it to the outputs of three vocoding algorithms,
including WaveNet [1], WaveRNN [12] and HiNet [13]. We took
their audio samples from HiNet’s project website. We also included
the 16kHz input data (16k) to these networks and 32kHz raw au-
dio (GT-32k) from the CMU Arctic Dataset [40]. We conducted the
same MOS test as in Section 4.1. The result (Figure 3(d)) shows that
our BWE method improves quality across all waveform generation
methods. We also found that the improvement is stronger if the in-
put generated waveform has higher sound quality. It is because any
artifact that resides in the lower frequencies will be carried over by
BWE, causing lower MOS ratings.

5. CONCLUSION

In this paper, we presented a novel bandwidth extension method
based on WaveNet and adversarial training with deep feature match-
ing. We conducted extensive experiments to show that the proposed
method outperforms other state-of-the-art approaches in 8k/16kHz
to 48kHz bandwidth extension tasks. We also showed via pairwise
comparison that our 16-to-48kHz BWE generates audio that’s com-
parable to real 48kHz recordings in fidelity. Thus, we propose our
method as a general tool to enhance the output of speech enhance-
ment and generation algorithms. We demonstrated fidelity improve-
ment in these tasks via subjective evaluations.
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