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Abstract—Traditional zero-shot voice conversion methods typically
extract a speaker embedding from a reference recording first and then
generate the source speech content in the target speaker’s voice by
conditioning on that embedding. However, this process often overlooks
time-dependent speaker characteristics, such as voice dynamics and
speaking rates, as well as environmental acoustic properties of the reference
recording. To address these limitations, we propose a one-shot voice
conversion framework capable of replicating not only voice timbre but
also acoustic properties. Our model is built upon Diffusion Transformers
(DiT) and conditioned on a designed content representation for acoustic
cloning. Besides, we introduce specific augmentations during training
to enable accurate speaking rate cloning. Both objective and subjective
evaluations demonstrate that our method outperforms existing approaches
in terms of audio quality, speaker similarity, and environmental acoustic
similarity, while effectively capturing the speaking rate distribution of
target speakers. Audio samples are available at: ditvc.github.io.

1. INTRODUCTION
Voice conversion is a core task in speech processing that involves
transforming a source utterance to sound as if it were spoken by
a target speaker, given a reference recording. Recent deep learning
advances have greatly improved voice conversion, often producing
speech nearly indistinguishable from real recordings. Most current
approaches [1]–[5] also support one-shot voice conversion, where the
model can mimic a target speaker using only a single short reference
sample. Since these methods rely on speaker embeddings, it is also
possible to generate novel voices by sampling embeddings without a
reference, enabling zero-shot voice conversion.

However, conventional voice conversion settings face several
methodological limitations. First, speaker identity is shaped not only
by timbre but also by speaking style—such as prosody and rhythm.
Yet many models preserve the source speaker’s prosody and rhythm
entirely, which can reduce perceptual similarity to the target and lead to
lower speaker similarity scores in subjective evaluations. Second, most
models assume clean source speech and produce clean audio, ignoring
the reference’s environmental acoustics. As a result, they perform
poorly in real-world applications such as dubbing or automated
dialogue replacement (ADR), where environmental consistency is
crucial. Third, while speaker embeddings aim to capture all aspects of
identity, they often fail with unconventional voices—like cartoonish
or highly emotional speech—resulting in degraded synthesis quality.

Therefore, we aim to alleviate these constraints: first, by allowing
rhythm and prosody to adapt to the target speaker; second, by jointly
modeling speaker identity and acoustic environment; and third, by
removing the reliance on speaker embeddings to enable one-shot voice
conversion directly from a reference sample.

Previous state-of-the-art voice conversion methods have predomi-
nantly relied on GAN-based frameworks. Several approaches [2], [4],
[6] operate on mel-spectrograms and use a vocoder—such as HiFi-
GAN [7] or BigVGAN [8]—to reconstruct the waveform. Alternatively,
other methods [3], [5] adopt fully end-to-end architectures with
adversarial training to synthesize waveforms directly. However, GAN-
based training often introduces artifacts and struggles to model multi-
modal distributions, which limits the diversity and expressiveness

of generated speech—especially in our setting where rhythm and
acoustics are also converted.

To address these limitations, we adopt diffusion models [9], which
have recently demonstrated impressive results across image [10],
video [11], and audio [12] generation tasks. In voice conversion,
DiffVC [13] was one of the first to apply diffusion modeling, aiming
to generate prosody instead of copying pitch from the source. However,
in practice, DiffVC often produces unnatural prosody [14] and, like
many GAN-based methods, still relies on mel-spectrograms and an
external vocoder for waveform synthesis. More recently, CoDiff-
VC [14] introduced a codec-based diffusion model that integrates
a speaker encoder for end-to-end voice conversion. While effective,
its dependence on a speaker encoder can reduce expressiveness and
fidelity, especially for atypical or emotionally rich speech.

Our method builds upon recent advances in diffusion-based text-
to-speech (TTS) models [12], [15]–[17], but is specifically designed
for the voice conversion setting. Traditional TTS systems [18], [19]
usually rely on text input or speaker embeddings. To incorporate
speaker identity and environmental acoustics, we adopt a one-shot
TTS approach in which the target voice is generated by continuing a
short target audio segment—also known as a prompt. This technique is
analogous to outpainting in image generation. For signal representation,
we use DAC-VAE, introduced in [17], a variational autoencoder
version of the Descript Audio Codec [20], which encodes and decodes
raw waveforms at 48 kHz.

Training such a model requires effectively disentangling content
from speaker characteristics and prosody. While traditional repre-
sentations like wav2vec 2.0 [21] and HuBERT [22] are well-suited
for speech recognition due to their rich contextual encoding, they
often retain speaker-dependent features, which is suboptimal for voice
conversion. Therefore, we adopt ContentVec [23], a representation
explicitly designed to minimize speaker-specific attributes. In our
experiments, ContentVec effectively encodes phonetic content and
relative pitch while suppressing speaker identity, making it well-suited
for high-quality, expressive synthesis.

To transfer the target speaker’s rhythm and prosody, we introduce
a conditioning strategy that randomly alters source content length
during training and uses cross-attention for dynamic alignment. This
enables flexible rhythm control while delivering content accurately.

We summarize our contributions as follows:

• We propose a general diffusion transformer framework, DiTVC,
for voice conversion that improves speaker similarity and
environmental acoustic similarity while maintain high naturalness.

• We introduce targeted training augmentations to develop a variant,
DiTVC-Speed, which enables flexible control over speaking rate.

• Through both objective metrics and subjective evaluations, we
demonstrate that our model delivers high-quality voice conversion
with strong speaker similarity and faithful reproduction of
environmental acoustic properties.
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Fig. 1: Framework of DiTVC: the input utterance is divided into a prompt and
a prediction segment. The diffusion transformer takes in a noisy latent, a mask
embedding, a content representation from the prediction part, and generates an
output latent using the speaker and acoustic information from the prompt. An
MSE loss between the output latent and the target latent of the reparameterized
velocity is used for optimization. Lastly, we simulate the diffusion process and
use the DAC-VAE model to reconstruct the audio waveform from the latent.

2. METHOD
We propose a general voice conversion framework using a Diffusion
Transformer. For general one-shot any-to-any voice conversion, a target
utterance is required to capture the target speaker’s characteristics,
often summarized in a speaking embedding, while a source utterance
provides the spoken content. Our model uses the raw target utterance
as a prompt to clone all aspects of its speaker characteristics, including
timbre, rhythm and prosody, as well as environmental acoustics,
maximizing the use of available information.

2.1. Diffusion Transformer (DiT) for Voice Conversion
We illustrate the framework of the synthesis model in Figure 1. We
adopt Diffusion Transformer (DiT) [10] as the backbone network for
its proven generation quality in the image domain [24] and the audio
domain [17]. Similar to the use of Diffusion Transformers in the
image domain, where VAE models convert image patches into latent
representations, we employ DAC-VAE [20], an audio VAE model, to
encode audio waveform into latent representations, enabling effective
speech synthesis and transformation. The diffusion process generates
the latent for the target audio in a prompt continuation setup while
conditioning on the content representation extracted from the source
speech audio. The generated latent is later decoded back to an audio
waveform using the VAE decoder.

We formalize the diffusion process as follows. Given a raw
waveform y , we use DAC-VAE1 to encode y into its latent
representation x0 = E(y). We adopt the shifted cosine noise schedule
from SimpleTTS [12] to sample t ∈ [0, 1] as the timestep in the
diffusion process, with αt, σt controlling the variance of signal and
noise at time t under shift scale factor s = 0.5. The forward diffusion
process for noisy latent xt is formulated as belows:

xt = αtx0 + σtϵ, ϵ ∼ N (0, I)

Given x0 and the sampled t, the model predicts the re-parameterized
velocity [25] v = αtϵ−σtx0, which is optimized as a reconstruction
objective during training using an MSE loss:

L (fθ; pdata) = Ex0∼pdata,t∼U(0,1),ϵ∼N (0,I)[∥v − fθ(xt; c,m, t)∥2]

where fθ is the Diffusion Transformer model parameterized by θ, c
represents the content representation, and m denotes a prompt mask.

1https://github.com/innnky/descript-audio-vae.

Unlike many voice conversion methods that rely on pretrained or
summarized speaker embeddings, we provide speaker and environment
characteristics in the form of prompt directly through the target
reference audio. We train the model by replacing a random portion
of the diffusion latent with the ground-truth latent for prompt.
The corresponding prompt mask in the form of [1, ..., 1, 0, ..., 0] is
constructed using a random split ratio r ∼ U(0.1, 0.25). The model
learns to predict the remainder using the content representation while
ensuring consistency with the prompt.

The Diffusion Transformer model takes in xt, c,m, t as condi-
tioning inputs. We adopt ContentVec [23] as c which is a content
representation excluding speaker information. By default, the input
conditions m and t, along with c, are embedded, temporally
interpolated, and concatenated with xt. During synthesis, we sample
a random Gaussian noise for the diffusion latent, run the inverse
diffusion steps, and obtain the final output latent from the predicted re-
parameterized velocity. Then, we use the DAC-VAE decoder to decode
the output latent back into audio waveform. Finally, as suggested
in [26], we apply the original DAC [20] as a post-processing step.
Its quantization module helps to refine the audio and reduce artifacts
introduced by the VAE and by generation in continuous latent space.

2.2. Speaking Rate Controls

Previous voice conversion models typically inherit the time alignment
of the source spoken content, but the mismatch between speaking
rate and the target speaker often leaves a perceptual discrepancy in
the converted speaker identity, making the results less useful for real-
world scenarios. As such, we propose two possible modes of speaking
rate controls for voice conversion, one preserving the exact content
from the source, while the other enables configurable speaking rate.
The former mode is achieved in the default model design discussed
above where the content representation is added to the latent to
ensure precise time alignment. The latter is achieved by conditioning
mechanism using cross-attention as well as training-time augmentation
as discussed below.

2.2.1. Speaking rate definition: To quantify how fast or slow a
speaker speaks, we define the speaking rate of an utterance as the
number of phonemes per second in the non-silent portions of the
utterance. In practice, we first detect silences using pydub2 and remove
those longer than 500ms, then apply automatic speech recognition
with Whisper [27] and phonemizer3 to obtain the phoneme sequence.
The speaking rate of a specific utterance is calculated by dividing
the number of phonemes by its duration. We observe that the typical
speaking rate ranges between 8 and 20 phonemes per second.

2.2.2. Speaking rate cloning from the target speech: The model
aims to generate outputs with varying durations. A simple modification
is to use cross-attention to condition on the content representation so
that the model generates outputs of varying lengths based on the given
duration budget. We first experimented with a naive augmentation
by compressing or stretching the source audio using a random ratio
sampled from U(0.5, 2.0). However, this results in a uniform stretch
in the generated output, similar to a simple speed change, which
undermines the goal of achieving more natural speech.

To improve non-linear time alignment, we address the linear
mapping issues caused by direct stretching. We perform enhanced aug-
mentation by dividing the source prediction segment into k ∈ [1, 10]
random segments. Each segment is then stretched using a random
ratio sampled from U(0.5, 2.0). This approach disrupts the linear

2https://pypi.org/project/pydub/
3https://pypi.org/project/phonemizer/



alignment, forcing the model to rely on the rhythm in the prompt
audio for alignment. It enables precise duration control by allowing us
to set the length of the latent output. For generation with speaking rate
cloning, we compute the source utterance’s speaking rate and linearly
scale the latent length according to the target speaker’s speaking rate
to control the output duration.

3. EXPERIMENTS
3.1. Datasets

3.1.1. Training datasets: DiTVC is trained on a combination of
datasets, including Librivox [28], VoxPopuli [29], and Common-
Voice [30], covering the languages en, es, de, fr, it, pt, sv, da,
nl, sv-SE. These datasets provide a large amount of speech data
with a variety of speaker characteristics and environmental acoustics
including noise and reverb. This enables the model to effectively
replicate these attributes from an unseen prompt audio during synthesis.
The utterances are segmented into 10-35 seconds long for training.

3.1.2. Evaluation datasets: We evaluate DiTVC on the VCTK
dataset [31] and the DAPS dataset [32]. The VCTK dataset is
commonly used for speech synthesis; however, two baseline mod-
els—FreeVC and YourTTS—are partially trained on it. Additionally,
VCTK is known to contain mild background noise and recording
artifacts, thus examining the robustness of voice conversion models
to acoustic perturbations. The DAPS dataset provides a clean version
of speech recordings (DAPS Clean) and twelve acoustically degraded
versions (DAPS Noisy) capturing real-world noise and reverb. For the
three evaluation setups (DAPS Clean, DAPS Noisy, VCTK), we select
5 slow and 5 fast speakers with gender ratio 1 : 1 from each dataset
based on their average speaking rates. Utterances are prepared as
5–10 second clips. For each utterance, a different speaker’s utterance
from the same dataset is randomly chosen as the target reference
speech. In the DAPS Noisy setting, the source is always clean and
we randomly select one of the twelve acoustic environments for the
target utterance. This yields 1, 409 conversion pairs for VCTK and
884 pairs each for DAPS Clean and DAPS Noisy.

3.2. Training Settings
We train the model with a learning rate of 0.0001, a batch size of
128 on 16 NVIDIA A100 GPUs (80 GB) for up to 600k iterations.
We apply gradient accumulation of 4 steps to enable more stable
training without exceeding memory constraints. The DAC-VAE model
employs a latent size of 64, which is expanded to the model size
through a linear layer. The mask embedding is similarly expanded
using an embedding layer. The diffusion transformer consists of 16
transformer layers, 8 attention heads, a model size of 768, and a
dropout rate of 0.1.

3.3. Baselines
We evaluate two versions of our method: DiTVC and its speed cloning
variant, DiTVC-Speed, with the following specifications:
• DiTVC: We use ContentVec [23] as the content representation

condition in the diffusion transformer.
• DiTVC-Speed: We set the length of the diffusion latent to control

the output duration and thus the speaking rate of the generated
speech. For each conversion pair, we compute the source and target
speaking rates and scale the source duration proportionally.
We compare DiTVC and DiTVC-Speed against several state-of-the-

art voice conversion baselines to evaluate its performance in terms of
audio quality, speaker similarity, and robustness to noise:
• YourTTS [2] enables zero-shot voice conversion by leveraging

speaker embeddings and adversarial training.

DAPS Clean VCTK

Exp. WER ↓ SSIM ↑ WER ↓ SSIM ↑

Source 0.00 0.078 0.00 0.083

Target 120.01 1.000 113.45 1.000

YourTTS 10.11 0.366 10.56 0.373

FreeVC 3.74 0.323 4.13 0.505

GR0 5.56 0.449 6.67 0.292

DiffVC 17.44 0.358 33.78 0.307

DiTVC 4.15 0.564 5.44 0.426

DiTVC-Speed 7.06 0.464 9.52 0.325

Table 1: The objective scores—Word Error Rate (WER) and speaker similarity
(SSIM) — for all baselines. The top 2 scores are highlighted. Note that
YourTTS and FreeVC were trained on data that includes the VCTK dataset,
while for all other methods, both VCTK and DAPS are unseen during training.

• FreeVC [6] utilizes WavLM features and a speaker encoder
combined with data augmentation to achieve voice conversion
through self-supervised learning.

• GR0 [4] learns a speaker embedding disentangled from wav2vec
features through a reconstruction-based approach while enabling
voice conversion.

• DiffVC [13] is a diffusion-based voice conversion model that
enhances quality by modeling the distribution of natural speech.

3.4. Objective Evaluation

We evaluate the quality of the speech generation using two objective
metrics: word error rate (WER) and speaker embedding similarity
(SSIM). For WER, we use Whisper [27] to conduct automatic speech
recognition (ASR) on the source speech and the generated speech, and
compute the word error rate to evaluate the content accuracy. For SSIM,
we use the finetuned WavLM-Large model from UniSpeech [33] as
the speaker embedding model and compute cosine distance between
the embedding extracted from the generated speech and that from the
target speech to evaluate speaker identity preservation.

Table 1 presents objective scores for all models. We evaluated only
on DAPS Clean and VCTK, as the ASR and speaker embedding
models may lack robustness to heavy acoustic degradations as in
DAPS Noisy. DiTVC and FreeVC achieve the best performance.
However, FreeVC is partially trained on VCTK, leading to its higher
performance, but its speaker similarity score drops significantly on
DAPS Clean, which demonstrates its overfitting on VCTK dataset as
well as its low generalization ability to other datasets. Our proposed
DiTVC maintains consistently low WER and high speaker similarity.
The speed control variant DiTVC-Speed shows a higher WER, likely
due to duration changes that compress or stretch the content, leading
to recognition errors.

3.5. Subjective Evaluation

In addition to objective evaluation, we conduct a subjective listening
test on the Prolific platform4 to collect Mean Opinion Scores (MOS).
Each rater listens to recordings with the same linguistic content,
generated by all methods in the study, and rates naturalness, speaker
similarity, and environmental acoustic similarity on a 5-point Likert
scale. The target voice is provided as a reference for speaker and
acoustic comparison. To ensure quality responses, participants are pre-
screened for English fluency and the absence of hearing impairments,
and are compensated at an average rate of $15/hour.

4https://www.prolific.co/



DAPS Clean DAPS Noisy VCTK

Exp. Naturalness Speaker Similarity Naturalness Speaker Similarity Acoustic Similarity Naturalness Speaker Similarity

Source 4.01± 0.09 1.94± 0.11 3.85± 0.10 2.06± 0.11 2.67± 0.12 3.91± 0.09 2.18± 0.11

Target 4.54± 0.07 4.67± 0.07 4.48± 0.08 4.63± 0.07 4.51± 0.07 4.55± 0.07 4.74± 0.06

YourTTS 2.90± 0.12 2.37± 0.11 3.21± 0.11 2.42± 0.10 2.57± 0.10 3.09± 0.11 2.48± 0.10

FreeVC 3.88± 0.09 3.12± 0.11 3.81± 0.10 2.72± 0.12 2.90± 0.11 3.82± 0.09 2.93± 0.11

GR0 3.76± 0.11 3.52± 0.11 3.50± 0.11 2.46± 0.11 2.71± 0.11 3.77± 0.10 3.15± 0.11

DiffVC 3.28± 0.12 2.82± 0.12 3.55± 0.10 2.71± 0.11 2.87± 0.11 3.35± 0.10 2.75± 0.11

DiTVC 3.85± 0.10 3.55± 0.11 3.74± 0.09 3.35± 0.10 3.51± 0.09 3.64± 0.09 3.03± 0.11

DiTVC-Speed 3.44± 0.11 3.22± 0.11 3.39± 0.10 2.85± 0.11 3.16± 0.10 3.31± 0.11 2.77± 0.11

Table 2: The subjective scores for all baselines with 95% confidence intervals. The top 2 scores are highlighted. The listening tests are conducted in comparison
to the Target reference including the naturalness test. DiTVC performs consistently across all baselines.

All baseline methods and our proposed models are evaluated across
three datasets: DAPS Clean, DAPS Noisy (sampled from all non-clean
subsets), and VCTK. For the listening test, we randomly sample 100
voice conversion pairs from the full evaluation set used in the objective
analysis. Each dataset is evaluated by a pool of 240 participants.

Table 2 presents the subjective scores from the listening test.
YourTTS shows lower performance in both naturalness and speaker
similarity. FreeVC and GR0 perform relatively well among the
baselines. FreeVC consistently achieves high naturalness, but its
speaker similarity remains subpar. We also observe that, regardless of
the target reference’s noise level, FreeVC consistently outputs clean
speech, resulting in low environmental acoustic similarity on the DAPS
noisy set. GR0 achieves high speaker similarity on the clean sets but
performs poorly on the noisy set, where the generated samples contain
many artifacts. DiffVC produces samples with unnatural prosody, as
noted in [14], leading to a lower naturalness score. All these baselines
share a common limitation: they struggle with noisy targets, either
producing outputs with artifacts or failing to reproduce the target
environmental acoustics altogether.

Our method DiTVC delivers stable results across all evaluation sets.
The score on VCTK is slightly lower than on DAPS, likely due to
the specific noise artifacts present in the VCTK dataset. Unlike other
methods, our methods successfully convert to a noisy target while
maintaining high speaker similarity scores. Our methods also show a
clear advantage in the environmental acoustic similarity scores. The
speaking rate cloning variant, DiTVC-Speed, shows reduced quality
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Fig. 2: This figure shows the speaking rate distribution for conversions to
speakers m5 (left) and f1 (right) in DAPS. The normal distribution is derived
from the mean and variance of the target speaker’s speaking rate. Most methods
align with Source, while our method, DiTVC-Speed, aligns with Target.

in the evaluation. We hypothesize that: 1) training with augmentation
and cross-attention is more challenging than time-aligned addition
and requires more iterations to reduce artifacts and match the quality;
2) generating speech with a different, especially faster, speaking rate
can lead to loss of content details, negatively impacting the scores.
We believe the framework is well-suited for more controllable voice
conversion, as well as higher generation quality.

3.6. Speaking Rate Evaluation
Evaluating the matching of speaking rates through subjective scores is
challenging due to the subtlety of perceived speaking rate differences.
We conducted a listening test to assess speaking rate similarity, but
listeners struggled to reliably distinguish the differences. Therefore,
we choose to directly compare the speaking rate distributions. Figure 2
visualizes the speaking rate distribution by percentile for two target
speakers from DAPS. We also include a curve representing the normal
distribution computed from the target speaker’s speaking rate. The
target speaking rate follows the normal distribution well. As shown in
the figure, only DiTVC-Speed aligns well with the Target distribution,
while all other methods tend to follow the Source distribution. This
confirms that the speaking rate control in DiTVC-Speed is effective.

Note that for speaking rate cloning, the total duration is scaled
based on the ratio between the source and target speaking rates.
DiTVC-Speed can naturally adjust the speed of each sub-segment of
the speech within a ratio range of [0.5, 2.0] to fulfill the total duration
with a plausible rhythm, rather than applying a uniform scaling. This
effect is particularly noticeable at higher speeds (e.g., near 2×), where
some phonemes naturally get omitted – mimicking human fast speech.
In contrast, uniform speed-up tends to articulate all phonemes clearly
at an unnaturally fast pace, resulting in less realistic output.

4. CONCLUSIONS
In this work, we introduce a one-shot voice conversion approach based
on a diffusion transformer that relieves the need of speaker embeddings,
The model clones speaker characteristics and environmental acoustics
directly from the target reference utterance that is provided as a prompt
audio for generation, while conditioning on the source speech content.
We show that our diffusion framework for voice conversion works
effectively with the off-the-shelf content representation ContentVec.
We further incorporate augmentation during training to enable speaking
rate control during synthesis. Both objective and subjective evaluation
results demonstrate that our approach achieves high-quality voice
conversion with strong speaker and environmental acoustic similarity.
The synthesized audio with speaking rate cloning closely matches the
target speaker’s speaking rate distribution.
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