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Figure 1. Our self-supervised method learns the shape and appearance of articulated object classes. After training from multi-view synthetic
images of different states of object instances, our model can reconstruct and animate objects from static real-world images. Left: input real
views of a static object. Middle: 3D reconstruction with shape and color. Right: animation driven by the learned articulation codes.

Abstract

Learning geometry, motion, and appearance priors of
object classes is important for the solution of a large va-
riety of computer vision problems. While the majority of
approaches has focused on static objects, dynamic objects,
especially with controllable articulation, are less explored.
We propose a novel approach for learning a representation
of the geometry, appearance, and motion of a class of artic-
ulated objects given only a set of color images as input. In
a self-supervised manner, our novel representation learns
shape, appearance, and articulation codes that enable in-
dependent control of these semantic dimensions.

Our model is trained end-to-end without requiring any
articulation annotations. Experiments show that our ap-
proach performs well for different joint types, such as revo-
lute and prismatic joints, as well as different combinations
of these joints. Compared to state of the art that uses direct
3D supervision and does not output appearance, we recover
more faithful geometry and appearance from 2D observa-
tions only. In addition, our representation enables a large
variety of applications, such as few-shot reconstruction, the
generation of novel articulations, and novel view-synthesis.
Project page: https://weify627.github.io/nasam/.

1. Introduction

Reconstructing articulated 3D objects from image ob-
servations in terms of their underlying geometry, kinemat-

∗Work begun during internship at Reality Labs Research.

ics, and appearance is one of the fundamental problems of
computer vision with many important applications, e.g. in
robotics and augmented/virtual reality. This inverse graph-
ics problem is highly challenging and of underconstrained
nature, since image formation, i.e., mapping from the 3D
world to discrete 2D pixel measurements, tightly entangles
all visible properties of an object—and finding non-visible
properties, such as kinematics, requires additional informa-
tion such as information over time.

Most approaches that tackle this inverse problem rely on
object/class-specific priors learned from large datasets with
available 3D ground truth, which are challenging and ex-
pensive to collect. The learned manifold of shape, appear-
ance, and motion is often encoded via a low-dimensional
latent space. In the devised approaches, this learned low-
dimensional prior is then used to better constrain the inverse
reconstruction problem.

The majority of previous techniques in the literature has
focused on reconstructing classes of static objects; dynamic
objects, especially with controllable articulation, are less
explored. For example, occupancy networks condition the
decision boundary of a neural classifier on a shape code
to represent a class of static objects [33]. Approaches
such as DeepSDF follow a similar principle, but employ
a learned continuous signed distance field (SDF) [42] to
model the object’s surface implicitly as the zero level-set
of a coordinate-based neural network. DISN [61] further
improves this technique and can recover more details. All
the mentioned approaches require dense 3D ground truth
geometry for training and do not model object appearance.
One exception is IDR [72] which employs inverse differ-
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entiable rendering to reconstruct the shape (using an SDF)
and view-dependent appearance of a single object, but this
approach does not generalize to an entire object class.

Prior work on articulated deformations heavily focuses
on humans and animals [9,22,31,35,40,50,69,74] due to the
availability of large datasets and readily available (learned)
priors. One exception is the A-SDF [37] technique which
is focused on general articulated objects. It learns separate
codes for shape and articulation and employs an SDF for
representing the objects. This approach learns a geometry
prior across a class of articulated objects but does not jointly
learn an appearance prior. Additionally, it requires dense
3D ground truth for training. We provide comparisons with
A-SDF in our experiments.

Looking at these related works in context raises the ques-
tion: Is it possible to jointly learn a prior over the 3D ge-
ometry, kinematics, and appearance over an entire class of
articulated objects from only photometric 2D observations
without requiring access to 3D ground truth?

We propose a novel approach for learning the geometry,
kinematics, and appearance manifold of a class of articu-
lated objects given only a set of color images as input. Our
novel 3D representation of articulated objects is learned in a
self-supervised manner from only color observations with-
out the need for explicit geometry supervision. It enables in-
dependent control of the learned semantic dimensions. Our
model is trained end-to-end without requiring any articula-
tion annotations. Experiments show that our approach per-
forms well on both of the most widespread joint types: rev-
olute and prismatic joints, as well as combinations thereof.
We outperform the state of the art, even though these related
approaches require access to ground truth geometry for ex-
plicit geometry supervision. In addition, our approach han-
dles a larger variety of joint types than A-SDF [37]. Fur-
thermore, our representation enables various applications,
such as few-shot reconstruction, the generation of novel ar-
ticulations, and novel view-synthesis. In summary, our con-
tributions are:

• A novel approach that learns a representation of the ge-
ometry, appearance, and kinematics of a class of artic-
ulated objects with only a set of color images as input.

• We introduce an embedding space for geometry, kine-
matics, and view-dependent appearance that enables a
large variety of applications, such as the generation of
new articulations and novel view synthesis.

• Our model, trained only on synthetic data, enables
few-shot reconstruction of real-world articulated ob-
jects via fine-tuning, as shown in Fig. 1.

2. Related Work
Articulated Object Modeling. In robotics, research on
articulated objects focuses on kinematic models [1, 21, 48].

In the vision community, prior work on articulated defor-
mations heavily focuses on humans and animals [9, 22, 31,
35, 40, 50, 69, 74]. Less explored is how to represent gen-
eral objects with piece-wise rigidity. Following the suc-
cess of neural implicit representations, A-SDF [37] extends
DeepSDF [42] with separate shape and articulation codes
to model category-level articulation. By adding joint an-
gles to the shape code, A-SDF learns a mapping to the
corresponding deformed shape. Instead of using known
joint angles and dense 3D supervision as in A-SDF, we
learn the articulation codes without the ground-truth label-
ing and only from images. Li et al., [25] propose the nor-
malized articulated object coordinate space (NAOCS) as a
canonical representation for category-level articulated ob-
jects. This idea is further explored by CAPTRA [63] to
track object articulation from point clouds, and adopted by
StrobeNet [73] to reconstruct articulated objects by first ag-
gregating NAOCS predictions from multi-view color obser-
vations. However, the reconstruction only provides geome-
try. Recently, LASR [70] proposes a template-free approach
to reconstructing articulated shapes from monocular video.
The algorithm jointly estimates the rest pose, skinning,
articulation, and camera intrinsics by solving an inverse
graphics problem resulting in coarse animatable meshes.

Deformation Fields for Shape Reconstruction. Shape
deformation deals with deforming a shape to best fit a set
of observations. DynamicFusion [38] relied on local depth
correspondences, follow-up methods used sparse SIFT fea-
tures [20], dense color tracking [16] or dense SDF align-
ment [54,55]. Such methods are subject to failure under fast
motion due to the use of handcrafted functions for main-
taining correspondences. Recently, the performance of non-
rigid tracking has been improved by data-driven approaches
with learned correspondences [4, 5, 26]. Lately, there has
been an exploration of neural generative models for shape
deformation. DIF [10] represents shapes by a template im-
plicit field shared across the category, together with a 3D
deformation field and a correction field dedicated to each
shape instance. FiG-NeRF [67] approximates neural ra-
diance fields of objects and simultaneously performs fore-
ground/background separation. NPMs [41] is a neural para-
metric model that learns latent shape and pose spaces to
model 3D deformable shapes. Unlike most of the above
methods, we approximate geometry and view-dependent
appearance of the shape. without any 3D supervision.

Neural Representations for Geometry. Neural scene
representations have been found compact and powerful to
model the geometry and motion of objects [24,43]. Implicit
fields [7] use an implicit coordinate-based function and a
latent code to model multiple object classes. Local Deep
Implicit Functions [14] decompose space into a structured
set of learned implicit functions to represent deformable
shapes. Occupancy networks [33] use a local neural classi-



fier to represent objects. Approaches such as DeepSDF [42]
follow a similar idea, but employ an SDF. DISN [61] further
improves this technique and can recover more details. Local
implicit grid representations [6, 8] decompose a scene into
local parts for which it learns implicit representations. All
of these methods only model the geometry of rigid objects.

Neural Representations for Appearance. Neural Radi-
ance Fields (NeRF) model the appearance of static scenes
via a coordinate-based scene representation [36]. Scene
Representation Networks [53] map world coordinates to a
feature representation that can be translated to a rendering.
Differentiable Volumetric Rendering [39] predicts a texture
field. Proxy-geometry, such as spheres or points can be
used to speed up the rendering process [51,60]. Point-based
representations have been explored independently for view
synthesis as well [2, 23, 64]. Neural Volumes breaks down
the space into separate volumes with their own neural rep-
resentations [29] and can model dynamic scenes. For an
in-depth discussion of recent neural rendering approaches,
we refer to a recent survey [57].

Neural Representations for Motion. A hallmark fea-
ture of dynamic scenes is that they can be analyzed us-
ing flow fields, and these in turn can be used to represent
them [11, 27]. There are several works that build on top of
neural radiance fields to capture scenes in motion [3,13,24,
44, 45, 47, 49, 65]. However, they do not allow to control
the scene rendering. Tretschk et al. [58] allow to strengthen
or weaken foreground motion. All of the aforementioned
works in this paragraph do not allow to control the resulting
reconstruction. Most prior work on controllable representa-
tions is around humans, for facial avatars [12, 17, 30, 62] or
human bodies [19, 28, 40, 46, 56, 68]. LASR [70] is a very
general method that creates meshes for arbitrary objects. It
then provides a rigged model with an estimated skeleton to
animate the object, however with very coarse results. D-
NeRF [49] approximates the radiance field of a deforming
shape by using time as an input to the system but only works
for a single scene.

3. Method
Our goal is to build a representation that models the

geometry and appearance of a class of articulated objects
from RGB images without geometry priors. This represen-
tation must enable reconstructing unseen shapes and gener-
ating new articulations. To this end, we utilize a differen-
tiable rendering system with implicit neural representations
and learn a category-level embedding space with disentan-
gled shape, appearance, and articulation representations. To
enforce the disentanglement, different articulations of the
same instance share the same shape code. The geometry is
predicted by deforming a canonical shape conditioned on
a learned articulation code. Without any joint annotations,

the model is able to learn a continuous space for articulation
that allows for generating new articulations.

We define an ‘articulated object’ as an object which con-
sists of several rigid parts connected by joints. We define
further an articulation of an articulated object as a specific
state of its joints (e.g., a laptop with joint angles 40° and 90°
are two distinct articulations). An object with a specific ar-
ticulation is modeled by a representation set (θ, ϕ, ψ) where
θ ∈ Rm, ϕ ∈ Rn, ψ ∈ Rq are the code for geometry, ap-
pearance, and articulation, respectively. In this section, we
first review our backbone differentiable renderer and intro-
duce a category-level embedding space (Sec. 3.1). Then we
describe how to enforce disentanglement and the deforma-
tion field prediction (Sec. 3.2 ). In Sec. 3.3, we summarize
the entire framework for training and inference.

3.1. Differentiable Renderer with Category Priors

We opt for Implicit Differentiable Renderer (IDR) [72]
as the backbone differentiable renderer. While it originally
works for a single object, we extend it to learn category-
level geometry and appearance embedding. IDR is an end-
to-end neural system that can learns 3D geometry, appear-
ance, and camera extrinsics from masked 2D images and
noisy camera pose initializations. There are three unknowns
in IDR [72]: geometry with learnable parameters Θ ∈ Rr,
appearance with learnable parameters Φ ∈ Rs, and camera
extrinsics τ ∈ Rk. The geometry is represented as

SΘ = {x ∈ R3|f(x; Θ) = 0}, (1)

where f models the signed distance function (SDF) to its
zero level set SΘ (i.e. the object’s surface) [72]. Given a
pixel indexed by p, the rendered color of the pixel is

Lp(Θ,Φ, τ) =M(x̂p, n̂p, vp; Φ), (2)

where Lp is the surface light field radiance and x̂p =
x̂p(Θ, τ) denotes the first intersection of the ray Rp and the
surface SΘ with the corresponding surface normal n̂p =
n̂p(Θ) and the viewing direction vp. Both f and M are
approximated by MLPs.

In the original IDR [72], each trained model only works
for a single scene or object instance. We extend it to work
across an entire class of objects by introducing additional
embedding space. For each object instance i from a class,
we learn a geometry code θi ∈ Rm and an appearance code
ϕi ∈ Rn. During the learning process, all objects from the
same category share the same geometry (Θ) and appearance
(Φ) parameters.The new geometry and light field functions
for object i become:

SΘ = {x ∈ R3|f(x, θi; Θ) = 0}, (3)
Lp(Θ,Φ, τ, θi, ϕi) =M(x̂p, n̂p, vp, ϕi; Φ). (4)
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Figure 2. Framework overview. Each object i with articulation state j is represented as (θi, ϕi, ψj), where each parameter encodes
geometry, appearance, and articulation, respectively. A deformation network takes in the shape and articulation code in addition to query
3D locations (computed given camera parameters) to predict the displacement of the location. The displaced locations and the shape code
pass through a geometry network to predict the geometry of the canonical pose shape. In the case of no deformation MLP, the geometry
network directly takes in the 3D location, shape code, and articulation code. For the predicted geometry and given appearance code, an
appearance network outputs an image according to input camera parameters.

Leveraging the category-level prior embedded in Θ and Φ
allows to reconstruct unseen objects from the same category
by recovering only their geometry and appearance codes.

3.2. Code Sharing and Deformation Field

To encode the articulation, we further introduce an ar-
ticulation code. For a category with M training objects
and N sampled articulation states for each object, let shape
Xij denote an articulated object i from a specific category
with articulation state j. We jointly learn the representation
(θij , ϕij , ψij). Note that when articulations across differ-
ent objects are aligned, we can further enforce disentangle-
ment by having all objects from the same category share the
same set of articulation codes and all articulation states of
the same object share the same object code. Therefore, the
representation for shape Xij becomes (θi, ϕi, ψj), as illus-
trated in Fig. 2.

One observation is that geometry change happens both
when articulating the same object and between different ob-
ject identities. Learning to generate shapes by simultane-
ously processing the object identity and articulation state in-
formation may cause unwanted interference. Therefore, we
split the shape prediction module into two parts: a geometry
network S with parameters Θ ∈ Rr and an (optional) de-
formation network D with parameters Ψ ∈ Rt. The former
predicts the geometry of a canonical shape for each object
given its shape code and is articulation-invariant. Condi-
tional on a shape and articulation code that describes an
articulated shape, the deformation network predicts a dis-
placement of the query point to transform the query into the
canonical space [44, 45, 58]. So the new geometry predic-
tion flow is

x′ = x+DΨ(x, θi, ψj ; Ψ), (5)

SΘ = {x′ ∈ R3|f(x′, θi; Θ) = 0}. (6)

This separation of articulation prediction from the canonical
shape helps further disentangle object identity and articula-
tion state.

3.3. Training and Inference

During training, given camera intrinsic and extrinsic
parameters and masked multi-view images, the model is
trained to optimize both the latent embeddings (θi, ϕi, ψj)
and network weights (Θ,Φ). As shown in Fig. 2, each ob-
ject i with articulation state j is represented as (θi, ϕi, ψj),
where each parameter encodes geometry, appearance, and
articulation, respectively. A deformation network takes in
the shape and articulation code in addition to query 3D lo-
cations (computed given camera parameters) to predict the
displacement of the location. The displaced locations and
the shape code pass through a geometry network to predict
the geometry of the canonical pose shape. For the predicted
geometry and given appearance code, an appearance net-
work outputs an image according to input camera parame-
ters. Let Ip ∈ [0, 1]3, Op ∈ {0, 1} be the RGB and mask
values respectively for a pixel p in an image taken with cam-
era cp(τ) and direction vp(τ) (p ∈ P̄ indexes all pixels in
the input collection of images), and τ represents the param-
eters of all the cameras in scene. The overall loss function
has the form:

L(Θ,Φ, τ, {θi}, {ϕi}, {ψj}) =
LRGB + ρLmask + λLE + βLcode. (7)

We train on mini-batches of P ⊂ P̄ pixels sampled from
one view of shape Xij following IDR [72]. The RGB loss
is computed over regions where intersection has been found
between the surface S× and Ray Rp (i.e., cp + tp,0vp for
Op = 1):

LRGB =
1

|P |
∑
Op=1

|Ip − Lp(Θ,Φ, τ, θi, ϕi, ψj)|, (8)

where | · | is L1 norm and Lp is defined in Eq. 4. The mask
loss is

Lmask =
1

α|P |
∑
Op=0

CE(Op, Sp,α(Θ, τ, θi, ψj), (9)



where CE is the cross-entropy loss and Sp,α =
sigmoid(−αmin

t≤0
f(c+ tv, θi; Θ) is an almost-everywhere-

differentiable approximation to an indicator function for
an object-occupied pixel p [72]. We enforce f to be ap-
proximately a signed distance function with the Eikonal
regularization following Implicit Geometric Regularization
(IGR) [15]:

LE(Θ) = Ex(∥∇xf(x, θi, ψj ; Θ)∥ − 1)2, (10)

where x is distributed uniformly in a bounding box of the
scene. Lastly, following [43], we include a zero-mean mul-
tivariate Gaussian prior per latent code to facilitate learning
a continuous shape manifold:

Lcode(θi, ϕi, ψj) = ∥θi∥22 + ∥ϕ∥22 + ∥ψj∥22. (11)

The goal during inference is to recover the representation
(θi, ϕi, ψj) given the RGB images of an unseen object. The
three codes are randomly initialized, and then optimized
through backpropagation with the following objective:

θ̂i, ϕ̂i, ψ̂j = argmin
θi,ϕi,ψj

L(Θ,Φ, τ, θi, ϕi, ψj). (12)

During optimization we can either fix the network weights
(for in-distribution testing) or jointly optimize the network
weights (for out-of-distribution testing).

4. Experiments
4.1. Experiment Setup

Dataset All experiments use SAPIEN [66], a large-scale,
public domain data set containing 2346 articulated objects
across 46 categories. We select six categories with repre-
sentative articulation types and a sufficient number of in-
stances: laptop, stapler, dishwasher, two-door fridge (LR
for left and right, UD for up and down), eyeglasses, and
storage furniture with drawer(s) (and door). We use the
SAPIEN simulation environment [66] to render RGB im-
ages and corresponding masks. During training and testing,
we sample every 10° for rotational joints and 10 states in to-
tal for sliding joints. For multiple joints, we take all combi-
nations of each single joint sampling. For each articulation,
60 views are sampled for training and 6 views for inference.
Please refer to supplementary materials for further details.
Evaluation Metrics We evaluate both the geometry and ap-
pearance of the predicted shape. For geometry, we sample
30,000 points per shape [37, 43] and evaluate the Chamfer-
L1 distance, which is the mean of the accuracy and the com-
pleteness score [34]. For evaluating the rendered appear-
ance, we report the Peak Signal-to-noise Ratio (PSNR). All
visualizations in this paper are rendered from unseen views.
Training and Inference For training, latent codes are ran-
domly initialized with N (0, 1l ), where l is the code length.

Table 1. Methods used in experiments. We specify whether they:
handle static or articulated objects; share articulation code; use
deformation field; output appearance or only geometry. We list the
necessary input at train and test time. SDFs means SDF samples.

Method art./ share deform. train test appear
name static art. field input input ance
A-SDF art. ✓ × SDFs SDFs ×
IDR 6 views static × × 6 RGBs 6 RGBs ✓
IDR 60 views static × × 60 RGBs 6 RGBs ✓
Ours-base art. × × 60 RGBs 6 RGBs ✓
Ours-Art art. ✓ × 60 RGBs 6 RGBs ✓
Ours-Def art. × ✓ 60 RGBs 6 RGBs ✓
Ours-ArtDef art. ✓ ✓ 60 RGBs 6 RGBs ✓

We set ρ = 100, λ = 0.1, β = 0.0001 for the loss in Eq. 7.
We start with α = 50 and multiply it by a factor of 2 every
50,000 iterations (up to a total of 5 multiplications). Dur-
ing inference, articulation codes are initialized to the mean
of all learned articulation codes, while other codes are ini-
tialized as in training. We run 600 iterations to recover the
latent codes; if we do test-time adaptation [37], we fine-tune
both, model weights and codes, for another 600 iterations.
Baseline Methods The method variants that we compare
are listed in Tab. 1. For A-SDF [37], we sample SDF values
from SAPIEN data as described in [37] and run the author-
provided code. For IDR [72], we use our own implementa-
tion in PyTorch which follows the original work, but with-
out the global lighting feature: the SAPIEN dataset does
not provide such effects and we empirically found this does
not influence the result. Each method may additionally use
test-time adaptation (TTA), as described in [37], which in
addition to optimizing the latent codes, optimizes the net-
work weights during inference.

4.2. Reconstruction

To reconstruct unseen testing objects, we first optimize
the codes (optionally with network weights) through back-
propagation. Then we run another forward pass to extract
the mesh and render images. In Tab. 2 and Tab. 3, we com-
pare both geometry and appearance with previous methods
for 9 object categories, respectively. We report the scores
of our full model with articulation code sharing and using
deformation field, with and without TTA. Please refer to the
supplementary materials for a full list of results of each vari-
ant of our method. For reference, we also compare with two
IDR models. Note that IDR does not have an embedding
space to encode categorical priors and can only reconstruct
a single static object or scene that it has been trained on, i.e.
for IDR we train and test on the same object instances, one
model per articulation state. Since this is too computation-
ally expensive, we randomly choose two objects with two
articulations in each category and report the average PSNR
as the PSNR on each category for IDR. Our model is trained
on 60 views per articulation and tested on 6 views per artic-



Table 2. Comparison for reconstructing unseen synthetic shapes (Chamfer-L1). We compare our method with A-SDF [37] and
IDR [72]. As training IDR for each object is too computationally expensive, we present the average across 2 articulation states for 2
objects from each category. IDR is tested on the same objects it is trained on. Please note that our method uses 60 views for training and 6
views for inference. A-SDF* indicates A-SDF results compared to the geometry it trains on, while all other results use a sampling of the
original geometry as ground truth. Lower score is better.

Method Laptop Stapler Dishwasher Eyeglasses FridgeLR FridgeUD Drawer DrawerUD Drawer+Door
A-SDF* 0.126 1.510 0.543 15.972 0.599 0.837 1.362 4.791 2.282
A-SDF TTA* 0.103 0.978 0.209 7.792 1.682 4.623 1.142 2.832 0.476
A-SDF 0.580 6.058 4.180 17.298 1.527 1.427 1.971 6.048 2.945
A-SDF TTA 0.542 5.358 3.756 9.052 1.351 0.842 1.689 4.139 1.082
IDR 6 views 1.656 1.113 4.139 1.386 7.915 1.826 4.202 fails 12.672
IDR 60 views 0.259 0.994 3.106 1.171 12.368 2.119 3.047 7.871 13.491
Ours-ArtDef 0.382 1.125 3.945 9.790 2.738 3.648 2.627 5.979 3.264
Ours-ArtDef TTA 0.355 0.936 3.936 7.894 2.063 3.649 2.745 5.912 3.243

Table 3. Comparison with IDR [72] for reconstructing unseen synthetic shapes (PSNR). The training and inference procedures of IDR
and our methods are the same as in Tab. 2. Note that IDR trains a separate model for each articulation state of each object instance, it is
trained on 60 views and then tested on 6 novel views of the same object, i.e. it trains and tests on the same instances, while our method is
trained per category and is tested on unseen objects. IDR 60 views is trained on 60 views and tested on 6 novel views, offering an upper
bound for the quality we can expect from our method. Higher score is better.

Method Laptop Stapler Dishwasher Eyeglasses FridgeLR FridgeUD Drawer DrawerUD Drawer+Door
IDR 6 views 13.32 9.75 17.64 11.49 10.81 13.47 15.26 fails 15.80
IDR 60 views 20.70 22.40 24.10 26.59 20.01 23.49 24.32 21.19 22.71
Ours-ArtDef 18.33 17.18 20.79 20.69 18.79 23.72 24.65 22.25 23.34
Ours-ArtDef TTA 17.84 18.15 20.87 20.89 18.94 23.52 24.27 22.20 23.96

ulation for unseen objects, while IDR is trained on 60 or
6 views for one static object and tested on novel views of
the same object with the same articulation. Therefore, IDR
trained on 60 views gives us a sense of the upper bound
performance of our differentiable rendering system.

Note that meshes in the dataset are not watertight, so
A-SDF processes them with the Manifold [18] software in
order to be able to sample SDF values, which does a re-
sampling that leads to a thickening of the original meshes.
In A-SDF [37] output geometry is evaluated against those
thickened meshes that were used for training, rather than the
original geometry, so we follow the same evaluation proto-
col and report it as A-SDF* in Tab. 2, achieving compara-
ble numbers to the original paper. All other method variants
are evaluated with respect to a sampling of the original ge-
ometry, which may sometimes contain points sampled from
hidden, internal structures, such as the bottom of a laptop’s
trackpad, but the fraction of these points is small.

We can see that despite being used on a harder task, our
model performs on par with 60-view IDR on many cate-
gories such as furniture. On other categories, our PSNR is
significantly lower. This is, because these categories tend to
have higher frequency texture. To show the benefit of the
learned categorical prior introduced in our model, we fur-
ther compare with an IDR model trained on 6 views. Even-
tually, we would like to have a model that works nicely on
unseen objects with only very limited observations. This
brings up the question: should we model the object by over-

fitting an IDR model with very few views or leveraging cat-
egorical priors—which is better? The comparison between
our method and 6-view IDR in Tab. 3 and Tab. 2 clearly
shows that by introducing a shape, articulation, and ap-
pearance prior, our model during inference significantly im-
proves over an overfitted IDR with same number of views.
We observe through visualization that our variants with de-
formation field performs better than without it when articu-
lations involve topology change (e.g., a closed laptop being
opened). And sometimes TTA may result in overfitting to
appearance and makes the geometry prediction worse.

We visualize the testing results from unseen views in
Fig. 3 and compare with A-SDF (with TTA). All models
are trained with shared articulations and after testing time
optimization. The first two rows are single rotational joints
followed by three rows of multi-joint categories with var-
ious joint type combinations. We can see that for classes
with small intra-class geometry variation such as laptop and
dishwasher, A-SDF works well, which is also consistent
with observations from Tab. 2. However, for classes with
larger intra-class shape variations such as staplers and eye-
glasses, A-SDF fails to capture the geometry details. For
example, for A-SDF, the geometry of the bottom part of
both staplers are not correct, despite being directly opti-
mized with 3D geometry during inference. While A-SDF
originally only shows results on rotational joints, we fur-
ther test both methods on other joint types. We can see that
the performance of A-SDF on sliding joints is much worse
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Figure 3. Reconstruction results from unseen data. We compare to A-SDF on various joint types and combinations, including revolute,
prismatic and multiple ones. While A-SDF trains using both geometry and articulation ground truth and only predicts geometry, our method
also faithfully recovers appearance in addition to producing better geometry and more accurate articulations from only RGB supervision.

than on rotational joints. We reckon one reason is that A-
SDF requires articulation ground truth input during training.
However, for drawers with different lengths, it is hard to de-
fine a single value shared across all objects. In contrast, our
method does not require articulation annotation and learns
the articulation code through training. Please refer to the
supplementary material for more results.

4.3. Analysis

Interpolation and Extrapolation One application of the
proposed method is to generate new articulations of an ob-
ject through interpolation and extrapolation, given only a
few training articulations. To do so, we render a few images
for two articulations, and optimize their shape, articulation,
and appearance codes jointly with the images. After the two
sets of codes are estimated, we interpolate/extrapolate a set
of shape, articulation and appearance codes. This procedure
follows what is done in A-SDF [37], to which we compare
in Fig. 4 for different joint types and combinations. We run
the two fastest variants of our method for this, i.e. those
without deformation field. Note that there is no TTA for
either method as the two estimated code sets which are be-
ing interpolated need to share the same network weights.
We see that A-SDF may fail on extrapolations more than
6° out of the training range for laptop and extrapolations
for other classes, while our method is able to recover plau-

sible shapes. The quantitative results in Tab. 4 demonstrate
that our interpolated models are geometrically more accu-
rate than those of A-SDF for the majority of object cate-
gories.
Disentangling Geometry and Appearance. The separate
geometry and appearance networks strongly enforce disen-
tanglement, as inherited from IDR [72]. One application
of our method is to switch the geometry and appearance
codes between different objects. As shown in Fig. 5, by re-
placing the appearance code with one from another pair of
eyeglasses, we can faithfully create a new pair of eyeglasses
that has a new appearance but the same geometry. Note how
the colors from the thin frame correctly map onto the frame
of the new eyeglasses, despite the large geometry difference
between the shapes. Our learned embedding space that en-
codes categorical prior also helps with the correct mapping.

4.4. Testing on Real-world RGB Images

Since our method only uses images for supervision and
does not require any 3D annotations that may be expensive,
it can be easily set up to test on real data. In this sec-
tion, we directly test our proposed method (trained from
synthetic data) on images captured in the real world. We
use a personal cell phone to record a static opened lap-
top or drawer with fixed focal length and exposure. We
then run Structure-from-Motion (SfM) algorithm [52] on



Table 4. Interpolation Chamfer-L1 error. Evaluation details are the same as in Tab. 2. Lower score is better.

Method Laptop Stapler Dishwasher Eyeglasses FridgeLR FridgeUD Drawer DrawerUD Drawer+Door
A-SDF* 0.359 4.989 2.101 45.326 1.445 1.677 1.634 6.067 4.454
A-SDF 0.610 5.918 4.744 43.708 1.708 1.881 1.958 7.105 5.032
Ours-base 0.347 1.486 3.029 2.632 3.068 4.723 2.952 5.195 3.226
Ours-Art 0.309 1.716 2.807 2.588 3.860 3.357 3.086 4.151 3.845

Figure 4. Interpolation and extrapolation comparison. For
these unseen objects, we first infer the geometry, appearance and
articulation codes for multiple testing states, then we interpolate /
extrapolate the inferred codes to generate new articulations. The
proposed method successfully generates shapes with articulations
beyond the range seen during training for various joint types.

Appearance
Source

Geometry
Source

A geometry 
+

B appearance

A appearance 
+

B geometry

Source A Source B

Figure 5. Disentangling shape and appearance for shape synthesis.

the captured frames to estimate the camera calibration pa-
rameters and their poses. For each view, we then run
https://remove.bg to estimate a segmentation mask for the
foreground object. The views shown in Fig. 1 are the input
images to our model. We test our model trained on syn-
thetic data from SAPIEN with deformation field and shared
articulation code on these real-world images. The shape, ar-
ticulation, and appearance codes are initialized as described
earlier, we then jointly fine-tune both network weights and

codes on these images for 2000 iterations. At this point, we
are able to reconstruct the static real objects. Then by re-
placing the inferred articulation code with the articulation
codes learned during training, we are able to articulate the
static reconstruction realistically.

4.5. Limitations

While we push the boundaries for articulated shape re-
construction by removing limitations on required data and
supervision compared to previous methods, remaining lim-
itations exist. Even though we are able to fine-tune our ob-
ject models on real data, the domain gap from synthetic to
real remains large, and the appearance prior we learn from
the limited synthetic data is not powerful enough to explain
general object appearance. As a consequence, we make use
of foreground masks to alleviate this problem. A more ele-
gant direction for future work could be to follow the exam-
ple of VolSDF [71] and extend the method towards unsuper-
vised disentanglement of shape and appearance. Another
limitation is the current scaling behavior w.r.t. the number
of joints: for modeling objects with n joints with m states,
we need mn combinations. This is only feasible for objects
with a low number of joints. Better joint priors and decou-
pling are interesting directions for future research.

5. Conclusion
In this paper, we set out to answer the research ques-

tion whether it is possible to jointly learn a prior over the
3D geometry, articulation, and appearance of an entire class
of objects, solely from photometric 2D observations, with
no articulation annotations. Our results show that this is
not only possible but, given enough computational power,
can be achieved with high fidelity and with remarkably lit-
tle data. In our experiments, we successfully fine-tune our
model to real-world data using only 6 views and create ani-
matable objects that closely resemble the real-world objects
under articulations, interpolated, and extrapolated. At the
same time, our method is the first that not only handles revo-
lute, but also prismatic joints and combinations thereof. We
hope that this encouraging result inspires further research
into general-purpose object reconstruction.
Acknowledgement We would like to thank Michael Goesele,
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Figure 6. Objects. We show one sample object from each category
in one articulation state. The joints and their types are annotated.

A. Supplementary Material
In this supplementary material, we describe details of

dataset preparation in Sec. A.1 and implementation details
for training, inference, and experiments on real data in
Sec. A.2. In Sec. A.3, we provide more quantitative and
qualitative results.

A.1. Dataset

All experiments use SAPIEN [66], a large-scale, public
domain dataset containing 2346 articulated objects across
46 categories. We select six categories with representa-
tive articulation types and a sufficient number of instances:
laptop, stapler, dishwasher, two-door fridge (LR for left
and right, UD for up and down), eyeglasses, and storage
furniture with drawer(s) (and door) (Drawer is for single-
drawer furniture, DrawerUD for two-drawer furniture, and
Drawer+Door for furniture that has one drawer and one
door). Note that we follow the same classification practice
of A-SDF. For example, FridgeLR and FridgeUD both be-
long to the category of two-door fridges, but we still trained
two separate models because A-SDF treated these two as
two categories. We didn’t try training on a combined cate-
gory, but we expect it to work. The different combinations
of joint types and numbers in total make nine different cat-
egories. We display one example of each category in Fig. 6.

To render the shapes, we normalize them to fit in a unit
sphere and make sure that the same object with different
articulations are normalized in the same way (their non-
motion parts are aligned). We use the SAPIEN simulation
environment [66] to render RGB images and correspond-
ing masks. During training and testing, we sample every
10° for rotational joints and 10 states in total for sliding
joints. For multiple joints, we take all combinations of ev-
ery single joint sampling. For each articulation, 60 views
are sampled for training and 6 views for inference. Cameras

Table 5. Dataset details. We list the details of the SAPIEN data
set for synthetic experiments. It covers a wide range of object
classes and joint types. For each category, we show the number
of joints of each type (revolute or prismatic), the number of object
instances in the training and testing splits, the number of artic-
ulations sampled for training, and the number of views used for
training and testing.

Category #joint train / test split #art. train/test #view
Laptop 1 revolute 35/11 10 60/6
Stapler 1 revolute 15/5 10 60/6
Dishwasher 1 revolute 18/6 10 60/6
Eyeglasses 2 revolute 48/14 36 60/6
FridgeLR 2 revolute 8/3 36 60/6
FridgeUD 2 revolute 12/4 36 60/6
Drawer 1 prismatic 21/7 10 60/6
DrawerUD 2 prismatic 27/9 36 60/6
Drawer+Door 1 revolute, 1 prismatic 9/4 100 60/6

Articulation State 0 Articulation State 9

Figure 7. Articulations used in the experiments are not aligned.

are placed on vertices of a randomly rotated rhombicosido-
decahedron for 60 views (octahedron for 6 views) with the
object in its center. The RGB images and masks are of res-
olution 640× 480. These details are summarized in Tab. 5.

We set the angle range to train and test on revolute joints
following A-SDF [37]. To evaluate interpolation, for ev-
ery two neighboring testing articulations, we use the codes
for these two articulations to interpolate the middle point.
Concretely, for the stapler and dishwasher with training and
testing angles {0, 10, 20, 30, 40, 50, 60, 70, 80, 90}, the
angles used for evaluating interpolation are {5, 15, 25, 35,
45, 55, 65, 75, 85}. For laptop, angles used for training and
testing are {-72, -62, -52, -42, -32, -22, -12, -2, 8, 18} and
used for interpolation are {-67, -57, -47, -37, -27, -17, -7, 3,
13}. For the eyeglasses and fridge (fridgeLR and fridgeUD)
with training and testing angles {0, 10, 20, 30, 40, 50} for
each joint, the angles used for evaluating interpolation are
{5, 15, 25, 35, 45}. For the drawer in storage furniture
(Drawer, DrawerUD, Drawer+Door), we sample 10 articu-
lations with equal distance for training and testing and use
the 9 midpoints of the 10 articulations for interpolation. For
the door in storage furniture (Drawer+Door), we use {0, 10,
20, 30, 40, 50, 60, 70, 80, 90} for training and testing, and
{5, 15, 25, 35, 45, 55, 65, 75, 85} to evaluate interpolation.

To clarify, aligned articulation is not required in training.
In fact, SAPIEN objects are not aligned and we do not align
them in our experiments. In Fig. 7, for example, eyeglasses
at the articulation states 0 and 9 differ in the lens-leg angles.
However, if articulations are roughly aligned, we can also
leverage it by sharing articulations (main paper Sec. 3.2) in
variants Ours-Art/ArtDef.



A.2. Implementation Details

A.2.1 Network Architecture

The architecture of the geometry and appearance networks
in our method follows exactly the description in IDR [72].
Concretely, the geometry network takes a 256-dimensional
geometry feature and 3-dimensional 3D query location (and
optionally a 8-dimensional articulation feature if running
without deformation field) as input and predicts a single
SDF value. When included, the deformation module takes
in a 256-dimensional geometry feature, 3-dimensional 3D
query location and a 8-dimensional articulation feature as
input and predicts a 3-dimensional displacement for the
query point, which is added to the original query point and
then passed to the geometry network. Both the geometry
and the deformation network have eight fully connected
hidden layers with a width 512 and a last fully connected
layer with output dimension 1 or 3 for their corresponding
predictions. There is a single skip connection from the in-
put to the middle layer. The fully connected layers are in-
terlaced with softplus activation in both networks. We fol-
low the non-linear maps [72] on the input query points. We
initialize the weights of the geometry network so that it pro-
duces an approximate SDF of a unit sphere.

In the appearance network, there are four fully connected
layers with output dimension 512 and a last fully connected
layer with output dimension 3 for color prediction. The in-
put is a concatenation of the following: a 256-dimensional
appearance feature for each object, a 3D surface point and
its normal, and the viewing direction. We use the ReLU ac-
tivation between hidden layers of the appearance network
and tanh for the output to get valid color values.

A.2.2 Training and Inference

For training, latent codes are randomly initialized with
N (0, 1l ), where l is the code length. We set ρ = 100, λ =
0.1, β = 0.0001 for the loss in Eq. 7 of the main paper.
We start with α = 50 and multiply it by a factor of 2 every
50,000 iterations (up to a total of 5 multiplications). The
networks are trained using ADAM optimizer with a learn-
ing rate starting from 0.0001 and decreasing by a factor of 2
at the 50% and 75% point of the total number of iterations.

During inference, articulation codes are initialized to the
mean of all learned articulation codes, while other codes
are initialized as in training. To reconstruct unseen testing
objects, we first optimize the geometry, articulation, and ap-
pearance codes through backpropagation for 600 iterations
with learning rate starting from 0.009 and decreasing by a
factor of 2 at 300 and 450 iterations. If we do test-time
adaptation [37], we further optimize both the codes and
the network weights for another 600 iterations with learn-
ing rate starting from 0.00005 and decreasing by a factor of

Input RGB NR-NeRF Ours RGB Ours 3D Input RGB NR-NeRF Ours RGB Ours 3D

Figure 8. Comparison with NR-NeRF [59] on articulating a lap-
top.

Figure 9. Reconstruction from a single RGB image. We show
input RGB, output appearance and normals, other untextured views.

2 at 300 and 450 iterations. For both optimization stages,
we start with α = 50 and multiply it by a factor of 2 every
100 iterations (up to a total of 5 multiplications). Then we
run another forward pass to predict SDF values and render
images. The Marching Cubes algorithm is used to extract
an approximate iso-surface given the predicted SDF values.

A.2.3 Real Experiment Setup

We test the model trained on synthetic laptops and drawers
and directly apply the trained models to real-world phone-
captured static objects. We use a personal cell phone to
record a static opened laptop or drawer with fixed focal
length and exposure. We then run Structure-from-Motion
(SfM) algorithm [52] on the captured frames to estimate
the camera calibration parameters and their poses. For each
view, we then run https://remove.bg to estimate a segmenta-
tion mask for the foreground object. We use seven input im-
ages to reconstruct the laptop and 24 images to reconstruct
the drawer in Fig. 1 of the main paper. We test our model
trained on synthetic data from SAPIEN with deformation
field and shared articulation code on these real-world im-
ages. The shape, articulation, and appearance codes are ini-
tialized as described earlier, we then jointly fine-tune both
the network weights and the codes on these images for 2000
iterations. At this point, we are able to reconstruct the static
real objects. Then by replacing the inferred articulation
code with the articulation codes learned during training, we
are able to articulate the static reconstruction realistically.

A.3. Results

Full quantitative results. In Tab. 6, we show the full
list of results for each variant of our method. We observe
that with deformation field it manages better with topology
changes, but it takes longer to train. This is why the results
of Ours-Def and Ours-ArtDef might be numerically worse
as those models did not get to the same number of iterations
in the same training time as without deformation field. We
also observe that sometimes TTA may cause the model to
optimize towards a local minimum, e.g. overfitting to ap-



Table 6. Reconstruction results on unseen synthetic shapes (Chamfer-L1). We compare all variants of our proposed method. This table
corresponds to Table 2 from the main paper.

Method Laptop Stapler Dishwasher Eyeglasses FridgeLR FridgeUD Drawer DrawerUD Drawer+Door
Ours-base 0.383 1.453 3.269 1.771 2.969 4.683 2.924 5.326 2.786
Ours-Art 0.328 1.560 2.962 1.735 3.955 3.332 3.114 4.185 3.416
Ours-Def 0.363 1.026 4.046 2.558 1.976 5.007 3.005 5.726 3.394
Ours-ArtDef 0.382 1.125 3.945 9.790 2.738 3.648 2.627 5.979 3.264
Ours-base TTA 0.345 1.336 3.187 1.606 1.637 4.614 2.940 5.100 2.899
Ours-Art TTA 0.475 1.400 2.881 1.659 2.635 3.238 3.135 4.166 3.897
Ours-Def TTA 0.333 0.815 4.046 2.026 2.244 4.669 3.042 5.335 3.652
Ours-ArtDef TTA 0.355 0.936 3.936 7.894 2.063 3.649 2.745 5.912 3.243

pearance while making the geometry worse. The errors are
larger on bulky objects like fridges, drawers, dishwashers,
where the concave geometry is visible from very few views,
so a method that only uses RGB information may not have
enough coverage to carve the space out. While the num-
bers may not reflect all variants’ strengths, combined with
visualizations, we observe variants with deformation handle
large topology changes better. This is confirmed in Tab. 6
where ours-Def TTA performs the best on the stapler.

Comparison with NeRF-extension. In Fig. 8, we show
a comparison with NR-NeRF [59], a representative NeRF
extension to multi-view dynamic scenes. We ran its official
code and our method on a SAPIEN laptop with the same
60 views × 10 angles setting. We observe that despite only
recovering a single scene, NR-NeRF performs poorly due
to large inter-frame movements.

Results on RBO dataset [32]. RBO dataset [32] only has
monocular videos of articulated objects with fixed camera-
object pose, so it is improper to evaluate our multi-view
method. We still tested our single-view reconstruction on
our real phone camera data and RBO in Fig. 9. It succeeds
on high-res phone images, but on noisy, low-res RBO data it
recovers plausible appearance but poor geometry that looks
correct only from the input view. This strongly indicates
that a few more views will be sufficient to disambiguate
even noisy input. The Chamfer-L1 distance of the RBO
example is 5.75 after scale determination, which is close to
the DeepSDF error reported in A-SDF [37], even though we
do not use 3D input.

A.4. Video

Please refer to the video for more results on reconstruc-
tion, interpolation and extrapolation on testing synthetic
data, as well as reconstruction and animation on real data.
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