
WHITE BOX SEARCH OVER AUDIO SYNTHESIZER PARAMETERS

Yuting Yang1 Zeyu Jin2 Connelly Barnes2 Adam Finkelstein 1

1 Princeton University 2 Adobe Research
1{yutingy, af}@princeton.edu, 2{zejin, cobarnes}@adobe.com

ABSTRACT

Synthesizer parameter inference searches for a set of patch
connections and parameters to generate audio that best
matches a given target sound. Such optimization tasks ben-
efit from access to accurate gradients. However, typical
audio synths incorporate components with discontinuities
– such as sawtooth or square waveforms, or a categorical
search over discrete parameters like a choice among such
waveforms – that thwart conventional automatic differen-
tiation (AD). AD libraries in frameworks like TensorFlow
and PyTorch typically ignore discontinuities, providing in-
correct gradients at such locations. Thus, SOTA parameter
inference methods avoid differentiating the synth directly,
and resort to workarounds such as genetic search or neu-
ral proxies. Instead, we adapt and extend recent computer
graphics methods for differentiable rendering to directly
differentiate the synth as a white box program, and thereby
optimize its parameters using gradient descent. We evalu-
ate our framework using a generic FM synth with ADSR,
noise, and IIR filters, adapting its parameters to match a va-
riety of target audio clips. Our method outperforms base-
lines in both quantitative and qualitative evaluations.

1. INTRODUCTION

Synthesizers provide musicians and sound designers with
flexibility for exploring sound with various audio char-
acteristics. However, the versatility of synths also poses
challenges in terms of control, because manually search-
ing over numerous parameters to seek a particular type of
sound requires expertise, time, and effort. Synth parame-
ter inference addresses these challenges by automating this
search process to find parameters that best match a given
target sound. Given a synth f with parameters θ and a tar-
get T , the search seeks the optimal parameters θ∗ to mini-
mize some loss L between the synth output and the target.

θ∗ = argminθ L(f(θ), T) (1)

If the synth f can be expressed as a white box program, a
straightforward solution to Equation 1 would differentiate
L wrt the parameters θ, and then minimize L by gradi-
ent descent. However, in practice, typical synthesizers f

© Y. Yang, Z. Jin, C. Barnes, A. Finkelstein. Licensed un-
der a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Y. Yang, Z. Jin, C. Barnes, A. Finkelstein, “White
Box Search over Audio Synthesizer Parameters”, in Proc. of the 24rd Int.
Society for Music Information Retrieval Conf., Milan, Italy, 2023.

contain discontinuous oscillators, like square or sawtooth
waveforms, and discrete categorical parameters, such as
choosing different waveforms and modules, that thwart tra-
ditional automatic differentiation (AD).

Researchers have developed several workarounds to
avoid directly differentiating f . For example, genetic al-
gorithms [1, 2] approximately solve Equation 1 at the ex-
pense of greater computation and potential artifacts from
failures near local minima. Alternatively, Equation 1 may
be approximated as black box models using deep learning:
either the synthesizer can be approximated via a differen-
tiable neural proxy [3,4], or the entire argmin mapping can
be approximated by a parameter prediction network [5, 6].
Similarly, the parameter space can be mapped to a VAE la-
tent space for direct control [7]. However, the flexibility of
deep learning approaches is constrained, as data collection
and training are typically limited to specific synthesizers
with fixed parameter choices, making it impractical to di-
rectly apply trained models to arbitrary synthesizers.

Graphics researchers developed recent methods to ap-
proximate the gradient for discontinuous white box im-
age generation processes [8–10]. These generally integrate
over the discontinuous function f , and approximate the
gradient for the integral f̂ . This paper builds on Aδ [10],
which replaces the traditional calculus rules for AD to di-
rectly enable backpropagation on arbitrary discontinuous
programs. Our method relies on the key observation that
the discontinuous function will eventually be band-limited
and sampled at some rate (e.g. 48kHz). Each sample rep-
resents an integration over a time interval that may contain
a discontinuity. However, the band-limited function f̂ is
continuous so differentiation rules can be developed for it.

Our optimization framework differentiates a pre-filtered
white box synth, and solves Equation 1 via gradient de-
scent. We adapt and extend the math in Aδ [10] to differ-
entiate discontinuous and discrete synth components, and
also introduce heuristic methods for better convergence.
We evaluate on a FM synthesizer and our approach finds
parameters that better match the target than baselines qual-
itatively and quantitatively. Moreover, our framework al-
lows musicians to incorporate domain expertise to flexibly
modify and fine-tune synth modules. Because our white
box approach does not incur training overhead, our frame-
work can be flexibly applied to arbitrary synth programs.

2. RELATED WORK

Researchers have explored a variety of techniques to auto-
matically search for optimal synthesizer parameters with-

out having to explicitly differentiate the synthesizer. Ge-
netic algorithm (GA) approaches [1, 2] mutate and cross
variants to search over the entire program space for ar-
bitrary synthesizers, but suffer from excessive computa-
tion and difficulty in accurately converging to local min-
ima without the guidance of the gradient. On the other
hand, deep learning models can be used to directly predict
the synthesizer parameters [5, 6, 11]. However, they heav-
ily rely on the annotated datasets of synthesizer presets,
therefore cannot be flexibly generalized to any synthesizer.
Similarly, each trained model can only be used for one par-
ticular synthesizer patching, greatly limiting the flexibil-
ity of the method. Unlike learning methods, our approach
does not rely on a dataset, and can flexibly differentiate any
white-box program, supporting finetuning and parameter
transfer between synthesizer patches. Our gradient-based
process also converges more robustly than GA.

Alternatively, synthesizers can be defined by differen-
tiable functions, therefore allowing optimal parameters to
be learned through gradient descent. For example, neural
audio synthesis methods use black-box neural networks to
generate audio samples [12, 13]. The neural proxies can
be combined with continuous synthesizer components as
well, such as DDSP methods that incorporate digital sig-
nal processing modules [4, 14], and DWTS methods with
learnable wavetables [15]. However, because these meth-
ods use continuous proxies, they usually do not match the
exact parameterization of complicated discontinuous syn-
thesizers, therefore cannot be flexibly used to control con-
ventional synthesizers. Moreover, the neural modules in-
troduce nontrivial inference overhead and are less efficient
than synthesizers. Unlike the differentiable neural prox-
ies, our method directly differentiates a white box program
that can be any desired synthesizer. Therefore, it optimizes
semantically meaningful parameters.

We leverage recent ideas from differentiable rendering
in computer graphics. Researchers developed compiler
frameworks to systematically differentiate arbitrary dis-
continuous programs [8, 10], and application-specific so-
lutions to efficiently differentiate specific types of discon-
tinuities in the rendering pipeline [9, 16]. Our method dif-
ferentiates synthesizer discontinuities by combining these
two approaches: we adapt the gradient rules from Aδ [10]
for use with discontinuous audio waveforms, and introduce
a specialized gradient rule for discrete categorical choices.

3. METHOD

This section describes our optimization pipeline for synth
parameter inference. Section 3.1 introduces our approach
to differentiating a synth. Section 3.2 considers loss func-
tion options. Finally Section 3.3 discusses how to explore
the multi-modality and avoid local minima.

3.1 Approximating the Gradient

We introduce a customized gradient, which includes dif-
ferentiating at discontinuities, avoiding plateaus with zero
gradient, and efficiently differentiating IIR filters. We first

FM
8 float (§3.1.1)

5 categorical (§3.1.2)

Equalizers &
Filters

15 float (§3.1.4)

ADSR
6 - 11 float
(§ 3.1.3)

White Noise Eq & Filters ADSR

Out

Figure 1. Summary for our FM synthesizer and how they
are differentiated. Dashed boxes and arrows are optional
components whose connection is decided per target.

introduce Aδ’s [10] gradient rule for differentiating dis-
continuities and discuss its usage in audio synthesizers in
Section 3.1.1, followed by our novel synthesizer-specific
gradient rules in Sections 3.1.2 - 3.1.4.

3.1.1 Differentiating Discontinuous Waveforms

We view discontinuities as compositions of the Heaviside
step function H , which evaluates to 0 on the one side of
a discontinuity, and 1 on the other side. The discontinuity
can be differentiated using the gradient rules from Aδ [10].
The key idea is to approximate the gradient as if the discon-
tinuous function is first convolved with a 1D box filter ϕ(t)
along the time dimension t. As an example, if H is con-
trolled by a continuous function c, we can differentiate the
convolution of H(c(t, θ)) with ϕ(t) by applying the Dirac
delta’s scaling property at the discontinuity td.

∂

∂θ

∫
H(c(t′, θ))ϕ(t− t′)dt′ =

∫
δ(c)

dc

dθ
ϕ(t− t′)dt′

=

∫
δ(t′ − td)

dc
dθ

|dcdt |
ϕ(t− t′)dt′ = ϕ(t− td)

dc
dθ

|dcdt |
|td

This can be approximated with two samples corresponding
to two ends of the box kernel ϕ, denoted as t+ and t−. The
box kernel ϕ(t−td) either evaluates to 0 or 1

t+−t− , depend-
ing on whether H(c(t, θ)) evaluates to the same or differ-
ent values at t+ and t−. Because c is continuous, dc/dθ
can be computed with AD, and its evaluation on either t+

or t− approximates that of td because Lipschitz continu-
ous functions are locally bounded. Finally, dc/dt is ap-
proximated by finite difference: c(t+,θ)−c(t−,θ)

t+−t− . Because
the audio signal already samples at a regular interval along
the time dimension (e.g. 48kHz), we conveniently set
the support of the box kernel to straddle the current sam-
ple and its neighbor. While the mathematical correctness
in [10] is derived assuming a single discontinuity in the
neighborhood, empirically the approximated gradient also
works well for signals with sparse multi-discontinuities,
such as when both the carrier and FM modulation waves
are square. However, if the sampling rate is too low and
causes aliasing, the Aδ rule is unable to correctly approxi-
mate the gradient as if the signal was antialiased.

Discontinuous waves such as square and sawtooth can
be constructed as periodic compositions of H . These
discontinuities are differentiated using the gradient rules
introduced in Aδ [10] that are analogous to the equa-
tion above, where θ might e.g., be the frequency of a
square wave. The gradient for the synthesizer parame-
ters are obtained by differentiating the loss term (Sec-
tion 3.2) using Aδ gradient rules, which reduce to tradi-
tional AD for continuous parameters, combined with our

customized gradients (Sections 3.1.2 - 3.1.4). This ap-
proach is more accurate than differentiating a discontinu-
ity naively smoothed with arbitrary linear or sigmoid tran-
sitions, especially when discontinuities are composited –
for example, the composition of discontinuous modulation
and carrier signals in an FM synthesizer.

3.1.2 Differentiating Discrete Categorical Choices

Section 3.1 discusses a simple scenario where the disconti-
nuity can be sampled along the time dimension. However,
the challenge remains for the discrete categorical choices,
because for fixed parameterization, the corresponding dis-
continuity H evaluates to a constant for any time t, there-
fore the discontinuity cannot be easily sampled.

This section proposes a stochastic approach to differen-
tiate the discrete parameters. We define a categorical node
g as taking input from a discrete parameter x with potential
choices A,B, ..., and outputs to a floating point value:

g(x;θ) =

gA(θ) if x == A

gB(θ) if x == B,

...

(2)

gA, gB are floating point functions associated with choices
A,B respectively, such as sine or square wave equations.

Our stochastic approach views the discrete parameter
x as a discrete random variable X with different samples
X at different time steps. Therefore g(X ;θ) is a random
variable as well. Throughout this section, we will use low-
ercase (e.g. x) for the synth parameters that need to be
optimized, calligraphic (e.g. X) for its corresponding ran-
dom variables, and regular uppercase (e.g. X) for sam-
pled values from the random variable. Note when X has
close to zero variance, it consistently samples the same
choice for every time step, therefore X can be viewed as
a constant identical to x. We further model g(X ;θ) sim-
ilarly to an argmax operator, where each potential choice
A,B, ... is associated with a “score” random variable, and
the output of g corresponds to the choice with the highest
“score”. Specifically, the “score” for choice A is modeled
as YA = µA + σA · U , where µA, σA are the mean and
standard deviation, and U is a uniform random variable
with zero mean and unit variance. For any two neighboring
samples with disagreeing categorical choices A and B, we
view the inconsistency as a discontinuous branching con-
ditioned on whether the sampled “score” Y for choice A
is greater than B or not: g = select(YA > YB , gA, gB).
By forming the discontinuity this way, the gradient wrt
µA/B , σA/B can be easily computed with the Aδ gradient
rules on the time domain. At convergence, the variance to
every “score” variable should be reduced to a small value
such that the categorical choice is sampled consistently.

The stochastic gradient rule works best when there is
a high correlation between the functions associated with
each choice gA, gB , etc. Intuitively, this allows gA, gB ,
... to form a smaller convex hull for the sampled output
g(X;θ), therefore reducing the variance of the gradient es-
timation. Therefore when differentiating categorical wave-

form choices, we align the phase of the wave functions
such that their correlation is maximized.

3.1.3 Avoiding Zero Gradient in Plateaus

Many synthesizer parameters have constraints on their val-
ues, such as the period for ADSR stages should be nonneg-
ative, and the filters’ cutoff frequencies should be within a
range to avoid singularities. A typical strategy for optimiz-
ing these constrained parameters in an unconstrained prob-
lem is to clamp the parameters: taking the min and max
against their upper and lower bounds. However, clamping
introduces another challenge for optimization: once the pa-
rameter clamped, the gradient wrt the parameter becomes
zero across an entire “out of bounds” plateau in the loss
function. For example, ∂max(θ,0)

∂θ = 0 whenever θ < 0.
We propose a heuristic workaround that avoids con-

strained parameters getting stuck at out-of-bound values,
via a customized gradient for the min (or max) operator f :

f =min(θ, C)

∂L

∂θ
=select(θ < C,

dL

df
,max(

dL

df
, 0)) (3)

Here the min operator compares with constant C, and we
assume the gradient wrt f is already computed as dL/df .
Note only the blue term in Equation 3 is different from
traditional AD. The gradient for the max operator is sim-
ilar to Equation 3, but < and max are replaced by > and
min respectively. Note this is only a heuristic workaround
for reverse-mode AD, and can not be used for forward-
mode because it computes dL/df before differentiating f .
Intuitively, our customized gradient will push the out-of-
bound θ back to its valid range whenever the gradient wrt
f wishes to bring the clamped value back to valid. We only
apply this workaround when constraining parameter values
against a constant, and generic min/max comparisons be-
tween two non-constants are still differentiated by AD.

3.1.4 Efficient IIR Filter Back-propagation

Infinite impulse response (IIR) filters are widely used in
synths to flexibly control the timbre. However, differenti-
ating the IIR filter introduces performance challenges be-
cause each output value at a certain time step recurrently
depends on every input/output value in previous steps, and
naively unrolling the gradient in the time domain is com-
putationally expensive. We, therefore, avoid the complex
dependency in the time domain by applying the filter in the
frequency domain similar to [3]. During optimization, we
only differentiate the multiplication between the unfiltered
spectrogram and the frequency response of the filters. Be-
cause most popular filters (e.g. Biquad, Butterworth) used
in synthesizers already have closed-form solutions for their
frequency responses, requiring a frequency domain proxy
does not restrict the expressiveness of this approach.

3.2 Loss Function

Unlike supervised deep-learning methods that could rely
on losses in the parameter space at the cost of collecting
the preset dataset, our optimization pipeline can only rely

on spectral and time domain losses. However, finding the
ideal loss that is consistent with human perception is chal-
lenging for several reasons. Firstly, standard losses such
as L2 on the (log mel) spectrogram only work well when
distances between two signals are smaller than just notice-
able difference (JND); but this is rarely the case during
our optimization, as we start with random initial guesses,
and the synthesizer may never even approach JND to an
out-of-domain target. Furthermore, although deep percep-
tual metrics have been developed for speech signals (e.g.,
[17]), they do not generalize well to music synths.

We propose a heuristic combination of several differ-
ent losses to approximate the perceptual similarity. The
intuition is that the gradient to the majority of the losses
should agree with human perception even if a few of them
are noisy. In addition to standard losses, we also include
the 1D Wasserstein distance [18] along the frequency di-
mension because of its wide applicability in matching dis-
tributions. Our final optimization loss is a weighted com-
bination of the Wasserstein distance, L2, log mel L2, and
a deep feature distance from the wav2clip model [19]. The
weights are chosen such that each component has a rel-
atively equal contribution. For the losses that work on a
spectrogram (L2, log mel L2, and Wasserstein), we use
three different window sizes (512, 1024, 2048) with 75%
overlap between windows. The deep feature loss also uses
the same window and hop sizes, but for efficiency, we
stochastically evaluate the model using one of the window
sizes per iteration. Additionally, because the deep feature
model takes time domain signal as input, we need to apply
inverse STFT to the spectrogram because of the frequency
domain IIR approximation described in Section 3.1.4.

3.3 Identifying Perceptually Similar Results

Gradient-based optimizations may converge to a variety of
local minima with different perceptual similarities to the
target. Our framework runs multiple random restarts to
avoid getting stuck at local minima. However, we are not
aware of a quantitative metric that reliably characterizes
the perceptual similarity for synthesizers [20, 21]. While
we use our weighted loss in Section 3.2 to provide a gradi-
ent for the optimization, its absolute value does not pre-
cisely correspond to perceptual similarity: perceptually
dissimilar results sometimes have lower loss than similar
results. Thus, manual selection is needed to choose the
best results. We also implement early termination to avoid
wasting compute at local minima, and also a mechanism to
identify good quality results after convergence.

Our early termination strategy is a generalization to the
intuition that good initializations have a higher probability
of good convergence. We generalize the heuristic to arbi-
trary iterations within the optimization, and terminate the
ones with bad results at the end of a sequence of predeter-
mined iterations. Additionally, because the weighted loss
in Section 3.2 cannot reliably characterize perceptual simi-
larity, we rely on the Pareto ranking [22] on multiple losses
to identify bad results. We terminate optimizations whose
Pareto rank on every non-deep-learning loss in Section 3.2

Figure 2. MOS listening test preference distribution.

is higher than ceil(0.5max_rank), where max_rank is the
maximum Pareto rank for the current population. Our im-
plementation checks for early termination every 100 iter-
ations, starting at iter 200, and we run every optimization
until full convergence and simulate the early termination.

We also note that when the optimization result is already
close to the target at convergence, its loss metrics calcu-
lated from a larger window size better resemble perceptual
similarity. Specifically, large L2 errors are usually bad. We
therefore further omit any converged result whose L2 loss
on the spectrogram with window size 2048 is 2x higher
than the lowest among all results, and finally rank the re-
maining results based on the weighted sum of Wasserstein,
L2, and log mel L2 on the same spectrogram.

4. VALIDATION

This section validates our proposed framework by optimiz-
ing the parameters of an FM synthesizer to match various
audio signals for musical instruments and special sound ef-
fects. All the targets are downloaded from the web and are
therefore out of domain. We first describe our FM synthe-
sizer in Section 4.1 and evaluation setup in Section 4.2,
then compare our method with two baselines through a
user study (Section 4.3). Section 4.4 also shows the op-
timization convergence. Finally, Section 4.5 demonstrates
the flexibility of our framework with a case study that mod-
ifies the synthesizer modules for better quality result.

4.1 Synthesizer Model

We choose an FM synthesizer as in Figure 1 following
the recommendation from a synthesizer expert, because it
is simple yet expressive enough to approximate most of
our target signals. It has one carrier signal modulated by
the weighted sum of four different signals. Each signal
is parameterized with a categorical choice from the four
base waveforms: sin, square, triangle, and sawtooth. Each
modulation signal is also parameterized by ratio and in-
dex, which controls the frequency and the magnitude of the
modulation. The FM signal will further be filtered by three
Biquad equalizers (low/high shelf, peak) parameterized by
their cutoff frequency, resonance and gain, and a pair of
Butterworth low/high pass filters parameterized by their
cutoff, bandwidth, and attenuation. After that, the filtered
signal is multiplied by an ADSR parameterized with the
duration of each stage, overall volume and that of sustain,
the starting time of the attack, and optionally the exponen-
tial decay of the release as well as the scale, frequency, and
phase to an optional AM envelope applied to attack, decay,
and sustain. Finally, filtered white noise can be optionally
added either by sharing the original ADSR or with a differ-

R
at
in
g

Figure 3. MOS listening test ratings (higher is better) for each of 16 target clips, grouped in 6 categories. Error bars corre-
spond to 2SEM (standard error of mean). To save space we shorten names: Marim(ba), Xylo(phone), and Count(down).

ent ADSR. Optional configurations are included based on
audio characteristics. For example, sustained sounds such
as woodwind and brass uses the AM envelope for ADSR,
and shorter sound such as percussion includes a filtered
white noise with separate ADSR. The overall model in-
cludes 40 (e.g. oboe) - 70 (e.g. crotale) parameters.

We implement the FM synthesizer in PyTorch to lever-
age its AD framework. The gradient discussed in Sec-
tion 3.3 is implemented as the cutomized backward pass,
and AD is used for the rest of the computation (e.g. ADSR,
STFT). Note this could also be generated by a compiler for
arbitrary synthesizers similar to Aδ [10].

4.2 Evaluation Setup

We compare with two baselines: traditional AD and zeroth
order optimization with genetic algorithm NSGA-II. AD
baseline uses the same optimization framework described
in Section 3, except that the gradient described in Sec-
tions 3.1.1 - 3.1.3 is replaced by traditional AD. The zeroth
order baseline does not require any gradient, and instead
uses the genetic algorithm NSGA-II [23] to search over
the parameter space. Because NSGA-II is multi-objective,
it directly finds Pareto optimal solutions to the various loss
functions in Section 3.2 without having to compute their
weighted sum as in gradient-based optimization.

We use 16 different target sounds, including 12 musical
instruments and 4 special sound effects listed in Figure 3.
For ours and AD, we run the experiment with 100 random
restarts for a maximum of 2000 iterations per restart. Note
that because of the early termination described in Sec-
tion 3.3, the actual number of iterations per restart varies.
We additionally supply the NSGA-II with a reasonable
sample range to the parameters, and run the algorithm with
100 population size and 2000 generations.

4.3 MOS Listening Test

As mentioned in Section 3.2, we have no perceptually-
accurate loss for comparing synth output to target audio.
Therefore, we rely on a Mean Opinion Score (MOS) test to
qualitatively compare results for our method and baselines.
For each method and target sound, we use the top 4 results
based on the Pareto ranking from Section 3.3 for testing,
resulting in 12 samples across 3 methods: ours, AD, and
NSGA-II. These clips may be heard in our supplemental
material.

Workers on Amazon Mechanical Turk (AMT) rate how
similar each result is to the target on a scale of 1 (bad) - 5
(identical). They are “master” workers, English-speakers
in the US, and are paid $20 per hour. Each worker is asked

to rate all 12 samples for two different targets. We further
embed four validation tests to filter out careless ratings:
two that are intentionally corrupted from the two targets to
be worse than any of the 12 samples to be rated, and two
that are identical to targets randomly chosen from all 16
targets. Therefore each worker rates 2× 12+4 = 28 sam-
ples for each assigned task called HIT (Human Intelligence
Task). In the end we collected 240 valid HITs where each
audio sample gets 30 ratings from 30 different workers.

We compute a preference score for each worker and
each instrument: we calculate a mean rating for each
method over the 4 rated samples. If Method 1 has a higher
score than Method 2, we say that Method 1 is preferred by
this worker. Figure 2 shows the preferences among pairs of
methods aggregated across all workers. Our method out-
performs both baselines by a larger margin, but AD is pre-
ferred more than NSGA-II. We compute the p-value for the
hypothesis: our average rating per user per instrument is
higher than that of the baseline. The p-value for the AD
baseline is 2e-8, and for the NSGA-II baseline is 3e-61.

We additionally report in Figure 3 the rating for each
target. Ours performs best when the FM synth is a good
emulation of the underlying instrument , such as for wood-
wind or brass. AD has similar ratings to ours more fre-
quently than NSGA-II, which is consistent with Figure 2.
Note in all cases when baselines have similar or higher rat-
ings than ours, the rating difference is always within the
error bar, indicating the preference is not statistically sig-
nificant. We characterize the cases where ours and base-
lines have similar ratings into two scenarios. The first one
is when the target is less challenging, and can be easily re-
constructed by various local minimums, such as Pop1 and
Pop2. The second scenario is when the FM synth cannot
nicely emulate the instrument, such as for Piano. There-
fore none of the methods can converge close enough to the
target, resulting in similarly low ratings.

4.4 Optimization Convergence

This section discusses the optimization convergence to
demonstrate how frequently each method converges in the
optimization. Figure 4 demonstrates two representative re-
sults: Horn for ours outperforms baselines and Xylophone
for ours performs similarly to baseline AD. In both plots,
all 100 populations for NSGA-II converge similarly be-
cause bad results are removed at the end of each genera-
tion. Unlike genetic algorithms, the 100 optimizations for
both ours and AD have diverging performances because
gradient-descent only explores the local parameter space
and may be stuck at a local minimum. The early termina-

W
ei

gh
te

d
Lo

ss

Simulated Time

Figure 4. Comparing the convergence of ours and base-
lines for the 100 random restarts of two tasks. The x-axis
reports simulated time: the number of function evaluations
scaled with the actual runtime for each method. The y-axis
reports the weighted loss for the optimization. For ours
and AD, each transparent line corresponds to a restart. For
NSGA-II, each transparent line plots the loss for the kth
population at each generation (k ∈ [1, 100]). The median
within all runs at a given time is shown as the solid line.

tion described in Section 3.3 conservatively removes some
of the local minimums, but more importantly reduces the
number of evaluations toward the end of the optimization
because fewer restarts are still active. Typically, the con-
vergence plot is consistent with the listening test result in
Figure 3, but with the exception of Oboe, where NSGA-
II converges to the lowest error, but its listening test per-
forms worse than ours. But this is simply due to the choice
of weights that combine multiple losses into one scalar:
NSGA-II converges to lower Wasserstein and higher L2
and log mel L2, thus it is not Pareto superior to ours.

4.5 Case Study: Modify Synthesizer Modules

This section uses the Xylophone target as a case study
to demonstrate that our white box method can be flexi-
bly combined with user expertise to modify the synthesizer
components to improve the quality of generated audio.

Similar to other targets, Xylophone is initially approxi-
mated by the synth model described in Section 4.1. It uses
filtered white noise with independent ADSR to model the
strike at the start of the sound. However, the optimization
result is not ideal, specifically, the beginning of the audio
sounds very different from the target. This can be verified
by Figure 5, which compares the spectrogram for the first
0.07s of the sound between the target (a) and the optimiza-
tion(b): the optimization has a longer attack stage.

We ask a synthesizer expert to identify the potential
cause of the inconsistency: instead of using filtered white
noise, the beginning of the audio may be better approxi-
mated by an impulse with IIR filters. We, therefore, use
the following impulse component to replace the original
filtered white noise. We first manually calibrate the starting
time of the Xylophone within the target audio, and set the
impulse at that location. Similar to the white noise, the im-
pulse is also filtered by three Biquad equalizers (low/high
shelf and peak) and a pair of low/high-pass Biquad fil-
ters. Because the impulse is not static, we have to opti-
mize the IIR parameters in the time domain rather than the
frequency domain as in Section 3.1.4. Therefore we avoid
using any Butterworth filters mentioned in Section 4.1 for
a faster backward pass. Because the original optimization

Figure 5. Visualizing the spectrogram for the Xylophone
target (a), original optimization (b) using filtered white
noise described in Section 4.1, and finetune result (c) using
an impulse module described in Section 4.5. The spectro-
gram is computed with window size 512 and hop size 128.

nicely approximates the target except at the beginning, we
only compute the loss for the first 2048 samples, and keep
all the FM-related parameters fixed to only optimize the
newly added IIR parameters, the scale of the impulse, and
the original ADSR parameters that are initialized with their
previously optimized values. To better characterize the fil-
tered impulse signal, we use smaller spectrogram window
sizes: 128, 256, and 512 with 75% overlap. Figure 5(c)
shows the spectrogram of the finetune result that indeed
better matches the attack stage of the target. Perceptually
it also sounds better: please refer to supplemental material.

Note the finetuning process described in this section
cannot be supported by deep learning methods without re-
collecting a new dataset and re-training the model for any
change in the synthesizer design. Because our method di-
rectly optimizes the white-box programs, we can flexibly
add the synthesizer components and reuse any parameters
from previous optimizations.

5. CONCLUSION AND FUTURE WORK

This paper proposes to find synthesizer parameter settings
that best match a given target sound by directly differen-
tiating the white-box synthesizer program. We adapt and
extend recent methods from differentiable rendering to dif-
ferentiate the discontinuous and discrete components of the
synthesizer, and design an optimization pipeline to solve
the problem through gradient descent. We validate our
method through user studies on Mechanical Turk, where
our result is preferred over baselines by a large margin.
We further demonstrate the benefit of differentiating white-
box programs through a case study, where we can flexibly
modify and finetune synthesizer components.

This work suggests several directions for future re-
search. Our framework only searches for synthesizer pa-
rameters, and leaves patch connections fixed. Neverthe-
less, the gradient rules described in Section 3.1 provide a
potential solution. It could be easily extended to optimize
binary connection decisions, therefore the general patch
connection could be optimized if viewed as compositions
of binary choices. Additionally, because no perceptually
accurate loss exists for music, our framework relies on a
combination of various loss terms (Section 3.2) together
with a Pareto rank based early termination strategy to im-
prove convergence. Future work on perceptual similarity
could simplify and improve our process.

6. REFERENCES

[1] M. J. Yee-King, L. Fedden, and M. d’Inverno, “Au-
tomatic programming of vst sound synthesizers using
deep networks and other techniques,” IEEE Transac-
tions on Emerging Topics in Computational Intelli-
gence, vol. 2, no. 2, pp. 150–159, 2018.

[2] K. Tatar, M. Macret, and P. Pasquier, “Automatic syn-
thesizer preset generation with presetgen,” Journal of
New Music Research, vol. 45, no. 2, pp. 124–144,
2016.

[3] N. Masuda and D. Saito, “Synthesizer sound matching
with differentiable dsp.” in ISMIR, 2021, pp. 428–434.

[4] F. Caspe, A. McPherson, and M. Sandler, “Ddx7: Dif-
ferentiable fm synthesis of musical instrument sounds,”
arXiv preprint arXiv:2208.06169, 2022.

[5] G. Le Vaillant, T. Dutoit, and S. Dekeyser, “Im-
proving synthesizer programming from variational au-
toencoders latent space,” in Proceedings of the 24th
International Conference on Digital Audio Effects
(DAFx20in21), Sep. 2021.

[6] O. Barkan, D. Tsiris, O. Katz, and N. Koenigstein,
“Inversynth: Deep estimation of synthesizer parameter
configurations from audio signals,” IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing,
vol. 27, no. 12, pp. 2385–2396, 2019.

[7] P. Esling, N. Masuda, A. Bardet, R. Despres et al.,
“Universal audio synthesizer control with normalizing
flows,” arXiv preprint arXiv:1907.00971, 2019.

[8] S. Bangaru, J. Michel, K. Mu, G. Bernstein, T.-M.
Li, and J. Ragan-Kelley, “Systematically differentiat-
ing parametric discontinuities,” ACM Trans. Graph.,
vol. 40, no. 107, pp. 107:1–107:17, 2021.

[9] S. Bangaru, T.-M. Li, and F. Durand, “Unbiased
warped-area sampling for differentiable rendering,”
ACM Trans. Graph., vol. 39, no. 6, pp. 245:1–245:18,
2020.

[10] Y. Yang, C. Barnes, A. Adams, and A. Finkelstein,
“Aδ: Autodiff for discontinuous programs - applied to
shaders,” in SIGGRAPH, to appear, Aug. 2022.

[11] J. Shier, G. Tzanetakis, and K. McNally, “Spiegelib:
An automatic synthesizer programming library,” in Au-
dio Engineering Society Convention 148. Audio En-
gineering Society, 2020.

[12] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan,
O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and
K. Kavukcuoglu, “Wavenet: A generative model for
raw audio,” arXiv preprint arXiv:1609.03499, 2016.

[13] J. Engel, C. Resnick, A. Roberts, S. Dieleman,
M. Norouzi, D. Eck, and K. Simonyan, “Neural audio
synthesis of musical notes with wavenet autoencoders,”
in International Conference on Machine Learning.
PMLR, 2017, pp. 1068–1077.

[14] J. Engel, L. Hantrakul, C. Gu, and A. Roberts,
“Ddsp: Differentiable digital signal processing,” arXiv
preprint arXiv:2001.04643, 2020.

[15] S. Shan, L. Hantrakul, J. Chen, M. Avent, and
D. Trevelyan, “Differentiable wavetable synthesis,” in
ICASSP 2022-2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2022, pp. 4598–4602.

[16] T.-M. Li, M. Lukáč, G. Michaël, and J. Ragan-Kelley,
“Differentiable vector graphics rasterization for editing
and learning,” ACM Trans. Graph. (Proc. SIGGRAPH
Asia), vol. 39, no. 6, pp. 193:1–193:15, 2020.

[17] P. Manocha, A. Finkelstein, R. Zhang, N. J. Bryan,
G. J. Mysore, and Z. Jin, “A differentiable perceptual
audio metric learned from just noticeable differences,”
in Interspeech, Oct. 2020.

[18] Wikipedia contributors, “Wasserstein metric —
Wikipedia, the free encyclopedia,” 2023, [On-
line; accessed 15-April-2023]. [Online]. Avail-
able: https://en.wikipedia.org/w/index.php?title=
Wasserstein_metric&oldid=1147354544

[19] H.-H. Wu, P. Seetharaman, K. Kumar, and J. P.
Bello, “Wav2clip: Learning robust audio representa-
tions from clip,” in ICASSP 2022 - 2022 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2022.

[20] F. Pachet and J.-J. Aucouturier, “Improving timbre
similarity: How high is the sky,” Journal of negative
results in speech and audio sciences, vol. 1, no. 1, pp.
1–13, 2004.

[21] K. Siedenburg and D. Müllensiefen, “Modeling timbre
similarity of short music clips,” Frontiers in psychol-
ogy, vol. 8, p. 639, 2017.

[22] P. Sitthi-Amorn, N. Modly, W. Weimer, and
J. Lawrence, “Genetic programming for shader
simplification,” ACM Trans. Graph., vol. 30,
no. 6, p. 1–12, dec 2011. [Online]. Available:
https://doi.org/10.1145/2070781.2024186

[23] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A
fast and elitist multiobjective genetic algorithm: Nsga-
ii,” IEEE transactions on evolutionary computation,
vol. 6, no. 2, pp. 182–197, 2002.

