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Abstract

Providing computer models that accurately characterize the appearance of a wide class of materials

is of great interest to both the computer graphics and computer vision communities. The last ten

years has witnessed a surge in techniques for measuring the optical properties of physical materials.

As compared to conventional techniques that rely on hand-tuning parametric light reflectance

functions, a data-driven approach is better suited for representing complex real-world appearance.

However, incorporating these representations into existing rendering algorithms and a practical

production pipeline has remained an open research problem.

One common approach has been to fit the parameters of an analytic reflectance function to

measured appearance data. This has the benefit of providing significant compression ratios and

these analytic models are already fully integrated into modern rendering algorithms. However,

this approach can lead to significant approximation errors for many materials and it requires

computationally expensive and numerically unstable non-linear optimization.

An alternative approach is to compress these datasets, using algorithms such as Principal

Component Analysis, wavelet compression or matrix factorization. Although these techniques

provide an accurate and compact representation, they do have several drawbacks. In particular,

existing methods do not enable efficient importance sampling for measured materials (and even

some complex analytic models) in the context of physically-based rendering systems. Additionally,

these representations do not allow editing.

In this thesis, we introduce techniques for acquiring and representing real-world material ap-

pearance that address these research challenges. First, we introduce the Inverse Shade Trees (IST)

framework. This is a conceptual framework for representing high-dimensional measured appear-

ance data as a tree-structured collection of simpler masks and functions. We use it to provide an

intuitive representation of the Spatially-Varying Bidirectional Reflectance Distribution Function

(SVBRDF) that is automatically computed from measured data. Like other data-driven tech-

niques, ISTs are more accurate than fitting parametric BRDFs to measured appearance data, but

are intuitive enough to support direct editing. We also introduce a factored model of the BRDF

optimized to support efficient importance sampling in the context of global illumination rendering.

We demonstrate that our technique provides more efficient sampling than previous methods that

sample a best-fit parametric model.
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Chapter 1

Introduction

1.1 Material Appearance

Providing computer models that accurately characterize the optical properties of different materials

is of great interest to both the computer graphics and computer vision communities. Indeed, a

material’s appearance depends on the way in which it absorbs, transmits and reflects incident

light energy. For example, consider the differences in the appearance of red plastic, copper, satin,

brushed aluminum and chalk.

Light that strikes an opaque material is either absorbed or reflected back into the surrounding

environment. This is true for most plastics, metals and many textiles. This is not true for

translucent materials like milk, human skin and marble, in which cases light is scattered below the

surface and then re-emitted into the environment at a different surface position. In both cases,

a different amount (and color) of light is reflected into each possible outgoing direction. This

distribution of reflected light, which depends on the direction of incident illumination, results in

a 4D directional component of surface reflectance. This directional dependence is responsible for

our perception of certain materials being perfect mirrors while others are best described as glossy,

polished, matte or dusty. In general, the reflectance and transmittance of a material will also vary

across its surface. For example, consider the spatial component of the reflectance of rusting metal,

a marble chessboard, a bruised banana, oak wood or roof shingles.

The directional component of surface reflectance can be specified with the Bidirectional Re-

1



Figure 1.1: One frame from an image sequence rendered at 30 hertz using consumer graphics
hardware. The different materials in this complex scene were specified with analytic BRDFs and
texture maps.

flectance Distribution Function (BRDF) [82]. Ignoring wavelength-dependence, the BRDF is a 4D

function that defines the amount of light transported between any pair of incident and reflected

directions with each represented as a unit-length vector on the hemisphere. Traditionally, the

BRDF has been represented with analytic expressions based on phenomenological hypotheses or

derived from the physical properties of light-matter interaction for a particular class of materials.

These analytic BRDFs are typically designed to have parameters that correspond to salient aspects

of the material’s appearance. One example is the shininess parameter of a dielectric represented

with the widely popular Phong BRDF [89].

The spatial component of reflectance has traditionally been modeled by mapping a 2D function

onto the surface of a 3D shape. These functions are either procedurally specified or stored in raster

images called texture maps. They can be either derived from natural images or created by hand.

Indeed, designers familiar with existing analytic BRDFs and texture mapping techniques can
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Rusted Metal Greeting Card Wet Sand Polished Wood

Figure 1.2: Real-world materials with complex appearance not easily modeled using existing ana-
lytic BRDFs and hand-generated texture maps. Image credits: Casey Danek (rusted metal), Jason
Lawrence (dove greeting card), QT Luong (wet sand at sunset), Ray Ford (mahogany compote).

produce quite compelling synthetic imagery (see Figure 1.1). Additionally, these methods are fully

integrated into state-of-the-art interactive and physically-based rendering algorithms and, due to

their small number of intuitive parameters, allow direct editing. Nevertheless, there are still many

real-world materials whose complex appearance cannot be easily modeled using these techniques

(see Figure 1.2).

Over the last ten years, several techniques have been developed for measuring the optical

properties of real-world materials. In general, this requires recording thousands of images of a

material sample from different viewing directions and under illumination from varying incident

angles. Figure 1.3 shows a few images from such a dataset of a green and gold wallpaper mate-

rial. These images can be stored in a large table and subsequent synthesis involves performing

simple look-ups within this table. Although these data-driven tabular models provide the most

accurate representation of a material’s appearance, they require expensive measurement devices,

time-consuming acquisition and careful calibration of the raw input. More importantly, the large

size of these datasets presents several research challenges related to incorporating them into ex-

isting interactive and physically-based rendering algorithms and providing a practical production

pipeline.

1.2 Fitting Parametric Models to Measured Data

One common approach to incorporating measured appearance data into computer-generated im-

ages has been to fit the parameters of an analytic BRDF model to the measurements. This

provides a useful representation because most analytic BRDFs are already fully integrated into ex-

isting interactive and physically-based rendering algorithms and commercially-available production
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Figure 1.3: Three images (from a set of 5,000) of a wallpaper material taken at different viewing
positions and under illumination from different incoming directions. These images provide a data-
driven representation of this material’s appearance.

software.

Nevertheless, fitting measured appearance data to an analytic model can lead to significant

approximation errors for many materials (see, for example, Ngan et al. [81] and Chapters 4 and 5).

This fitting process also requires computationally expensive and numerically unstable non-linear

optimization and is susceptible to undesirable local minima.

1.3 A Data-Driven Approach

An alternative approach is to compress these tabular datasets using basis function decompo-

sition [21] and standard matrix rank-reduction algorithms like Principal Component Analysis

(PCA) [53, 30, 106], Independent Component Analysis (ICA) [102], k-means clustering [66], and

Non-Negative Matrix Factorization (NMF) [16]. Although existing techniques are effective in pro-

viding an accurate and compact representation they do not allow several important operations. In

particular, these representations do not enable efficient importance sampling for the materials in a

3D scene in the context of physically-based rendering algorithms. Additionally, these compressed

representations cannot be directly edited.

1.4 Contributions

This thesis addresses several open research problems related to incorporating measured appearance

data into physically-based and interactive rendering algorithms. We also incorporate the design

goal of editability, making these representations useful in a practical production pipeline.
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We introduce the Inverse Shade Trees (IST) framework. This is a conceptual framework for

representing high-dimensional measured appearance data as a tree-structured collection of simpler

masks and functions. Within this framework, we develop a new data-driven representation of the

spatially-varying BRDF (SVBRDF) that is automatically computed from measured data. Like pre-

vious data-driven techniques, our shade trees are compact enough to support interactive rendering

and are more accurate than fitting a parametric BRDF to measured appearance data. Unlike pre-

vious data-driven models, however, they contain intuitive components that can be edited, allowing

a designer to change both the spatial and directional behavior of surface reflectance. Within the

IST framework, we also introduce a representation of the spatial component of the Bidirectional

Subsurface Scattering Reflectance Distribution Function (BSSRDF) for translucent materials. Al-

though this representation is not optimized to support editing, it provides a more compact and

accurate representation than previous approaches. We evaluate the performance and accuracy of

both of these representations on real-world data.

We also introduce a factored model of the BRDF optimized to support efficient importance

sampling in the context of global illumination rendering. We demonstrate that our technique is

more efficient than previous methods that sample a best-fit parametric model. Lastly, we introduce

a representation designed for compressing and sampling measured functions of arbitrary dimension.

We show this representation is useful for sampling image-based illumination and reflectance within

a physically-based rendering systems.

1.5 Overview

Chapter 2 contains background material related to appearance models and rendering algorithms.

We first review the radiometry of several important surface reflectance functions and discuss ex-

isting parametric models designed to represent the appearance of various classes of materials. We

then discuss the role texture maps and shade trees play in specifying complex appearance functions

before reviewing existing techniques for acquiring and representing real-world material appearance.

We conclude with a brief overview of the principles behind physically-based and interactive ren-

dering algorithms.

We discuss our pipeline for acquiring the spatially-varying surface reflectance of real-world ma-
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terials in Chapter 3. This includes a description of our acquisition setup along with the techniques

we use for geometric and photometric calibration of a camera and light-source pair. We list the

qualitative properties of the five datasets we have acquired along with their respective size and

sampling densities. This chapter ends with a discussion of alternative acquisition setups.

In Chapter 4 we introduce the Inverse Shade Tree (IST) framework. This is a framework for

representing high-dimensional measured appearance functions as a tree-structured collection of

simpler masks and functions. We describe how to compute intuitive shade trees of the SVBRDF

from measured data by computing a sequence of matrix factorizations. Motivated by a review

of existing factorization algorithms, we introduce a new algorithm based on linearly constrained

least squares. This algorithm, which we call Alternating Constrained Least Squares (ACLS), can

incorporate both general and domain-specific constraints, making it suitable for automatically

computing intuitive decompositions. We demonstrate how these shade trees support interactive

rendering and editing and compare their accuracy with previous techniques that fit a parametric

BRDF to the input measurements. Within this shade tree framework, we also introduce a novel

representation of the spatial component of the Bidirectional Subsurface Scattering Reflectance

Distribution Function (BSSRDF). This representation is not optimized to support editing, but it

is more compact and accurate than previous approaches. This work originally appeared in [59, 86].

In Chapter 5 we introduce a new factored model of the BRDF designed to provide efficient

importance sampling in the context of physically-based rendering algorithms. We compare the

efficiency and accuracy of this representation to previous techniques that draw samples from a

best-fit parametric model. We also introduce a representation that provides compression and

sampling of arbitrary high-dimensional measured functions. This representation is based on the

Douglas-Peucker polyline approximation algorithm [27] and is useful for compressing and sampling

image-based illumination and measured BRDFs. We compare the sampling efficiency provided by

our technique to existing methods. The work was originally published in [60, 61].

In Chapter 6 we conclude with a discussion of our contributions and suggest several possible

directions of future research in this area.
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Chapter 2

Background and Related Work

2.1 The Bi-directional Reflectance Distribution Function

A material’s appearance is related to the way it absorbs, transmits and reflects incident light.

For opaque materials, we can assume that the light arriving at a point on its surface is absorbed

and/or reflected back into the surrounding environment. Examples of opaque materials include

metals, plastics, painted surfaces and some textiles. Their appearance can be characterized by a

function that records the amount of light energy reflected from any incoming direction into any

outgoing direction for a given wavelength. This function is called the Bi-directional Reflectance

Distribution Function (BRDF) [82]. For computational efficiency, we typically represent colorized

functions as a projection onto a tristimulus color space (e.g. RGB). Therefore we can ignore the

dependence on wavelength and the BRDF is a 4D function that maps any pair of directions over

the unit hemisphere to a non-negative real number:

fr(ωi, ωo) : Ω+ × Ω+ → R+ (2.1)

where fr is the BRDF, Ω+ is the upper unit hemisphere and ωi and ωo are unit-length vectors of

the incoming and reflected directions respectively. We will sometimes write the BRDF in terms of

the spherical angles of the incoming and reflected directions: fr(ωi, ωo) = fr(θi, φi; θo, φo).

The BRDF was introduced in the field of radiometry [82] and is the ratio of outgoing radiance
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Figure 2.1: The geometry of the BRDF domain labeled according to our notation.

(L) along the reflected direction to the irradiance (E) arriving at the surface from the incident

direction:

fr(ωi, ωo) =
dL(ωo)

dE(ωi)
. (2.2)

Recall that radiance is the amount of light energy traveling along a ray through space and is

proportional to the power (Φ) per solid angle (ω) per area perpendicular to the ray’s direction (A)

and is measured in units of W/m2/sr:

L =
dΦ

dAdω
. (2.3)

Irradiance is the incident flux per unit area and can be thought of as the amount of energy

striking an oriented surface patch from a particular direction:

E(ωi) = L(ωi)cos(θi)dωi. (2.4)

Because irradiance is measured in units of W/m2, the units of the BRDF are inverse steridians,

sr−1.

Of great interest to the field of computer graphics is the fact that the BRDF can be used to

compute the amount of radiance that is reflected from any incoming direction into any outgoing

direction:
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L(ωo) = fr(ωi, ωo)L(ωi) cos θi, (2.5)

where cos θi converts the radiance arriving from ωi into the irradiance incident to the surface. Our

notation, along with the geometry of the BRDF domain, is illustrated in Figure 2.1.

The fact that the BRDF can take only non-negative values follows from the laws of physics:

it makes no sense to consider a surface reflecting a negative amount of light. Another physical

property of light is that it is reciprocal. This means the BRDF is invariant to exchanging the

incident and reflected directions:

fr(ωi, ωo) = fr(ωo, ωi). (2.6)

As with any physical system, the BRDF conserves energy. In other words, the sum of reflected

light cannot exceed the amount of energy incident to the surface:

∫

Ω+

fr(ωi, ωo)cosθodωo ≤ 1. (2.7)

We will make use of these properties in Chapter 4 when we derive an algorithm for factoring a

matrix that contains measured BRDF data.

There is an important class of materials with scattering functions that do not require the full

four degrees of freedom of the BRDF. For many materials, the amount of light reflected between

any pair of directions is invariant to rotation around the surface normal. These isotropic materials

include many metals, plastics and painted surfaces. They can be parameterized with respect to a

3D domain:

fr(θi, φi, θo, φo) = fr(θi, θo, φi − φo). (2.8)

Materials whose reflectance does depend on the orientation of the surface around the normal

direction are called anisotropic. Their reflectance requires the complete 4D BRDF domain and

examples include brushed aluminum, most fabrics, wood and human hair.

It is convenient to visualize 2D slices of the BRDF for a fixed incoming (or reflected) direction

as shown in Figure 2.2. However, we will commonly visualize BRDFs with lit sphere images similar
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Figure 2.2: Slices of a BRDF at different incoming (or reflected) directions. These visualizations
show the magnitude of light reflected into each direction over the upper hemisphere for a fixed
incident direction. In this case, the region centered around the mirror direction reflects more light
than at other regions. This corresponds to a material having a specular highlight.

to those in Figure 2.3.

It is important to keep in mind that the BRDF is appropriate for characterizing the appearance

of only a certain class of materials. For example, representing translucent materials or materials

with time-varying optical properties requires using more general scattering functions. Additionally,

we will only consider interference that occurs at scales much larger than the wavelength of visible

light. A more complete treatment of the wave properties of light would be necessary for recovering

effects like thin-film interference, dispersion or diffraction.

2.2 Parametric BRDF Models

Computer models of material appearance should be accurate, concise and inexpensive to evaluate.

Traditionally, this has been accomplished by using analytic expressions of the BRDF that depends

on a small number of parameters. These parametric models are either phenomenological or derived

from the physics of light-matter interaction at various scales for different classes of materials. In

both cases, the underlying parameters generally relate to salient aspects of a material’s appear-

ance. For example, we will see that different parameters control perceptual properties of material

appearance like its “glossiness” and “color” and how it behaves as the incident and reflected di-

rections approach grazing angles. Using these parameters, a designer is able to directly edit the

properties of a BRDF. We review the most important parametric BRDF models in this section.

2.2.1 The Lambertian BRDF

One of the earliest BRDFs is based on Lambert’s law [58]. It states that an equal amount of light

is reflected from a surface for every pair of incoming and outgoing directions:
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fr(ωi, ωo) =
kd

π
, (2.9)

where kd is the single parameter of this BRDF and relates to the surface albedo of the material.

Recall that fr is a colorized function so kd is technically a function of wavelength, but is typically

represented with a three-tuple in a tristimulus color space (e.g. RGB or HSV).

Although perfectly Lambertian surfaces do not exist in nature, this BRDF is useful for approx-

imating the appearance of dusty or matte materials. It is also commonly used to represent the

diffuse component of surface reflectance. In other words, a certain percentage of the light striking

a surface is immediately reflected back into the environment, but some light is transmitted below

the surface. This light is scattered among the particles suspended within the material before being

re-emitted into the environment. After being scattered multiple times, this light has a roughly

Lambertian distribution and is commonly modeled by Equation 2.9. The light that is reflected

directly off the surface is called the specular component. The next section introduces a popular

phenomenological model intended to represent the specular reflectance of dielectric materials.

2.2.2 The Phong BRDF

Another ubiquitous parametric model is the Phong BRDF named after its inventor Bui Tuong

Phong [89]:

fr(ωi, ωo) = ks
n + 2

2π
cosnα, (2.10)

where α is the angle between the surface normal n and the vector halfway between ωi and ωo

(also called the half-angle vector h) as shown in Figure 2.1. The parameter ks defines the mag-

nitude and color of the overall reflectance and n is a scalar value that controls the width of the

specular highlight. Increasing n sharpens the specular highlight and produces a glossier or shinier

appearance. Decreasing n widens the specular highlight and produces a more matte appearance.

Figure 2.3 demonstrates the effect of this parameter on the material appearance.

Equation 2.10 is not the original form proposed by Phong in 1975. We have incorporated two

modifications. We scale the BRDF by n+2
2π as proposed by [67]. This is necessary for the BRDF to

conserve energy (the original model did not conserve energy). Second, the original model defined
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n = 49 n = 83 n = 142 n = 350

Figure 2.3: Images rendered using the Phong model, showing the effect of the glossiness parameter
n on the material’s appearance. Note that the diffuse component of the surface reflectance is
modeled with the Lambertian BRDF where kd = 0.2.

α as the angle between ωo and the direction of perfect mirror reflection from ωi (i.e. the vector r

in Figure 2.1). Defining α as the angle between the normal and half-angle vector as done here was

originally proposed by [9]. These two versions of the BRDF are known as the “R dot V” variant

and physically-plausible “H dot N” variant or Blinn-Phong model respectively. Recent work has

demonstrated that defining α with respect to the half-angle vector produces a better match to the

reflectance of real-world materials [81].

Like the Lambertian BRDF model, the Phong BRDF is a phenomenological model. In other

words, it was not derived from the physical laws governing light-matter interaction. Instead it is

one possible mathematical explanation of the phenomena we observe when light strikes a particular

type of surface. Specifically, the Phong model is intended to describe the specular reflection of

plastic and other dielectric surfaces.

Typically the Phong and Lambertian BRDFs are used together to model the specular and

diffuse components of a material’s reflectance respectively (see Figure 2.3). The main benefit of

this approach (referred to simply as the “Phong reflectance model”) is its computational simplicity.

Evaluating this model requires only 5 additions, 6 multiplications and 1 exponentiation (assuming

the simplest functional form). Due to its simplicity, efficient rendering algorithms and widely

adopted graphics APIs have been designed around the Phong reflectance model. The fact that it

is still ubiquitous today (30 years after it’s introduction) indicates its practical utility.

The main drawback of the Phong model is its lack of visual fidelity. The appearance represented

by this model tends to have a “plastic” look regardless of the designer’s intent–indeed it was

intended to represent plastic materials. Not surprisingly, this simple mathematical formula lacks

sufficient expressiveness to capture the appearance of many different materials. We will review
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several additional parametric BRDF models that attempt to address this shortcoming. In each

case they achieve a greater level of realism at the expense of greater computational complexity.

2.2.3 The Cook-Torrance-Sparrow BRDFs

Some of the earliest analytic BRDFs derived from the physics of light-matter interaction are the

Torrance-Sparrow [101] and Cook-Torrance [20] models. They are based on a microfacet theory

that describes a surface as a collection of tiny Fresnel mirrors oriented at random angles with

respect to the average surface normal over a small area. Light traveling along ωi toward a point x

on the surface can undergo three possible events:

• It is blocked by a microfacet before it arrives at x. This is called shadowing.

• It is blocked by a microfacet after being reflected from x. This is called masking.

• It enters the environment after reflecting off the Fresnel mirror at x.

Within this framework the spectral distribution of light reflected into ωo is proportional to the

number of microfacets with an orientation parallel to ωo +ωi, the reflectance off each appropriately

oriented microfacet and the number of incoming rays that were neither shadowed nor masked. I

will refer the reader to [101, 20] for the derivation of the aggregate surface reflectance and instead

list the final Cook-Torrance BRDF:

fr(ωi, ωo) = d
kd

π
+ s

F

π

DG

(n · ωi)(n · ωo)
, (2.11)

where d and s and scalar valued parameters that control the relative amount of diffuse and specular

reflectance, kd is the surface albedo, F is a Fresnel term that describes how light is scattered from

each smooth microfacet, D controls the distribution of the surface microfacets and G is a geometry

term that accounts for the shadowing and masking effects. The geometry term is defined as:

G = min

[

1,
2(n · h)(n · ωo)

(ωi · ωo)
,
2(n · h)(n · ωi)

ωo · h

]

, (2.12)

where h is the half-angle vector defined as h = ωo+ωi

|ωo+ωi|
and n is the surface normal. Note that this

term approaches 1 as ωi = ωo and 0 as ωi and ωo point away from one another. For a detailed

derivation consult [101].
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The D term defines the statistical distribution of microfacet orientations. The two most com-

mon distributions are the Gaussian distribution whose use in this context was first proposed by

Blinn [9, 10]:

D = ce−(α/m)2 , (2.13)

and the Beckmann distribution [7] designed to characterize the distribution of microfacets for rough

surfaces:

D =
1

m2cos4α
e−[(tanα)/m]2 . (2.14)

In both cases, the parameter m defines the RMS slope of the distribution and consequently controls

the shape of the specular highlight (this is akin to the n parameter of the Phong BRDF). A larger

or smaller value of m leads to a broader or sharper fall-off respectively. The value α is the angle

made by the surface normal n and half-angle vector h (i.e. cos α = n · h). In Equation 2.13, c is

an arbitrary constant that should be set to guarantee energy conservation. One advantage of the

Beckmann distribution is that it does not have such a constant at the expense of requiring more

effort to compute.

Some surfaces have multiple scales of roughness. For example, a common Christmas decoration

is a colored metallic sphere coated with a shiny glaze. For these objects, light is reflected off both

the glaze and the underlying metallic paint. This results in the material’s appearance having two

specular highlights of different widths. It is appropriate to model these type of phenomena with a

weighted combination of multiple distributions:

D =
N

∑

j=1

wjD(mj), (2.15)

where wj are the weights for each distribution (
∑N

j=1 wj = 1) and the D(mj) are the microfacet

distribution functions each with RMS slope of mj . As discussed in Section 2.7 fitting multiple

reflectance lobes to measured data is numerically unstable.

The Fresnel term F describes the dependency of surface reflectance on the angle of incident illu-

mination. It is based on the Fresnel equation from classical optics which relates surface reflectance
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to a material’s index of refraction (n), extinction coefficient (k) and the angle of incoming light

(θi). Note that n and k both depend on wavelength. Because these values are not readily available

for most materials, Cook and Torrance [20] propose a simplification that depends only on a mate-

rial’s reflectance at normal incidence under the assumption that k = 0. Although this is true for

dielectrics, most metals have a non-zero extinction coefficient. Nevertheless, the simplified Fresnel

equation provides a suitable approximation of the angular and wavelength dependence of surface

reflectance for many materials:

F =
1

2

(g − c)2

(g + c)2

{

1 +
[c(g + c) − 1]

2

[c(g − c) + 1]2

}

, (2.16)

where c = ωo · h and g2 = n2 + c2 − 1. Equation 2.16 can be used to extrapolate the reflectance

at normal incidence (F0) to values of F at arbitrary incident directions (see [20] for details).

Because F0 has been measured for most materials [103, 104, 105], this provides a useful approach

for modeling the reflectance of many real-world materials.

In general, the reflectance of dielectrics varies greatly with θi. They tend to reflect a greater

amount of light from their surfaces as the illumination angle approaches 90 degrees. This is the

reason that plastics exhibit mirror-like behavior when viewed from near grazing directions while

being largely diffuse when viewed from above. A nice exercise is to compare the appearance of a

polished wooden table-top when viewed from above and from a near-grazing angle.

Conductors, on the other hand, reflect a more constant amount of light over the range of

incident directions. Unlike dielectrics, however, they exhibit colorized specular highlights with

hues that can vary with viewing and illumination angle. Along with increased specular reflectance

toward grazing and non-perfect Lambertian diffuse reflectance, these color shifts are collectively

referred to as Fresnel effects. They are faithfully reproduced by the Cook-Torrance model as seen

in Figure 2.4.

Because it is based on the physics of light-matter interaction, the Cook-Torrance BRDF is able

to represent a wider class of materials than the Phong or Lambertian models. However, this also

makes it more computationally expensive to evaluate. Not until recent improvements in consumer

graphics hardware has the Cook-Torrance model been successfully incorporated into interactive

rendering algorithms [44].
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Figure 2.4: The vase’s appearance is modeled with a Cook-Torrance BRDF. The scene is lit by two
white point light sources. Left: the Fresnel term is set to resemble copper-colored plastic. Right:
the Fresnel term is set to resemble copper metal. Note the colorized highlight in the metal vase.
This is a key property of the appearance of conductors that is represented by the Cook-Torrance
BRDF. Figure reproduced from [20].

One key drawback of the Cook-Torrance BRDF is that it cannot be directly sampled in the

context of physically-based rendering algorithms. This follows from the fact that integrating Equa-

tion 2.11 over ωi for a fixed ωo does not have a closed-form solution. We propose a data-driven

representation that enables sampling of arbitrary analytic and measured BRDFs in Chapter 5.

Although the Cook-Torrance BRDF can represent a wider class of materials than the Phong

model, there are many optical properties that it cannot express as well. First, it is intended to

represent only isotropic materials. Additionally, it only considers interferences at scales much larger

than the wavelength of light. This perspective ignores effects such as dispersion and diffraction.

Extensions of the this BRDF that do consider the wave properties of visible light have been

proposed [42, 97]. In fact, the HTSG BRDF [42] is widely considered the most sophisticated

physically-based model in existence today although its computational complexity has prevented it

from being incorporated into most production systems.

Models have also been proposed that generalize the reflectance properties of the individual

microfacets that make up a material’s surface. Unlike the Cook-Torrance BRDF that assumes

these microfacets behave like Fresnel mirrors, the Oren-Nayar [84] BRDF assumes each microfacet

is a perfectly Lambertian reflector. This model has proved useful for describing the reflectance of

dusty surfaces. The Hapke-Lommel BRDF [39] was designed to describe the appearance of lunar

surfaces. It also generalizes perfectly Lambertian reflectance with the addition of a retro-reflective
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or back-scattering reflectance lobe. It too is useful for modeling matte or dusty materials.

Ashikhmin et al. [4] propose an extension to the Cook-Torrance BRDF that allows a general

characterization of the distribution term D in Equation 2.11. Specifically, D is represented as

a discretized function over the half-angle h and is stored as a 2D image. The flexibility of this

model has recently proved useful for fitting to measured reflectance data [81]. These type of hybrid

models that combine both analytic and sampled or non-parametric functions are closely related to

the factored BRDF models discussed in Section 2.8.

2.2.4 The Lafortune BRDF

The Lafortune BRDF [56] represents surface reflectance as a weighted combination of variable-

width cosine lobes, each centered around a direction related to ωi by an arbitrary 3x3 matrix:

fr(ωi, ωo) =

N
∑

j=1

kj
s

[

ωT
i Mjωo

]nj

(2.17)

where kj
s controls the magnitude of the jth lobe, Mj defines the center of the lobe with respect to

the reflected direction and nj controls its fall-off. The full generality of a 3x3 matrix is unnecessary

to represent most useful transformations. For this reason, a more restricted formulation is typically

used:

fr(ωi, ωo) =

N
∑

j=1

kj
s

[

Cj
xωixωox + Cj

yωiyωoy + Cj
zωizωoz

]nj
, (2.18)

where Cj
x,Cj

y and Cj
z control both the magnitude and direction of the jth cosine lobe.

As discussed by [56], the Lafortune BRDF is able to represent a variety of reflectance properties.

Although it does not explicitly include a Fresnel term, the Cx,Cy and Cz parameters can be

adjusted to model non-Lambertian diffuse reflection and increased specularity at grazing angles.

It can also represent retroreflective materials and off-specular highlights. Another advantage of

this model is that it can be sampled in the context of global illumination rendering as discussed

in Section 2.9.1.

Nevertheless, the Lafortune BRDF has several shortcomings. First, it is unable to represent

a half-angle parameterization of the upper hemisphere since this cannot be encoded as a linear
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Figure 2.5: An image of brushed aluminum reflecting light from a small source. Notice the elliptical
highlight that results from uneven scattering along and against the orientation of the surface’s
microcylinders. Figure reproduced from [109].

operator on ωi. Generalizing this model to allow a “H dot N” parameterization remains an inter-

esting direction of future research because this parameterization was recently shown to be superior

at representing measured materials [81]. Second, although it is a function of four dimensions, the

generalized cosine model is not suitable for representing the elliptical shape of most anisotropic

specular highlights. Lastly, fitting more than two cosine lobes to measured data is often numerically

unstable.

2.2.5 The Ward BRDF

Another model developed in the context of fitting to measured data is the Ward BRDF [109]:

fr =
kd

π
+ ks

1√
cos θi cos θo

exp
[

− tan2θh (cos2φh/α2
x + sin2φh/α2

y)
]

4παxαy
, (2.19)

where kd and ks control the amount and color of the diffuse and specular reflectance respectively.

The parameters αx and αy define the RMS slope of a bivariate Gaussian distribution. Recall

from Figure 2.1 that θh and φh are the elevation and azimuthal angles of the half-angle vector h

in the local coordinate system defined by the surface normal n and tangent vector t. Therefore,

Equation 2.19 describes an elliptical-shaped specular highlight with major and minor axes defined

by the parameters αx and αy (for isotropic materials αx = αy).

Although the Ward BRDF is a phenomenological model, it is physically plausible. Assuming

kd ≥ 0,ks ≥ 0, kd+ks ≤ 1 and αx and αy are not “too large,” this BRDF is non-negative, reciprocal

and conserves energy [109]. Its mathematical form also allows efficient importance sampling within

physically-based rendering algorithms (see Section 2.9.1).
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The Ward BRDF was designed to be fit to measurements of isotropic and anisotropic reflectance

functions [109]. One important characteristic of anisotropic materials is that their appearance

depends on rotation about the surface normal for a fixed view and light direction. This property

is not true for isotropic BRDFs and is tied to differences between the microgeometry of these two

classes of materials. The Ward BRDF assumes anisotropic materials consist of densely packed

fibers or cylinders that are oriented along a common direction called the direction of anisotropy.

Materials such as wood and brushed aluminum have similar microgeometries. When light strikes

these cylinders it produces an elliptical highlight due to uneven scattering along and across the

orientation of these microcylinders. This results in an elliptical-shaped highlight that resembles a

bivariate Gaussian distribution over the half-angle as proposed by the Ward model (see Figure 2.5).

The Ward BRDF is appropriate for modeling certain isotropic and anisotropic materials. It

has also been shown to be well suited for fitting to measured data [81]. Nevertheless, there are

many anisotropic materials that the Ward BRDF is not able to express. The next section reviews

additional anisotropic BRDFs based on alternative microfacet theories.

2.2.6 Anisotropic BRDF Models

There are several BRDFs designed to describe anisotropic surface reflectance. One common ap-

proach is to model a material’s surface as a collection of densely packed cylinders oriented along a

common direction. Such physically-based models are suitable for modeling materials like brushed

aluminum and wood. The Poulin-Fournier BRDF [90] is one such model that includes parameters

related to the spacing, height and size of these microcylinders. Adjusting these parameters effects

the overall appearance of the material.

The Banks BRDF [6] and Kajiya-Kay BRDF [52] are based on how light reflects from a 1D

cylindrical fiber. These models are effective in reproducing the appearance of metallic and furry

materials. Recently, these fiber scattering models have been extended to describe the appearance

of human hair [71] and polished wood [72].

2.2.7 Virtual Gonioreflectometry

Westin et al. [111] take a different perspective on modeling surface reflectance. They explicitly

model the microgeometry of a material as a height field and simulate its aggregate reflectance at
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different incoming and outgoing directions. They store the resulting estimate of its BRDF in a

spherical harmonic basis. Although virtual gonioreflectometry is computationally expensive and

requires explicitly modeling the 3D microgeometry, it is capable of reproducing complex appearance

like, for example, that of satin and leather.

2.2.8 Summary

There are many different analytic BRDFs, each designed with a particular class of materials in

mind. When evaluating the utility of any one model, it is important to consider several key

properties we would like to be true of any representation:

• Accuracy: A model should accurately describe the appearance of a wide variety of materials.

• Physical-Plausibility: A BRDF should meet physical constraints based on the underlying

physics of light-matter interaction. Specifically, a BRDF should be reciprocal, non-negative

and conserve energy.

• Importance Sampling: Another criterion for incorporating BRDFs into global illumina-

tion rendering algorithms is that they allow efficient importance sampling. This is further

discussed in Section 2.9.1.

• Simplicity: For interactive applications it is important that a BRDF be inexpensive to

evaluate. The definition of “inexpensive” is changing as the performance of consumer graphics

hardware continues to improve, but a model should still avoid unnecessary complexity.

• Editing: A useful model should allow a designer to efficiently edit the salient aspects of its

appearance.

In Chapters 4 and 5 we will introduce a new data-driven representation of surface appearance.

We will show that current analytic models do not in general possess these key properties and how

this is addressed by our approach.
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2.3 The Spatially-Varying BRDF

Most objects that we encounter in the world do not scatter light the same way across their entire

surface. Figure 1.2 shows a few examples of objects with spatially-varying appearance. In order to

represent these types of materials, we need a bi-directional reflectance function that also depends

on surface position. This gives rise to the Spatially-Varying Bi-directional Reflectance Distribution

Function (SVBRDF):

S(u, v, ωo, ωi) : [0, 1] × [0, 1]× Ω+ × Ω+ → R+, (2.20)

where the coordinate vector (u, v) encodes a position along a parameterized 2-manifold. Note the

BRDF is a special case of the SVBRDF. Moreover, it is often helpful to interpret the SVBRDF as

consisting of a unique 4D BRDF at each surface position. The same properties of the BRDF we

previously introduced apply to the SVBRDF as well. It is non-negative, reciprocal and conserves

energy.

Although it is more general than the BRDF, the SVBRDF still cannot represent the appearance

of all types of materials. In particular, the SVBRDF still assumes the surface is opaque, passive

(i.e. it does not emit energy) and static. In Chapter 4 and 6 we mention more general light

transport functions that relax some of these assumptions. As a rule, increasing the generality of

an appearance function allows us to represent a broader class of materials, but requires having to

consider a higher-dimensional domain. We will see that this has tremendous consequences on the

feasibility of measuring and storing these functions.

2.4 Texture Maps

The conventional approach for modeling spatially-varying properties of a material’s appearance is

to map a 2D function (typically stored as an image and called a texture map) onto an object’s

3D surface [13]. A texture map can be interpreted, for example, as encoding the spatially-varying

diffuse albedo of a Lambertian BRDF (see Figure 2.8). However, texture maps provide a general

technique for representing any property that varies with surface position and has been extended

to represent spatially-varying surface orientation [11], surface displacement [18], surface roughness
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(a) Copper shade tree. (b) Wood shade tree.

Figure 2.6: Shade trees describe the color of each pixel as a tree-structured collection of simpler
functions and geometric properties of the underlying 3D scene. This figure is reproduced from the
seminal paper by Rob Cook [18]

and even the surrounding environment’s color at mirror reflection [12]. A thorough survey of the

computational issues related to texture maps along with a discussion of their extensive applications

is available [43].

The challenge in representing real-world appearance using texture maps is three-fold. First, a

designer must identify the spatially-varying properties of the target material (i.e. normal variation,

albedo, surface roughness, etc.). Second, the characteristics of each property must be encoded into

a separate texture map. These maps are either generated manually, defined by a procedural

operation [87], or derived from natural images. Finally, there must exist a parameterization that

maps points on the surface to points in the texture map.

2.5 Shade Trees

One of the challenges designers’ face when modeling the materials in a 3D scene is expressing

complex appearance or shading functions using the low-level tools available to them. An important

breakthrough was the introduction of Shade Trees by Rob Cook in 1984 [18]. Shade trees express

a complex appearance function as a tree-structured collection of simpler masks and functions. As

shown in Figure 2.6, the leaves of the tree correspond to both geometric properties of the 3D

scene (e.g. normal direction, view direction, etc.) as well as particular aspects of a material’s
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Figure 2.7: The appearance of this bowling pin is specified with a shade tree. Left to right: images
rendered as the shade tree is traversed bottom-up. Note how its complex appearance is achieved
by applying a sequence of relatively simple modifications that correspond to each leaf in the shade
tree. This figure is reproduced from [92].

overall appearance (e.g. diffuse color texture map, rust pattern texture map, displacement map

for surface wrinkles, etc.). The internal nodes of the tree describe how its sub-trees are combined

in order to yield a more complex function. For example, a node may combine two texture maps

in order to describe a material’s spatially-varying diffuse color and surface roughness. Shade trees

give designers a powerful framework for modeling complex appearance from an ensemble of simple

pieces that are more suitable for direct manipulation. They typically specify the leaves of the

tree manually (e.g. create bump maps, displacement maps, albedo maps, etc.) along with its

internal topology and composition nodes in order to achieve the desired appearance at the root

node. Figure 2.7 shows a 3D scene of a bowling pin whose appearance was modeled with a shade

tree. The advent of modern graphics hardware has brought renewed interest in shade trees as they

can be implemented within small programs that execute in parallel at each pixel in the image.

Because there are potentially many ways to describe a complex appearance function, creating

shade trees that meet a particular design goal require significant human expertise. Today, computer

generated images typically contain tens to hundreds of shade trees. The art of their design lies

in determining how to best characterize a complex function as a combination of simpler functions

that can be expressed using available BRDF models, masks and images. In Chapter 4 we introduce

a set of techniques suitable for inferring a shade tree from measurements of a complex appearance

function. This Inverse Shade Tree (IST) framework is one of the key contributions of this thesis.

We show that ISTs enable interactive rendering and editing of complex appearance functions
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Figure 2.8: Using a photograph as a texture map is one of the earliest examples of appearance
acquisition. Left: an image of bricks can be used to define the spatially-varying diffuse albedo of
a material. Right: a sphere with this brick texture map applied to its surface.

derived from multi-gigabyte input datasets of measured SVBRDFs. Although artists will never be

replaced by machines, we believe the IST framework presents a new and exciting design tool and

suggests a promising direction of future work in data-driven appearance modeling.

2.6 Appearance Acquisition

Deriving analytic expressions for realistic surface reflectance is often a tedious (if not impossible)

task. Although state-of-the-art BRDF models can express the appearance of a wide variety of

materials, there are still many materials whose appearance is not well captured by existing tech-

niques. Moreover, it’s difficult to manually adjust the parameters of a particular analytic BRDF

in order to achieve a desired result.

One way to address this challenge is to directly measure the appearance of a material. The

earliest example of this approach is using a digitized photograph as a texture map. Figure 2.8

shows a 3D scene where an image of a brick wall has been used to modulate the diffuse color of a

sphere. Although we get the sense that this object is intended to be made of brick, the rendered

image lacks visual realism. This is because a single image captures the appearance of these bricks

from a single view under fixed lighting conditions. In order to recover a complete representation

of this material’s appearance we would need many images of its appearance at different viewing

directions and under different lighting conditions. More precisely, we would need knowledge of its

SVBRDF.

In this section, we review previous research aimed at acquiring high-dimensional appearance
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Figure 2.9: Two different gonioreflectometer designs. Left: the BRDF of a material is measured
using a computerized photosensor and light-source. Right: using a half-silvered hemispherical
mirror enables a single image to record the distribution of reflected light into the entire hemisphere.
This design speeds up acquisition because it only requires exploring the 2D space of light-source
positions. Figure reproduced from [109].

functions of real-world materials. We will see that this approach provides the most accurate repre-

sentation of a material’s appearance, but requires time-consuming acquisition procedures, delicate

calibration procedures and large storage costs. For this reason, providing efficient techniques to

both acquire and store high-dimensional measured appearance datasets remains an active area of

research.

2.6.1 Gonioreflectometry

A gonioreflectometer is a device for measuring the BRDF of a material. Traditional gonioreflec-

tometers [82, 100] consist of a computerized photosensor and light source that can be positioned

anywhere over the upper hemisphere of a homogeneous material sample. As a result, these devices

are capable of sampling the full four-dimensional domain of the BRDF, but require long acquisition

times because the photosensor and light-source must be sequentially positioned to cover the space

of light and view directions.

An important development was the setup proposed by Ward [109]. It captures images of a hemi-

spherical one-way mirror under variable light positions (see Figure 2.9). This reduces acquisition

time because a single image measures the amount of light reflected into many outgoing directions.

A similar approach to reducing acquisition time is taken by “image-based” setups [70, 74, 75]. As

Figure 2.10 illustrates, these techniques capture multiple measurements of a BRDF simultaneously

by imaging a curved convex object of a homogeneous material. Image-based devices have also been
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Figure 2.10: Image-based gonioreflectometry refers to using a digital camera as the photosensor.
Because a digital camera records the amount of light striking each individual pixel, it can be used
to acquire many measurements of the BRDF of a curved object simultaneously. This reduces the
overall acquisition time by requiring exploration of only a 2D space of either light-source or camera
position. Figure reproduced from [70].

developed to record measurements of spatially-varying reflectance [23, 112].

The measurements obtained from a gonioreflectometer can be stored in a large 4D table (3D

for isotropic materials). Assuming the measurements are taken from a sufficiently dense sampling

pattern, this approach provides the most accurate representation of a BRDF. However, this is still a

time-consuming process dominated by tedious calibration procedures and the latency of positioning

the light-source and photometer. Furthermore, a tabular representation is expensive to store and

thus cannot be easily integrated into interactive and physically-based rendering algorithms nor

can it be edited. In Chapters 4 and 5, we introduce two new representations of the SVBRDF and

BRDF derived from measured data that address these shortcomings.

Because of the engineering challenges related to BRDF acquisition, there are still very few high-

quality and high-resolution datasets in existence. A notable exception is the Matusik database [74].

It contains measurements of 55 different isotropic BRDFs including metals, plastics and several

textiles. Each BRDF requires 33MB of storage. Obtaining a database of anisotropic BRDFs

measured at a comparable resolution remains an open research problem.

2.6.2 Spatially-Varying Reflectance

The spatially-varying appearance of an object can be measured with a computerized light-source

and digital camera. A spherical gantry is one such device and is shown in Figure 2.11. It consists of

two arms that can be positioned to point toward a rotating base platform from any direction. If we
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Figure 2.11: An image of the Stanford spherical gantry showing its four degrees of freedom. (Image
courtesy of Stanford Graphics Laboratory.)

mount a digital camera and light source on the two arms as shown in Figure 2.11, we can measure

various directionally- and spatially-dependent scattering functions. Dana et al. [21] measured the

reflectance of 61 different materials at ∼ 200 different view and light positions using a similar

setup. Their CUReT database contains materials with spatially-varying appearance like wood,

gravel, peacock feathers, etc. (see Figure 2.12).

As with measurements of a BRDF, these images can be stored in a large table. During image

synthesis, we can look-up the appropriate value in this table for a particular light and view direction

and surface position. Note that the scale and structure of the geometry of these surfaces does not

match the microfacet theories used to derive many physically-based analytic BRDFs. However,

if we still assume that these surfaces are planar we can rely on these images to encode the effect

their actual geometry has on defining their appearance. This class of appearance functions with

extended textures are commonly called Bi-Directional Texture Functions (BTFs) in contrast to

the spatially-varying BRDF described in Section 2.3 for which the true surface geometry (at least

on the scale of the wavelength of light) is available.

Malzbender et al. [69] record images of a spatially-varying material from a fixed view, but
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Figure 2.12: A few datasets in the CUReT database [21] that contains reflectance measurements
of 61 different spatially-varying materials. Figure reproduced from [21].

under different directions of point-source illumination. Surprisingly, this 4D subset of the full

6D appearance function is capable of reproducing visually compelling images. Nevertheless, the

restriction to a single view limits their generality.

There has also been previous work in acquiring the SVBRDF of real-world materials. Lensch et

al. [63] and Debevec et al. [23] record images of a curved object with spatially-varying reflectance

at different view and light-source positions. Because they estimate an accurate representation

of the object’s 3D geometry these images provide measurements of its spatially-varying BRDF.

More recently, Marschner et al. [72] acquired the SVBRDF of different types of polished wood. In

Chapter 3 we discuss a technique for acquiring the SVBRDF of several real-world materials.

2.6.3 Translucent Materials

Several techniques have been proposed for acquiring the appearance of translucent materials. When

light strikes a translucent material, a significant percentage scatters beneath its surface and is

re-emitted into the surrounding environment at a different position. Modeling these materials
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requires resolving their Bi-Directional Subsurface Scattering Reflectance Distribution Function

(BSSRDF). The BSSRDF is an 8d function that records the amount of light transported between

any pair of incident and reflected directions at different surface positions. Because of its high-

dimensionality, it is infeasible to exhaustively measure its domain and current approaches measure

only a subspace [33, 86].

2.6.4 Summary

Efficiently acquiring the appearance of many real-world materials remains an open research prob-

lem. With the exception of 3D isotropic BRDFs, the high-dimensionality of more general scattering

functions prohibits designs that densely sample their complete domain. One promising approach

are acquisition setups that enable a single image to record multiple measurements of a light trans-

port function simultaneously. Another interesting direction are techniques that acquire only a

subset or lower-dimensional projection of the full high-dimensional function. The challenge with

these techniques is determining which subsets carry the most information about the material’s

appearance and, of course, providing a useful physical setup.

2.7 Fitting Analytic BRDFs to Reflectance Data

One common approach for incorporating measured appearance data into existing rendering algo-

rithms is to fit the parameters of an analytic BRDF model to the measurements. In fact, several

BRDFs were designed in the context of fitting to measured data [109, 56]. In general, this pro-

cess requires performing non-linear optimization over the BRDF parameters in order to recover a

locally optimal fit. Ngan et al. [81] evaluate the performance of fitting several popular analytic

BRDF models to a database of 100 measured isotropic BRDFs [74]. They evaluate seven different

analytic models: Ward [109], Blinn-Phong [9], Cook-Torrance [20], Lafortune [56], Ashikhmin-

Shirley [5] and HTSG [42]. They achieved the most accurate results by fitting a single specular

lobe of the Cook-Torrance, Ashikhmin-Shirley and HTSG models, although this approach still

introduces significant errors for many materials. For materials with multiple layers of finish, the

accuracy of the fit is improved with an additional specular lobe. In all cases, they report that

a half-angle parameterization of the specular lobe better matches measured data than one based
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on the direction of perfect mirror reflection. They also note that the required optimization is

computationally expensive and often numerically unstable (especially for multiple specular lobes)

and that great care is needed to avoid local minima. Lastly, they recorded sparse measurements of

several anisotropic materials and found no existing analytic BRDF model was able to accurately

fit their reflectance and instead used a hybrid representation similar to that proposed by [4].

One possible approach for representing measured SVBRDF data is to fit parameters of an

analytic BRDF at each surface location [63, 76, 31]. Such a representation provides for easy

editing of materials, and with the addition of a clustering step [64] allows editing a single material

everywhere it appears on a surface. This approach, however, has several key drawbacks. As

with the BRDF, reducing a dense set of measurements to a handful of parameters may introduce

significant error. Moreover, it requires non-linear optimization, which is computationally expensive

and numerically unstable. Finally, clustering the values of the BRDF parameters across the surface

does not generate a desirable separation of the component materials in the presence of blending

on the surface (even, in some cases, the trivial pixel-level blending present at antialiased material

edges). This is because the problem is underconstrained (i.e., there are many possible cluster

allocations with comparable approximation error). Moreover, these techniques have only been

demonstrated on relatively simple isotropic materials. In Chapter 4 we introduce a new approach

for addressing this material separation problem. We pose it as computing the factorization of

a matrix and introduce a new set of algorithms designed to produce intuitive decompositions.

We demonstrate the effectiveness of our approach on datasets with complex spatial blending that

include both anisotropic and retro-reflective surface reflectance.

2.8 Factored BRDF Models

Both analytic and measured BRDFs can be represented as a large 4D table of values (3D if

the BRDF is isotropic). Although a tabular model provides a very accurate representation of

the BRDF it does so at the expense of substantial storage requirements (e.g. 35MB/3GB for

isotropic/anisotropic at resolutions comparable to the Matusik database [74]). For example, in-

teractive applications require that all the geometry, texture maps and materials for a scene must

not exceed the memory available on consumer graphics hardware. As a result, it is important to
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compress these representations.

One key property of the BRDF is that it is typically factorizable or separable. A factored

function is one that is written as the product of lower-dimensional functions. The work of Neu-

mann & Neumann [80] seems to mark the first time this property of the BRDF was exploited for

computational efficiency. They were concerned with computing radiosity solutions for scenes with

non-Lambertian materials. They introduced the notion of separable reflectance and described a

(very limited) class of BRDFs that can be written as the product of two 2D functions dependent

on the incoming and outgoing directions respectively. However, the majority of BRDFs are not

separable into this form. For example, the location of the specular lobe depends on the position

of the incoming and outgoing angles. To address this, Fournier [29] and DeYoung et al. [26] used

Singular Value Decomposition (SVD) to factor the BRDF into a sum of multiple products of these

2D functions:

fr(ωi, ωo) =

J
∑

j=1

Fj(ωi)Gj(ωo), (2.21)

where the BRDF fr is approximated by the sum of J products of the 2D functions Fj and Gj

that depend on the incoming and outgoing angles respectively. Equation 2.21 allows an arbitrary

number of terms and can, in theory, represent the original BRDF to arbitrary precision. How-

ever, because most BRDFs are not factorizable into this form, accurate factorizations typically

require many terms. Also note that this numerical factorization presents significant computational

challenges related to generating, storing and factoring a very large and dense matrix.

Heidrich et al. [44] observed that certain analytic BRDFs, such as the Cook-Torrance and Banks

model, can be written as the product of lower-dimensional functions. These analytic factorizations

perfectly match the original BRDF and typically depend on mixed parameterizations of the domain.

They show how a slightly modified version of the Cook-Torrance BRDF can be written as the

product of analytic pieces that depend on the outgoing, incoming and half-angle directions. These

individual factors can be sampled and stored in texture maps making more complex analytic

BRDFs available to interactive rendering systems. Of course, for certain analytic models and all

measured BRDFs this type of analysis is not possible.

Rusinkiewicz [94] introduced a parameterization of the BRDF that better aligns the main fea-
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Figure 2.13: Rusinkiewicz [94] describes a parameterization of the BRDF based on the half- and
difference-angles. Left: standard spherical parameterization of the incoming and outgoing di-
rections, (θi, φi, θo, φo). Right: each pair of incoming and outgoing directions is represented by
the spherical coordinates of the corresponding half and difference angles, (θh, φh, θd, φd). Figure
reproduced from [94].

tures of its reflectance (i.e. retro-reflective, specular and diffuse lobes) than the vanilla spherical

parameterization. He describes a parameterization of the BRDF with respect to the half-angle as

in [9] and the difference-angle which is the incoming direction represented in a frame defined by

the half-angle. This half/difference frame is illustrated in Figure 2.13. The main advantage of this

parameterization is that it makes the inherent redundancy of most BRDFs available for subsequent

compression and factorization techniques. Kautz et al. [53] note the important role parameteriza-

tions plays in efficiently factoring a BRDF. They also use SVD to compute the factorization like in

[29], but build a matrix of BRDF values that are uniformly spaced in this half/difference frame.

This allows efficient factorization (i.e. higher accuracy for fewer terms) for very glossy isotropic

and anisotropic BRDFs.

McCool et al. [77] also note the significant impact the choice of parameterization has on the

accuracy and compactness of factored BRDF models. They introduce Homomorphic Factorization

(HF): an algorithm for computing for factoring a BRDF into a single product of an arbitrary num-

ber of terms. The main advantage of HF is that it can handle scattered and sparse measurements

of the BRDF without requiring the construction of a regularly spaced matrix. It also guaran-

tees the factors are strictly non-negative through a logarithmic transformation. Non-negativity

is important due to the lack of support for signed arithmetic on traditional consumer computer

graphics hardware (this restriction has been removed with the latest generation of graphics hard-
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ware). They are able to compute accurate factored representations with very few terms (i.e. 1

or 2) of several different analytic and measured BRDFs using the half/difference parameterization

and the HF algorithm1.

When measured BRDF data is available, computing a factored model provides a more accurate

representation than fitting a small number of parameters of an analytic function [77, 60]. Not

surprisingly, the accuracy of these models comes at the expense of larger storage requirements (al-

though they are still compact enough to support interactive rendering) and engineering challenges

related to generating and factoring a large dense matrix.

An important contribution of this thesis is the development of several new factored represen-

tations of the SVBRDF and BRDF that address previously open problems related to editing and

importance sampling these models. In Chapter 4 we introduce a tree-structured representation of

the SVBRDF that is based on a sequence of matrix factorizations of measured surface reflectance

data. We evaluate the performance of existing algorithms and conclude that no single technique

guarantees physically-plausible separations. To address this, we introduce a new set of matrix

factorization algorithms in Section 4.5. By incorporating general and domain-specific constraints,

they guarantee a physical-plausible factorization of the SVBRDF and BRDF into intuitive factors.

In Chapter 5 we introduce a new factored BRDF model that is designed to provide efficient impor-

tance sampling in the context of global illumination rendering. We will see that this application

places interesting constraints on both the parameterization and the properties of the individual

factors.

2.9 Rendering

Computer graphics is concerned with the synthesis of images of a 3D scene – a process known as

rendering. Rendering algorithms take as input computer models of the 3D geometry of the shapes

in the scene, illumination sources and material or appearance models and compute an image of the

scene from a specific viewpoint according to these specifications. These algorithms have rightfully

gained considerable research attention in the last 30 years. Broadly speaking, they fall into two

different categories: physically-based and interactive.

1http://www.cgl.uwaterloo.ca/Projects/rendering/Shading/database.html
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2.9.1 Physically-Based Rendering

Physically-based or global illumination rendering algorithms are concerned with maximizing the

visual realism of the synthetic image. These algorithms are appropriate, for example, when the

final image will be composited onto live action footage.

To recover important visual effects, these algorithms simulate the way light is transported

through the scene before striking the virtual image plane. Ultimately, they are interested in

computing the radiance traveling along the group of rays that intersect each image pixel. Due

to the reciprocal nature of light, this simulation is equivalent to tracing paths from the camera

into the scene and simulating the way they are transmitted, absorbed, refracted and reflected

by different materials before striking the light sources. Suppose one such camera ray intersects

the scene at a point x with associated surface normal n. The total amount of radiance traveling

along this ray back toward the image plane can be computed through numerical integration of the

rendering equation, first formulated by [51]:

Lo(x, ωo) = Le(x, ωo) +

∫

Ω+

Li(x, ωi) fr(x, ωi, ωo) cos θi dωi, (2.22)

where Lo is the radiance leaving point x along the direction ωo toward the image pixel, Le is the

radiance that is emitted by the material at point x, Li is the radiance arriving at point x along

the direction ωi and fr is the BRDF of the material at x. Recall the cosine term is necessary to

convert the radiance traveling along ωi into the irradiance incident to the differential surface patch

at point x.

The domain of integration in Equation 2.22 is over the space of incoming directions at x or,

if we consider only opaque surfaces, the upper hemisphere Ω+ aligned with the surface normal n.

Therefore, Li(x, ωi) will, in general, require evaluating Equation 2.22 at a separate point in the

scene. Equations of this form are called Fredholm equations of the second kind. These equations

have no known analytic solutions thus requiring numerical estimation of this recursive function

and suggests the difficulty in efficiently computing Lo(x, ωo).

The approach of Monte Carlo rendering algorithms is to evaluate the incoming radiance Li by

recursively casting rays through the scene to simulate light transport paths. In order to reduce the

variance in the estimate of Equation 2.22, it is desirable to importance sample reflected rays by
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preferentially considering paths carrying high energy. We refer the reader to textbooks that cover

this fascinating area of numerical integration [91, 28].

One possibility is to consider drawing samples according to an importance function derived

from the lighting Li, as in sampling light sources for direct illumination. In the special case when

Li is described by an environment map [12], effective illumination sampling methods have recently

been demonstrated [1, 55]. These methods are intended for diffuse or rough semi-glossy materials,

and typically require a few hundred samples for good results. However, at low to medium sample

counts, they may miss important details in the illumination, especially for glossy materials and

slowly-varying environments. For these cases, it is desirable to importance sample according to

the product of the BRDF fr and the incident cosine term cos θi. This can be achieved using

the inverse of a Cumulative Distribution Function (CDF) derived from the BRDF. This inverse

function transforms a uniformly distributed random variable into a random variable distributed

according to the energy in the BRDF. There exists a closed form expression of the inverse of

the CDF for several analytic BRDFs such as the Blinn-Phong, Ward and Lafortune models. For

more complex analytic BRDFs like the Cook-Torrance model, however, no such analytic expression

exists and generating samples according to these models has remained an open area of research.

In Chapter 5 we introduce a new factored BRDF model that enables efficient importance

sampling of measured and complex analytic material models. We also introduce a representation

of general sampled functions that provides compression and enables efficient importance sampling.

In Section 5.5 we use this representation to generate samples according to both measured BRDFs

and image-based illumination.

2.9.2 Interactive Rendering

Interactive rendering algorithms are designed to compute images at real-time frame rates (e.g. ≥ 20

Hz). These algorithms are appropriate for applications like video games, virtual reality simulations

and interactive data visualization. In order to render a complete image within 30−1 seconds, these

algorithms must restrict their evaluation of Equation 2.22 to consider only a subset of the full

lighting interactions within a scene. Typically they work by considering only local lighting effects:

light that is transported directly from a point source, reflected off of a single surface and into the

camera. This can be interpreted as approximating the rendering equation:
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Lo(x, ωo) ≈ Le(x, ωo) +

N
∑

j=1

Lj
i fr(x, ωj

i , ωo) (n · ωj
i ), (2.23)

where N is the number of point light sources, Lj
i is the radiance emitted from the jth source, ωj

i is

a unit-length vector pointing toward the light source from position x and n is the surface normal

at x. Note that the cosine term in Equation 2.22 is equal to the dot product (n · ωj
i ).

The complexity of evaluating Equation 2.23 is proportional to the scene geometry, number of

light sources and the cost of evaluating each BRDF in the scene as opposed to computing the

high-dimensional integral required for full global illumination. Although computing Equation 2.23

can be accomplished at interactive rates using specialized graphics hardware, it clearly ignores

many important visual effects. Also note that graphics hardware has a limited amount of available

memory (e.g. ∼512 MB) and must accommodate the geometry, lighting models and BRDFs in

each scene. For this reason, it is important to compress measured BRDFs before they can be

incorporated into an interactive setting.

In Chapter 4 we introduce a novel data-driven representation of the SVBRDF that provides

compression ratios sufficient to support interactive rendering. This work is most closely related

to previous techniques for rendering scenes containing measured or non-parametric BRDFs at

interactive rates [53, 77].

2.10 Appearance Editing

For an appearance model to be useful within a production pipeline it is important that it supports

editing. In many cases, analytic BRDF models were designed specifically with this goal in mind.

For example, the Lambertian, Phong, Ward and Cook-Torrance BRDFs all have parameters that

correspond to salient aspects of appearance. For example, adjusting kd in Equation 2.9 controls

the albedo or diffuse color of a material modeled with the Lambertian BRDF. The parameter n

in Equation 2.10, m in Equation 2.14 and αx and αy in Equation 2.19 all control the “glossi-

ness” or “shininess” of the resulting appearance for the Phong, Cook-Torrance and Ward BRDFs

respectively.

In Chapter 4 we introduce a data-driven BRDF representation that allows editing. The BRDF

is represented with a set of sampled curves computed automatically from measured data. We
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develop matrix factorization algorithms that generate intuitive curves that can be directly edited

by a user familiar with surface reflectance functions.

A data-driven approach to BRDF editing has been proposed by Matusik et al. [74], in which a

user labels directions (e.g., “shininess”, “rustiness”, etc.) in a high-dimensional space of measured

materials. The large number of materials, and the uncompressed representation of each BRDF,

contribute to large storage requirements and inhibit interactive control. Though our BRDF editing

system is also based on measured data, we provide for direct manipulation of curves controlling

the reflectance instead of focusing on higher-level behaviors. In addition, our compressed repre-

sentation and interactive renderer permit real-time manipulation of materials, including spatial

variation.

To our knowledge, only two systems have demonstrated material editing via direct manipulation

of low-dimensional factors of the BRDF [4, 48]. In these systems the user edits a 2D image, which is

then used as a component in a parametric or homomorphic-factored BRDF model. We generalize

this by allowing interactive control over all the 1D and 2D factors necessary to specify a full

SVBRDF.
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Chapter 3

Appearance Acquisition

Although the data-driven representations we present in Chapter 4 could in principle represent many

types of appearance data, including BTFs, BSSRDFs, light fields, and time-varying textures, we

focus on SVBRDFs. In this chapter we introduce our acquisition pipeline, describe the five datasets

that we have acquired and conclude by discussing alternative setups.

3.1 Spherical Gantry

A spherical gantry is designed to measure the appearance of a 3D object. It consists of two

computerized arms that can be positioned anywhere on a sphere centered around a rotating base

platform. The design restricts these arms to always point at the rotating platform. The gantry’s

physical configuration along with its four degrees of freedom are illustrated in Figure 2.11. If we

mount a digital camera and light source on these arms as shown in Figure 2.11, we can measure

various directionally- and spatially-dependent scattering functions. In particular, we can place a

spatially-varying, static and opaque material on the base platform and obtain measurements of

its SVBRDF at different incident and reflected directions by adjusting the position of the camera

and light-source. We show several images of two wallpaper samples captured with such a setup in

Figure 3.1.
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Figure 3.1: Several raw images of the wallpaper samples acquired with a spherical gantry. The
diagrams in the bottom-left corner indicate the hemispherical position of the camera (black dot),
light-source (yellow dot) and the associated half-angle vector (red dot) relative to the surface
normal of the base platform (black cross).

3.2 High Dynamic Range

Modern digital cameras have a dynamic range of around 1:100. Within a single exposure they

can resolve intensities whose relative values lie within this ratio. However, the scattering functions

(i.e. BRDFs and SVBRDFs) for most materials exceed this limited range. For example, some

materials in our dataset have a dynamic range in excess of 1:10,000. Following the work of [25], we

combine several exposures at different shutter speeds for each camera position in order to recover a

high-dynamic-range (HDR) image (see Figure 3.2). Although this image provides a better estimate

of the radiance reflected at each position, it increases the acquisition time. For the datasets that

we acquired, we typically recorded four or five exposures with shutter speeds ranging from 2ms to

1s. The total amount of time to acquire a single HDR image was between 2-3s (this includes both

the time to capture each image plus the time to re-position the arms of the gantry).
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2 ms 8 ms 32 ms 128 ms

Figure 3.2: Images of the Season’s Greetings SVBRDF at different shutter speeds for a fixed
camera and light position. These images are combined to form a high-dynamic-range (HDR)
image that records the amount of radiance reflected into the camera at each surface position using
the technique of Debevec et al. [25].

3.2.1 Sampling

Due to the high-dimensionality of the functions we are interested in measuring it is infeasible to

densely measure their entire domain. As an example, suppose we wished to measure the directional

variation of a SVBRDF to within a single degree in each of its four angular dimensions. For a

planar sample, this would require taking 360 × 180 × 360 × 180 measurements. In our setup,

acquiring a single HDR image requires ∼2s and ∼8MB of storage. Therefore, the complete dataset

would require 15 petabytes of storage and take 266 years to acquire. After this long, you would

not expect the material to have the same optical properties! Therefore, we need a technique for

reducing the total number of images that we must acquire without compromising the accuracy of

our record of a material’s reflectance.

Depending on the specific material, we expect variation of its appearance to be localized to

certain regions of the SVBRDF domain. For the materials we measured, their reflectance varied

quickly around the directions of specular and retro-reflection while changing smoothly across other

regions. Therefore, we measured these functions more densely around their specular highlights and

at backscattering configurations. Two of the datasets exhibit isotropic reflectance (see Table 3.1).

For these cases, we further reduced acquisition time by measuring only 3 angular dimensions.

Specifically, we fixed the azimuthal angle of the viewing direction to a constant value.

With these optimizations we were able to decrease the acquisition time while providing a suit-

able reconstruction of the material’s appearance. We implemented a simple program that allows

a user to manually specify the size and location of different sampling regions and the sampling
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Figure 3.3: Two screenshots of a simple application for visualizing the location of the camera and
lamp arms of a spherical gantry. The red arrow is the position of the camera and the green arrow
shows the direction of perfect specular reflection for this camera position. The gantry records a
separate image for the light-source at each position marked by a blue point. The edges connecting
these points illustrate the path of the lamp arm.

density within each region. Figure 3.3 contains screenshots of this program showing two different

sampling patterns. Although this process was effective in reducing acquisition times, the general

problem of view-planning should be addressed with more theoretically motivated techniques. Cer-

tainly, issues related to optimal adaptive sampling from the field of information theory would apply

to this problem as well. Although there has been recent work on this topic for a particular choice

of parametric BRDF, [65], a more generic treatment of this problem is still an open problem.

3.3 Calibration

As seen in Figure 3.1, we obtain images of mostly planar spatially-varying materials for different

camera and light positions. One option is to use these images as the final representation. How-

ever, this image-based approach would not allow mapping these materials to arbitrary geometry.

Moreover, using these images directly would not support interactive rendering, sampling in the

context of physically-based rendering nor editing. Imagine trying to adjust the “diffuse color” of

the green material in the wallpaper sample by consistently changing 6,000 images!

In order to provide a more useful representation we must first organize these raw images into

scattered samples of the BRDF at each surface position. In general, this task requires knowing the

position of the light-source and camera for each image along with the geometry of the object. In

our case, we assume the geometry is a perfectly flat plane. Although these objects are not perfectly
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Figure 3.4: Image from the Dove dataset with superimposed canonical coordinate frame.

flat due to physical irregularities and subtle embossing effects, this is a reasonable assumption. In

Section 4.6, we discuss a procedure for estimating the fine geometric detail of these objects thus

relaxing our original assumption.

The process of estimating the position of the camera and light source at each image is known

as calibration. The servo motors that control the arms of the gantry indicate their position relative

to the base platform within 1 or 2 degrees. Although this provides a helpful estimate of their

position, using these values to warp the raw images into a canonical image plane would result in

significant loss of spatial and angular detail. The result would be blurry reconstructions of the

material with poorly defined boundaries.

3.3.1 Image Alignment

The purpose of camera calibration is to place the input images into a common coordinate system.

In our case, a useful coordinate system is one with its x-y plane coincident to the face of our planar

sample and with a z-axis pointing upward (see Figure 3.4). Each image can be thought of as a

perspective projection of the x-y plane in this coordinate system. If we knew the parameters of this

warp (also called a homography) we could easily map each input image into this common coordinate

system. However, determining these parameters requires knowledge of the precise position of the
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(a) (b) (c)

(d) (e) (f) (g) (h)

Figure 3.5: An illustration of our alignment procedure using images from the Wallpaper dataset.
(a-c) Source images acquired with a spherical gantry at different camera and light-source positions
are aligned to (d) a target image generated by scanning the planar sample using a flat-bed scanner.
(e-g) The aligned images are accurate to within 1/8 of a pixel with respect to the target. (h) We
can gain a sense of the precision of our alignment procedure by showing the warped images (e-g)
superimposed atop one another.

camera relative within this coordinate system. We solve this problem in two steps. First, we define

a coordinate system relative to an image of our planar sample obtained from a flat-bed scanner.

The scanner returns a near-orthographic view of the sample and we assume the pixels in this

scanned image are uniformly spaced along the x-y plane of our hypothetical coordinate system

shown in Figure 3.4. Although these planes do not align exactly, the margin of error is within the

resolution of our imaging equipment. Furthermore, errors introduced by this assumption can be

corrected when we estimate the fine geometric detail of the surface (see Section 4.6). The second

step is to estimate the parameters of a homography that best aligns each image obtained with the

gantry (called the source image) to this scanned image (called the target image). Computing this

alignment effectively recovers the position of the camera relative to this coordinate system and

allows us to combine our raw input into a representation suitable for further processing.

Image alignment is a well studied problem in computer vision [8, 68] and graphics [99]. A
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Figure 3.6: Images of Spectralon c© at a fixed view for different light positions. These images are
used to estimate the irradiance arriving at each point on the surface for an arbitrary light-source
position. Computing the SVBRDF amounts to dividing the outgoing radiance recorded at each
pixel of the image by this estimate of the incoming irradiance

common approach is to align a small set of features common to all images and visible from all

viewing directions [68, 99]. Therefore, it is important to select features in the scene that produce

highly-correlated pixel regions in each HDR image regardless of the position of the camera and

light-source when the image was acquired (assuming the light-source is above the horizon). Diffuse

materials with sharp corners are good image features [68]. We used a laser printer to print a

checkerboard pattern onto thick white paper. As seen in Figure 3.4, these paper squares were

placed in a ring around each planar sample and are manually detected within the target image.

We use the position of the camera reported by the gantry to construct an initial homography

for each source image. Using the Nelder-Mead simplex algorithm [79], we perform non-linear

optimization over the parameters of this homography to best align the feature locations in the

target image with those in the source image. Although this procedure guarantees recovering only

a locally optimal homography, our good starting position along with using stable features allows

this process to work very well in practice. For each dataset, we aligned all of the source images to

the target image without a single failure. We performed this alignment to within 1
8 of a pixel using

modern graphics hardware to accelerate the computation of each perspective warp and to compute

the normalized cross-correlation between a pair of pixel windows centered around features in the

source and target image. The entire processing time was roughly 5 seconds per source image or

about 9 hours for each dataset.
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3.3.2 Photometric Calibration

We need to associate the pixel values in each HDR image with values of the underlying BRDF.

This can be accomplished by acquiring images of a material with known reflectance properties.

We record HDR images of a planar sample of Spectralon c© from a fixed camera position and

100 different positions of the light source uniformly distributed over the upper hemisphere. If

we assume the Spectralon c© is a perfectly white Lambertian reflector, these images encode the

colorized intensity of the surface irradiance produced by placing the light source at these different

locations in units proportional to pixel values. Several images of this irradiance calibration dataset

are shown in Figure 3.6.

During acquisition, the position of the light-source will not perfectly coincide with one of these

images so we interpolate the values between the three nearest images to obtain an estimate of the

incident irradiance. We can now divide each value in the image of our target material by this

irradiance estimate image and obtain values of the BRDF in units of inverse steridians at each

pixel. This is performed in each color band, thus accounting for the non-uniformity of the spectral

intensity of the spherical gantry’s light source.

3.4 Reconstruction

After aligning and color balancing the raw images, we have samples of the SVBRDF that are

uniformly spaced in the spatial dimensions, but still non-uniformly spaced in the four angular di-

mensions. In order to carry out the factorizations discussed in Chapter 4, we need to interpolate the

scattered SVBRDF measurements into a uniformly spaced grid. The scattered data are conceptu-

ally resampled onto a uniform grid using a push-pull algorithm [36] with a Gaussian reconstruction

kernel (as we shall see later, we avoid a complete reconstruction by using a subsampling method).

The standard deviation of the Gaussian kernel is manually set based on the observed density of

the scattered measurements and the resolution of the table (one could imagine estimating this

automatically). This interpolation scheme maintains a sum of the reflectance values and weights

at each cell at coarse-to-fine resolutions. After estimating the values in the matrix, we associate

a confidence value with each cell equal to MIN(1.0,total weight at top level). ”Unmeasured

regions” are those that correspond to incident or reflected directions below the horizon, and their
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confidence is set to zero. The matrix factorization algorithm that we introduce in Section 4.5 uses

these confidences to weight the contribution of each element in the matrix toward the error. This

has the effect of interpolating values across missing regions in the final factorization.

Reconstructing scattered measurements into a uniformly spaced matrix is one of the most

expensive operations in our pipeline. This underscores the utility of acquiring very densely sampled

datasets as these would require less expensive interpolation procedures. For example, the isotropic

BRDF database acquired by Matusik et al. [74] has multiple measurements for each “cell” in their

table so no interpolation is needed. Instead, they use a simple binning procedure that requires

computing only the median of a small set of numbers at each grid position. The challenge, of

course, is recording a dense set of measurements within feasible acquisition times.

3.5 Datasets

We used a spherical gantry [72] to record a set of high-dynamic-range images of planar samples with

spatially-varying material under many illumination and view directions. The choice to measure

mostly-planar samples simplified the calibration and registration (Section 3.3.1), but the techniques

presented in Chapter 4 apply to arbitrary geometry. We acquired five different SVBRDFs that

include layered materials, anisotropy, retro-reflection, and spatially-varying normal and tangent

directions. The complete processed data along with source code for file I/O can be downloaded

from a public web server1. Several images from each dataset are shown in Figure 3.7 and a

description of their qualitative and quantitative properties is provided in Table 3.1.

3.6 Alternative Acquisition Setups

One key limitation of a spherical gantry is that the camera and/or light-source must be re-

positioned between each exposure. This results in long acquisition times and restricts its use

to stationary and static samples.

An interesting alternative is to use multiple sensors to parallelize the acquisition process. One

such design was recently proposed by Weyrich et al. [112] for acquiring the reflectance of human

skin (shown in Figure 3.8). Similar setups have recently been described [24, 110]. All these systems

1http://www.ist.cs.princeton.edu
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Figure 3.7: The five SVBRDF datasets we acquired.

Dataset Material Spatial Ang. Res. Size Reflectance Normal Tangent
Count Res. V!×L (GB) Properties Variation Variation

Season Greetings 4 523×500 5×350 5.5 Iso Yes N/A
Wood+Tape ∼ 5 380×400 12×480 10 Aniso/Retro Yes Yes

Dove ∼ 3 470×510 5×400 5.5 Iso Yes N/A
Wallpaper 1 ∼ 2 470×510 28×175 10 Aniso Yes No
Wallpaper 2 ∼ 3 470×510 28×175 10 Aniso Yes Yes

Table 3.1: Properties of the different datasets we acquired. We list the approximate number
of component materials (i.e. basis BRDFs), the spatial resolution of the SVBRDF, the number
of measurements and how these were distributed between camera and light-source positions, the
combined size of the aligned and cropped images and an indication of which datasets contain
anisotropic, isotropic and retro-reflective scattering properties along with the presence of variation
in the normal and tangent directions.
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Figure 3.8: Acquisition setup designed for measuring the reflectance properties of human skin [112].

acquire a single HDR image from each camera for each light activated in rapid succession. The

entire acquisition process is on the order of a few seconds, as compared to a spherical gantry that

would need several hours to obtain a comparable set of measurements.

The key drawback of these setups, however, is that the position of the cameras and light-

sources are fixed. An interesting direction of future research would be providing a parallelizable

and non-rigid acquisition device.
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Chapter 4

Inverse Shade Trees

The ideal is for things to be intuitive and responsive, making it easier for people to

express their intent. –Rob Cook

4.1 Introduction

The use of measured surface reflectance has the potential to bring new levels of photorealism

to renderings of complex materials. Such datasets are becoming common, with recent work on

acquiring dense measurements of both individual materials [70, 74] and spatially-dependent re-

flectance [21, 76, 64, 38, 72]. The availability of such data, however, has highlighted the difficulty

of representing complex materials accurately using conventional analytic reflectance models [81].

Nonparametric representations provide greater accuracy and generality, but so far have not in-

corporated the important design goal of editability. That is, in order to be useful in a practical

production pipeline, an appearance representation must let the designer change both the spatial

and directional behavior of surface reflectance. We propose a compact tree-based representation

(Figure 4.1) that provides the intuitive editability of parametric models while retaining the accu-

racy and flexibility of general linear decomposition methods.

As discussed in Section 2.5, the concept of composing a complex shading function from a tree-

structured collection of simpler functions and masks was first introduced in the seminal “shade

trees” work of Cook [18]. We develop an Inverse Shade Tree (IST) framework that takes as input
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Figure 4.1: We introduce a non-parametric framework for decomposing measured SVBRDF data
into a set of (a) spatially-varying blending weight maps and (b) basis BRDFs. The basis BRDFs
are factored into sampled 2D functions corresponding to (c) specular and (d) diffuse components
of reflectance (we show lit spheres rendered with these factors, not the 2D factors). These 2D
functions are further decomposed into (e & f) 1D curves. In addition to providing accurate inter-
active rendering of the original SVBRDF, this representation also supports editing either (a ′) the
spatial distribution of the component materials or (b ′) individual material properties. The latter
is accomplished by editing (e ′ & f ′) the sampled curves.
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a measured appearance dataset and a (user-supplied) tree structure, and fills in the leaves of the

tree. In our trees, the leaves are sampled curves and maps (i.e., 1-D and 2-D) representing intuitive

concepts such as specular highlight shape or texture maps. They are combined at interior nodes, of

which the most common is a “mixing” node (other node types such as normal and tangent mapping

are also supported). For example, in the first level of the tree in Figure 4.1, the Spatially-Varying

Bidirectional Reflectance Distribution Function or SVBRDF is composed of a sum of products of

spatial mixing weights (a) and basis BRDFs (b). The IST decomposition proceeds top-down, at

each stage decomposing the current dataset according to the type of node encountered in the tree.

Most notably, an “unmixing” algorithm is used to factor a high-dimensional dataset into a sum of

products of lower-dimensional functions.

The editability of the resulting shade trees depends on having their leaves correspond to pieces

that are meaningful to the user. For example, when decomposing an SVBRDF, we would like the

resulting BRDFs to correspond to our intuitive notion of separate materials, instead of being arbi-

trary linear combinations. For this reason Section 4.4 focuses on the “unmixing” problem, showing

how to map it to matrix factorization. We introduce flexible algorithms based on linear constrained

least squares that are designed to produce intuitive decompositions. These algorithms can incorpo-

rate constraints such as non-negativity, and provide control over the sparsity in the decomposition

(resulting in a continuous tradeoff between pure factorization and clustering). As compared to ex-

isting methods, we maintain accuracy while producing editable parts-based separations. When the

original function is a SVBRDF, these “parts” correspond to different materials; when the function

is a BRDF, these “parts” correspond to different scattering phenomena, such as diffuse reflection,

specularity, or back-scattering. In addition, our algorithms incorporate domain-specific constraints

such as energy conservation, and deal with practical issues such as large datasets and confidence

weighting. We expect these techniques to be generally applicable to data dimensionality reduction

applications, beyond the task of material representation addressed here.

We explore inverse shade trees in a prototype system that begins with densely measured

spatially-varying reflectance (with raw dataset sizes of several gigabytes), and generates compact

and intuitive trees. We demonstrate that the resulting trees permit real-time non-parametric edit-

ing (Section 4.7) of materials and their spatial distribution, and analyze the accuracy (Section 4.8)

of both the material separation and BRDF decomposition stages.
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4.2 Relationship to Previous Work

Parametric Models for Reflectance: Fitting analytic reflectance models to data has been

a widely-adopted approach, and some models were in fact developed specifically for fitting to

measurements [109, 56]. Thus, one possible representation of a measured SVBRDF is a collection

of analytic BRDF parameters at each surface location [76, 31]. Such a representation provides for

easy editing of materials, and with the addition of a clustering step [64] allows editing a single

material everywhere it appears on a surface.

These approaches, however, have several key drawbacks. Reducing a dense set of measurements

to a handful of parameters may introduce significant error [81]. Moreover, it requires non-linear

optimization, which is computationally expensive and numerically unstable. Finally, clustering the

values of the BRDF parameters [64] does not generate a desirable separation of the component

materials in the presence of blending on the surface (even, in some cases, the trivial pixel-level

blending present at antialiased material edges). This is both because the problem is undercon-

strained (i.e., there are many possible cluster allocations with comparable approximation error)

and because the parameters of most BRDF models are not linearly related.

The work of Goldman et al. [34] is most similar to our own. They fit a convex combination

of two analytic BRDFs (along with surface normals) at each surface location. This results in a

sparse, non-negative representation, although their sparsity constraint is less general than the one

we introduce in Section 4.5.2. Moreover, they use an isotropic Ward BRDF model which is less

general than our data-driven approach.

In this section, we solve the material separation problem using the measurements directly,

before fitting any secondary models to individual BRDFs. This allows for arbitrary blending of

materials, giving correct results when parametric approaches fail (see section 4.8 for a comparison

of accuracy). In addition, we use a non-parametric representation of BRDFs based on a small set

of intuitive curves, providing both generality and greater accuracy for some classes of materials

that exhibit anisotropy or retroreflection.

Nonparametric Models and Matrix Decomposition: Nonparametric approaches, including

basis function decomposition [21] and standard matrix rank-reduction algorithms such as PCA, can

retain high fidelity to the original data. In the context of appearance representation, researchers
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have explored a variety of rank reduction algorithms, including variants of PCA [53, 30, 106],

homomorphic factorization [77], ICA [102], k-means clustering [66], and NMF [16, 60].

Though our approach also falls in the category of dimensionality reduction, we build on prior

work by performing a multi-level sequence of decompositions, rather than just a single one. More

importantly, motivated by an evaluation of existing methods, we introduce a set of new matrix

factorization algorithms (Section 4.4) specifically designed to provide editable decompositions, a

criterion for which existing methods are not optimized.

Non-Parametric Material Editing: A data-driven approach to BRDF editing has been pro-

posed by Matusik et al. [74], in which a user labels directions (e.g., “shininess”, “rustiness”, etc.)

in a high-dimensional space of measured materials. The large number of materials, and the un-

compressed representation of each BRDF, contribute to large storage requirements and inhibit

interactive control. Though our BRDF editing system is also based on measured data, we provide

for direct manipulation of curves controlling the reflectance instead of focusing on higher-level

behaviors. In addition, our compressed representation and interactive renderer permit real-time

manipulation of materials, including spatial variation.

To our knowledge, only two systems have demonstrated material editing via direct manipulation

of low-dimensional factors of the BRDF [4, 48]. In these systems the user edits a 2D image, which is

then used as a component in a parametric or homomorphic-factored BRDF model. We generalize

this by allowing interactive control over all the 1D and 2D factors necessary to specify a full

SVBRDF.

4.3 System Overview

Although the shade tree framework could in principle represent many types of appearance data,

including BTFs, light fields, and time-varying textures, this section focuses on SVBRDFs. We have

also developed techniques for inferring shade trees of the BSSRDF of real-world materials [86] which

we briefly discuss in Section 4.11. Here we provide a brief overview of our full pipeline, ranging

from measurement of a SVBRDF through representation, rendering, and editing.
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Appearance Acquisition: Chapter 3 provides a detailed description of our acquisition pipeline.

Recall that we used a spherical gantry with computer control over camera and light source direc-

tion [72] to record a set of high-dynamic-range images of planar samples with spatially-varying

material under many illumination and view directions. The choice to measure mostly-planar sam-

ples simplified the calibration and registration, but the techniques presented here apply to arbitrary

geometry. We acquired five different SVBRDFs that include layered materials, anisotropy, retro-

reflection, and spatially-varying normal and tangent directions. The complete raw and processed

data, together with a description of acquisition and calibration procedures, are available on a web

server (URL to be announced).

After geometric and photometric calibration, the images are reprojected onto the best-fit plane

of the surfaces, yielding a uniform spatial sampling (at approximately 500 × 500 points) of re-

flectance measurements. Because the SVBRDF is a function of six variables (i.e., it can be written

S(u, v, ωi, ωo, λ), where λ is discretized into RGB or HSV bands), sampling the illumination and

view directions uniformly and densely is impractical. Therefore, we sampled the forward- and

backward-scattering lobes of the reflectance more densely than the other regions of the domain,

yielding a total of between 2000 and 6000 reflectance measurements for each point on the surface.

The scattered data are conceptually resampled onto a uniform grid using a push-pull algorithm [36]

with a Gaussian reconstruction kernel (as we shall see later, we avoid a complete reconstruction

by using a subsampling method).

Decomposition: We produce a shade tree with a series of decompositions of the SVBRDF and,

using the same algorithms, the component BRDFs. For example, consider Figure 4.1(top), which

shows a few images from a dense set of measurements of the SVBRDF of an anisotropic wallpaper

sample. The first level of our decomposition separates the data into 4D functions that depend on

directions of incidence and reflection (“basis BRDFs,” shown in Figure 4.1b as lit spheres) and

2D functions of spatial position (“blending weights,” shown in Figure 4.1a). We represent the

decomposition with this tree diagram:
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Tree 1 S(u, v, ωi, ωo, λ)

↓
∑

ւ ց

⊗ ⊗

ւ ց ւ ց

T1(u, v) ρ1(ωi, ωo, λ) T2 ρ2

Note that we have chosen to associate color (i.e., λ) with the BRDFs. However, if it were more

convenient for later editing, we could have associated color with the spatial blending weights

instead, resulting in a color texture and colorless basis BRDFs.

Although we have reduced the size of the original SVBRDF, these basis BRDFs are still tabular

representations of a 4D function, making them unsuitable for interactive rendering or editing. To

address this, we further reduce the basis materials through a series of decompositions into 2D

functions and eventually into 1D curves. Although we introduce these decompositions in the

context of representing the materials contained within a SVBRDF, they provide, in general, an

editable non-parametric representation of the BRDF.

For the example in Figure 4.1, each basis BRDF is decomposed into two terms, each a product

of 2D functions of half (ωh)- and difference (ωd) angles [94]. For the shiny gold material, one term

corresponds roughly to the specular component of the reflectance (Figure 4.1c), while the other

represents near-Lambertian diffuse (Figure 4.1d). For improved editability, we may further factor

the 2D functions into products of 1D curves defined on the corresponding elevation and azimuthal

angles (Figures 4.1e and f):
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Tree 2 ρ(ωi, ωo, λ)

↓

Reparameterization

↓
∑

ւ ց

⊗ ⊗

ւ ց ւ ց

fd(ωh) gd(ωd, λ) fs(ωh) gs(ωd, λ)

⊗ ⊗ ⊗ ⊗

ւ ց ւ ց ւ ց ւ ց

sd(θh) rd(φh) sd(θd, λ) rd(φd) ss(θh) rs(φh) ss(θd, λ) rs(φd)

While the decomposition into 1D curves results in a simpler representation and is desirable for

isotropic BRDFs (which are invariant to φh), we have found that it may reduce accuracy for some

complex anisotropic materials. In these cases, we terminate the decomposition one level higher,

resulting in 2D maps resembling those of Ashikhmin et al. [4] and Ngan et al. [81].

Rendering and Editing: The measured materials may now be rendered by re-composing the

shade trees in a pixel shader; this provides interactive feedback during editing. In most cases,

the 1D functions or curves at the leaves of the tree correspond naturally to physical phenomena

controlled by parameters in existing analytic models. For example, the ss(θh) curve is related

to the distribution of microfacets on the surface, and hence determines the shape of the specular

highlight. The ss(θd, λ) curve describes the behavior of the specular lobe as the view direction

moves from normal incidence to grazing, capturing Fresnel effects such as color shifts, increased

specular reflection, and a reduced diffuse term. Color variation, such as in ss(θd, λ), can be

represented with separate curves for each RGB color component (Figure 4.1f), or in an alternate

colorspace such as HSV.
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Figure 4.2: We cast the decomposition depicted in Tree 1 as the factorization of a matrix. (a)
High-dynamic range images of a SVBRDF captured with a spherical gantry are (b) organized into
a matrix with rows that vary along spatial position and columns that vary along incident and
outgoing angles. This matrix is factored into the outer product of (c) functions of spatial position
(“blending weights”) and (d) functions of incident and reflected directions (i.e., “basis BRDFs” in
tabular form). In this example, we factor the SVBRDF of a holiday greeting card into four terms.

4.4 Algorithms for Matrix Factorization

We can cast the tree-structured decompositions described previously as a sequence of matrix

factorizations. At the top-level (Tree 1), we organize samples of a SVBRDF into a matrix that

is factored into the outer product of 2D blending weights and 4D basis BRDFs, as illustrated in

Figure 4.2. At the second-level (Tree 2), we decompose each basis BRDF into appropriate 2D

factors by computing another matrix factorization, as shown in Figure 4.3.

There are a variety of matrix algorithms available for these factorizations. In Section 4.4.1,

we compare existing approaches and discuss the conditions under which they fail to provide a

meaningful decomposition. In Section 4.5, we introduce a new factorization algorithm based on

linearly constrained optimization that improves the separation in challenging cases. One key

benefit of this new algorithm is that it can incorporate domain-specific constraints for decomposing

appearance data (Section 4.5.3). Lastly, we address practical considerations related to scattered

input data and matrices whose sizes exceed the capacity of main memory (Section 4.5.6).

We will adopt the notation of [62] to discuss matrix factorizations. Specifically, a n× m input

matrix V is approximated as the product of a n× k matrix W and a k×m matrix H (V ≈ WH).

Rank reduction occurs when k is smaller than n and m, and we are most interested in cases of
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Figure 4.3: We cast the BRDF decomposition in Tree 2 to matrix factorization. Each (a) tabular
BRDF (shown as a lit sphere) is (b) first re-parameterized and then rasterized into a matrix with
rows that vary along the half-angle and columns that vary with difference-angle. We factor this
matrix into (c) functions of the half-angle and (d) functions of the difference angle.

extreme compression (e.g., n and m are hundreds or thousands, while k is between 1 and 5). We

consider factorizations that minimize the Euclidean error,

‖V − WH‖2 =
∑

ij

(Vij − (WH)ij)
2
. (4.1)

To begin, we focus on SVBRDF decomposition, so that the original data is in matrix V and

the mixing weights and basis BRDFs end up in W and H , respectively. Later, we will consider

BRDFs, and W and H hold sampled half-angle and difference-angle maps.

4.4.1 Evaluation of Existing Algorithms

We compare several classes of factorization algorithms suitable for accurately representing mea-

sured appearance data, evaluating their performance in representing the Season’s Greetings dataset

shown in Figure 4.4. This measured SVBRDF is of a holiday greeting card with four materials

(blue and white paper, and gold and silver foil), as shown in the ideal separation at bottom. Note

that the materials are smoothly blended over the surface. For example, the gold foil is present in

different amounts at the boundary between the gold border around the word “Season’s” and the

paper background (Figure 4.4, T2 and T3). Also, the stripes in the background were created by

halftoning the gold material over the paper background. This is visible as spatial blending between

materials T2 and T4.

To represent these effects, while providing an editable decomposition, we have identified three

key properties of a factorization algorithm. First, it should allow for a basis consisting of linear

58



Original Images

Ideal Decomposition

T1: silver foil T2: gold foil T3: blue paper T4: white paper

Figure 4.4: Two images (originals are HDR) from the “Season’s Greetings” dataset, together with
hand-generated mixing masks that would be produced by an ideal decomposition. Notice that the
separation is soft, with significant blending between the gold foil and both the blue and white
paper. Since the blending weights in the bottom row are colorless scalars (the color for this shade
tree is in the BRDFs), we use grayscale images to visualize them.

combinations of the input to resolve the blending of different materials. Second, the algorithm

should guarantee non-negativity to produce a physically plausible result and favor parts-based

decompositions. Third, the algorithm should provide control over the sparsity of the solution,

favoring a representation that uses individual materials, where possible, to represent the SVBRDF

(as opposed to blending between materials across the entire surface). Table 4.1 summarizes these

properties for different algorithm classes.

PCA/ICA: Two popular rank reduction algorithms are Principal Component Analysis (PCA)

and Independent Component Analysis (ICA), along with extensions such as multilinear tensor

factorization [106]. The main advantage of PCA is that it yields a global minimum of Equation 4.1.
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Algorithm Properties:

Groups Linear Positive Sparse

SVD / ICA Yes No No

Homomorphic No Yes No

Clustering No Yes Yes

NMF / pLSI Yes Yes No

Our Method: ACLS Yes Yes Yes

Table 4.1: Comparison of matrix factorization algorithms. Existing methods do not satisfy the
three crucial properties of linearity, positivity, and control over sparsity, which are critical for a
meaningful editable decomposition.

Although these algorithms are guaranteed to recover a basis that is orthonormal (for PCA) or

statistically independent (for ICA), these restrictions are not sufficient to produce a meaningful

description of the data. In particular, both algorithms allow negative values in W and H , resulting

in a representation whose terms cannot be edited independently (Figure 4.5, top).

Homomorphic Factorization: Introduced in the context of representing non-parametric BRDFs,

Homomorphic Factorization [77], decomposes a high-dimensional function into a single product of

an arbitrary number of lower dimensional functions. Although it can support an arbitrary number

of factors, it does not allow linear combinations. Hence, this algorithm is not appropriate for

representing the SVBRDF as a sum of products of basis materials and spatial blending weights, or

decomposing a BRDF into a sum of diffuse, retroreflective and specular lobes.

Clustering: One popular method for clustering data is the k-means algorithm [40]. Like all

clustering algorithms, k-means partitions the input into disjoint sets, associating each point with

a representative point called the cluster center. This can be interpreted as a factorization of the

SVBRDF, where the cluster centers are stored in the matrix H and W is computed by re-projecting

the data onto this basis (using gradient descent for example). In our experiments, clustering

performs well on input with a small basis that is well-separated over the surface. However, when

the SVBRDF exhibits blending of its component materials, clustering typically fails to recover a

useful basis. For example, in Figure 4.5, middle, k-means has incorrectly assigned a single cluster

to the combination of the gold foil and white paper (T2) while grouping the gold and silver foils

into a separate cluster (T1).
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Principal Component Analysis (RMS=0.016)

k-means with Re-projection (RMS=0.084)

Non-Negative Matrix Factorization (RMS=0.017)

T1 T2 T3 T4

Figure 4.5: Blending weights computed from the “Season’s Greetings” dataset using the factoriza-
tion algorithms discussed in Section 4.4. For PCA, these terms are visualized as images where red
and green correspond to positive and negative values with luminance proportional to the magni-
tude. For k-means and NMF, all values are non-negative and are visualized as grayscale images.
Note that neither PCA nor NMF provide a separation of the data into distinct parts suitable
for editing. Although clustering performs better, it too fails to recover the desirable separation
into the four component materials present in this sample (Figure 4.4,bottom row). In particular,
k-means assigns both the gold and silver foil to a single cluster (T1) and combines the gold foil
and white paper into a separate term (T2).

Non-Negative Matrix Factorization: Another matrix decomposition approach is Non-Negative

Matrix Factorization (NMF), introduced by Lee and Seung [62]. Together with similar algorithms

such as Probabilistic Latent Semantic Indexing [46], NMF guarantees that both resulting factors

contain only non-negative values. One motivation for this constraint is to encourage the algorithm

to describe the input data as the sum of positive parts, thereby producing a more meaningful
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factorization. In our experiments, however, the character of the decomposition is sensitive to small

changes in the data (including those due to measurement noise and misalignment), and the non-

negativity constraint is not always enough to guarantee an editable separation (see Figure 4.5,

bottom).

4.5 Our Method: Alternating Constrained Least Squares

We have seen that existing matrix factorization methods do not fulfill the three properties (linearity,

positivity, sparsity) needed to produce meaningful, editable decompositions. We now describe a

new suite of factorization algorithms that allow for all of these, while being flexible enough to

support additional domain-specific constraints such as energy conservation in the SVBRDF and

monotonicity of the BRDF (Section 4.5.3).

Our algorithm is built upon efficient numerical methods for solving linear constrained least

squares (LCLS) problems of the form:

minimize
x∈Rn

1

2
‖b − Mx‖2 subject to l ≤











x

Ax











≤ u (4.2)

The n-element vector x is called the vector of unknowns, M is called the least-squares matrix

and b is the vector of observations. The vectors u and l provide the upper and lower bound

constraints of both x and the linear combinations encoded in the matrix A, called the general

constraints. There are numerous algorithms available for efficiently solving these types of convex

quadratic programming problems. We use an implementation of an inertia-controlling method

that maintains a Cholesky factorization of the reduced Hessian of the objective function [32]. We

use the implementation of this algorithm in the Numerical Algorithms Group (NAG) library set,

called nag-opt-lin-lsq [78].

4.5.1 Non-Negative Factorization

As with NMF, we initialize W and H to contain positive random values, and minimize Equation 4.1

by alternately updating these two matrices. This problem is known to be convex in either W or H

separately, but not simultaneously in both. As a consequence, we will present an algorithm that
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finds a local minimum of Equation 4.1.

Without loss of generality, we consider the case where both V and W are row vectors (v ≈ wH).

We later extend the discussion to consider the entire matrix W . For a fixed H , we update our

current estimate of w by minimizing Equation 4.1, subject to the linear constraint w ≥ 0. To

accomplish this, we solve the LCLS problem in Equation 4.2, with M = HT , b = vT , and x = wT .

To constrain the solution to be non-negative, we set l = 0 and u = ∞.

We update the entire matrix W by computing the above solution for each of its rows in turn.

Similarly, we can transpose the problem, take W to be the least-squares matrix M , and update

our estimate of H one column at a time. By alternating between estimating W and H , we achieve

a non-negative factorization of the input matrix V . Because we are guaranteed never to increase

Equation 4.1 after either update, this algorithm, which we call Alternating Constrained Least

Squares (ACLS), is guaranteed to converge to a local minimum.

Compared to NMF, for which each iteration (i.e. one update of both W and H) costs only a few

matrix multiplications, each iteration of ACLS is considerably more expensive. On the other hand,

each iteration of ACLS results in a more significant decrease in error, leading to convergence with

an order of magnitude fewer iterations. In our experiments, we have found the overall computation

time for these two algorithms to be comparable.

4.5.2 Sparsity

A non-negativity constraint is frequently not enough to provide an intuitive parts-based decom-

position. We introduce a modification that considers the sparsity of the solution, providing a

continuous tradeoff between non-negative matrix factorization and clustering. We have found

this flexibility to be effective for decomposing SVBRDFs exhibiting complex blending of multiple

materials.

In order to define sparsity, consider the SVBRDF factorization shown in Figure 4.2. A sparse

decomposition is one in which there is a linear combination of relatively few basis materials at

each surface location. That is, each row of W has few non-zero entries. Although there are several

expressions that quantify this notion, we require one that leads to a linear least-squares problem:

it must be quadratic in the elements of the row. Therefore, we define the sparsity penalty for a

row w as the sum of the squares of all but one of the coordinates of w (i.e.,
∑

i6=j w2
i , where the
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selection of j is discussed below). For a fixed H , we can combine this sparsity penalty, weighted

by a parameter λ, with the approximation error (4.1), which gives a new error to be minimized:

‖v − wH‖2 + λ
∑

i6=j

w2
i . (4.3)

One potential problem with this formulation is that we can decrease the overall error simply by

decreasing the magnitude of all the elements of w. This is particularly true for large values of λ.

To address this, we introduce an additional soft constraint that the L1 norm of w should be close

to unity. As before, we can add this penalty, weighted by the parameter µ, to the error:

‖v − wH‖2 + λ
∑

i6=j

w2
i + µ

(

1 −
∑

i

wi

)2

. (4.4)

Starting from Equation 4.4, we can write out the corresponding least-squares matrix and observa-

tion vector to be used in Equation 4.2:

b =













vT

√
µ

0













M =

































— HT —

—
√

µ . . .
√

µ —

√
λ . . .

√
λ 0

√
λ . . .

√
λ

































. (4.5)

The 0 in the bottom row of M will be at the jth position.

Putting things together, we estimate w by iterating over the possible values of j (in practice

this corresponds to the rank of the approximation and is small) and minimizing Equation 4.4; we

retain the w that corresponds to the selection of j with the smallest error. The entire matrix W

is estimated one row at a time in this fashion. We alternate between updating our estimate of W

and H until the error converges to a local minima. Assuming that both W and H are initially

within the feasible region, each iteration cannot increase Equation 4.4, so this algorithm, which we

call Sparse Alternating Constrained Least Squares (SACLS), is guaranteed to converge. This is a

critical property, and one not shared by some previous approaches to sparse factorization (such as
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SACLS: λ = 0.0, µ = 0.0 (RMS=0.017)

SACLS: λ = 5.0, µ = 10.0 (RMS=0.020)

SACLS: λ = 100.0, µ = 10.0 (RMS=0.023)

T1 T2 T3 T4

Figure 4.6: The blending weights computed from the “Season’s Greetings” dataset using SACLS
with different settings of λ and µ. Increasing values of λ force the algorithm to behave more like
clustering, trading numerical accuracy for a more meaningful separation. RMS errors refer directly
to the quality of reconstruction, without taking into account the additional error terms for sparsity
or other constraints.

that of Hoyer [47]), which include a normalization step that can increase error.

The parameter λ influences the sparsity of the factorization, ranging from pure matrix factor-

ization (λ = 0) to pure clustering (λ → ∞). The parameter µ, in contrast, determines the extent

to which we insist that the sum of material contributions at each location is 1. We have found the

algorithm to be somewhat less sensitive to the selection of this parameter. As with previous work

in low entropy coding [83], we define both λ and µ in units of the variance in V . This provides more

intuitive control over these values, but trial and error is still required to determine their appropriate

settings. Figure 4.6 illustrates the impact of different settings of λ on the decomposition.
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4.5.3 Domain-Specific Constraints

One advantage of the ACLS algorithm is that it can be easily extended to include additional

linear constraints beyond non-negativity and sparsity. In this section, we introduce several useful

constraints in the context of representing the SVBRDF and BRDF, including energy conservation

and monotonicity.

4.5.4 SVBRDF Constraints: Energy Conservation

When factoring the SVBRDF, we can extend ACLS to guarantee that the basis BRDFs conserve

energy. For convenience, suppose that H contains values of the BRDF for different light positions

and a single viewing direction (these techniques can readily be extended to multiple viewing

directions). In this simplified case, we can constrain the BRDF at the jth row of H to conserve

energy by bounding the sum of its values, each weighted by the solid angle:

∑

i

Hji ∆ωi ≤ 1 (4.6)

This constraint is incorporated into the ACLS framework by first linearizing the matrices V and

H into column vectors ṽ = (V11 V12 . . . Vmn)T and h̃ = (H11 H12 . . . Hkm)T . From Equation 4.2,

we set b = ṽ, x = h̃, and define M and A as follows:

M =























w11 0 · · · 0 w12 0 · · · 0

.

.

.

0 · · · 0 wm1 0 · · · wmk























A=























∆ω1 · · ·∆ωm 0 · · · 0

.

.

.

0 · · · 0 ∆ω1 · · ·∆ωm























(4.7)

Finally, we set the boundary constraints (i.e., l and u) to guarantee that H is non-negative and the

sums encoded in the matrix A lie between 0 and 1. By solving Equation 4.2 under these substi-

tutions, we guarantee that the BRDFs encoded in H conserve energy. With the added constraint

on the parameterization of the BRDF that φd + π → φd, we can also guarantee reciprocity. To

our knowledge, this is the first factorization algorithm that guarantees an SVBRDF decomposition

into physically valid non-parametric BRDFs.
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Principal Component Analysis (RMS=0.014)

Non-Negative Matrix Factorization (RMS=0.015)

k-means with Re-projection (RMS=0.029)

SACLS with λ = 100.0,µ = 800.0 (RMS=0.022)

Figure 4.7: Visual comparison of the spatial blending weights computed by several linear fac-
torization algorithms on the “Wood+Tape” dataset. Our method (bottom row) provides control
over sparsity and guarantees the component BRDFs are physically valid (energy conserving and
reciprocal). This aids in providing automatic separation of the measured data into its component
materials and provides a final representation that can be edited (Figure 4.14).

Reciprocity and energy conservation constraints were used to perform material separation on

all the samples considered here. Figure 4.7 shows our separation for the Wood+Tape dataset. This

particularly challenging SVBRDF consists of a piece of oak partially covered by semi-transparent

tape and retro-reflective tape. Note that the tape completely disappears at certain incident and
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Figure 4.8: Accuracy of representing four different SVBRDFs with four possible linear decomposi-
tion algorithms. For each dataset, the SACLS algorithm provides a representation with comparable
numerical accuracy to existing data-driven approaches.

reflected directions (Figure 4.14, left column). On this data, PCA and NMF produce decomposi-

tions with significant mixing, while clustering improperly groups regions of the wood grain with the

tape (Figure 4.7). On the other hand, SACLS correctly separates the SVBRDF into two different

types of wood grain, a tape layer smoothly blended over the wood, and two separate terms for the

retroreflective materials. We have observed similarly intuitive material separation results for all

the datasets. Moreover, this intuitive separation comes at little or no decrease in the numerical

accuracy. Figure 4.8 shows the cosine-weighted RMS error (defined as the square root of the sum

of squared differences between the original images and the reconstruction, weighted by cos(θi))

produced by four decomposition algorithms, for a range of different terms (number of materials).
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Original BRDF

ր

ց

Standard Non-Negative Factorization
(RMS=0.133)

Value/Monotonicity Constraints
(RMS=0.164)

Figure 4.9: The ACLS algorithm can be extended to incorporate value and monotonicity contraints.
We factor a tabular BRDF (left) into the sum of two terms. At top, we use basic non-negative
factorization (Section 4.5). At bottom, the two terms are computed by constraining one term to
have uniform θh dependence while the other is monotonically decreasing in θh.

4.5.5 BRDF Constraints: Value and Monotonicity

At the second level in our tree-structured decomposition (Tree 2), we factor a tabular BRDF into

the sum of terms, each a product of functions of half- and difference-angle. As with the SVBRDF,

this is equivalent to factoring a matrix (Figure 4.3).

Factoring the BRDF into multiple 2D terms using standard non-negative factorization (Sec-

tion 4.5) generally yields factors that are arbitrary linear combinations whose values should not be

independently edited. To address this, we allow for two types of constraints on these factors. First,

we can constrain one of the half-angle terms in Figure 4.3c to remain at a constant value while

allowing the rest of the factorization to update normally. This has the effect of separating the

BRDF into a lobe with uniform θh dependence (typically diffuse-like terms, though not restricted

to be perfectly Lambertian) plus a lobe with arbitrary half-angle distribution (usually a specular

lobe). In all cases, the dependence on the difference angle is retained, allowing for Fresnel effects

such as color shifts, increased specular reflection, and a reduced diffuse term.

Additionally, we can constrain the half-angle dependence of the “specular” term to be mono-

tonically decreasing in θh, resulting in more physically plausible highlights. We constrain the
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derivative of fi to be negative at each sample. Because this is a linear operator (e.g., central dif-

ferences), it can be directly encoded into the matrix A along with the settings l = −∞ and u = 0

in Equation 4.2. Figure 4.9 provides an example of using both value and monotonicity constraints

for the shiny gold foil ρ2 from Figures 4.2 and 4.3.

4.5.6 Practical Considerations

To make these factorization algorithms practical, there are several issues we must consider. First,

for most real-world data, the level of confidence of each measurement is not uniform across the

input matrix V . For example, reflectance measurements from grazing angles will be less accurate

then those from perpendicular angles. Additionally, some regions of the domain are not measured,

producing “holes” in the input. We would like to associate a “confidence” with each value in the

matrix in order to allow scattered data interpolation across missing regions in the input. Second,

because of the high dimensionality and resolution of our datasets, the sizes of the matrices we

factor often exceed the capacity of main memory. Finally, to help avoid incorrect local minima we

initialize ACLS from multiple starting positions.

4.5.7 Missing Data and Confidence Weighting

We incorporate a confidence matrix C into our objective function to weight the contribution of

each element in V towards the error:

∑

ij

(

Cij

(

Vij − (WH)ij

)

)2

. (4.8)

An element with a confidence of 0 will have no effect on the factorization, seamlessly allowing

for missing data. We can incorporate C into any ACLS variant through a simple modification

to the least-squares matrix M and the observation vector b in Equation 4.2. For convenience,

consider estimating a single row in W (denoted w) for a fixed H according to the corresponding

rows in V and C (denoted v and c respectively). The related linear constrained problem from

Equation 4.2 will have bj = cjvj and Mjk = cjHkj . Note that this reduces to standard ACLS for

cj = 1. Figure 4.10 shows the performance of confidence-weighted ACLS on a controlled example,

where 50% of samples of a BRDF are removed.
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(a) Original
Data

(b) Tabular
Representation

(c) Half of Data
Removed

(d) Confidence
Matrix

(h) Final
Reconstruction

(g) 20 Iterations (f) 5 Iterations (e) 1 Iteration

θh

φd

×4

Figure 4.10: Using a measured BRDF as input (a) we construct a data matrix indexed by θh

and φd shown in (b). (Note: we show only one section of the complete data matrix by omitting
variation in θd). For this test, we removed 50% of the data values to produce the matrix in (c) and
compute a confidence matrix (d) where measured values have a confidence of 1 and missing values
have a confidence of 0. We show the factorization computed by confidence-weighted ACLS after
one (e) and five (f) iterations. After 20 iterations (g), we produce a matrix that approximates the
original.

In practice, we compute the confidence matrix by setting unmeasured regions in the input

matrix to zero and assigning a relative confidence to each view according to its observed calibration

error.

4.5.8 Subsampling for Large Datasets

Due to the high-dimensionality of the datasets we are interested in factoring, V often exceeds main

memory. However, its rank is significantly smaller then the resolution of our measurements (i.e.,

k ≪ m). We exploit this rank-deficiency by computing a basis for a subset of the complete data

(call this V ′). We use whichever variant of ACLS is appropriate to compute: V ′ ≈ W ′H . Because

we discarded only complete rows of V , the matrix H can be thought of as an estimate of its basis.

The original data is projected onto H using ACLS to estimate W while holding H fixed. This

procedure requires storing only one row of V , one row of W and the complete H matrix in main

memory at any given time. We can similarly reduce V by computing a factorization over a subset

of the columns.
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This strategy converges at least as quickly as standard ACLS even for aggressive downsampling.

If the sample size is too small, however, the basis of V ′ will not accurately represent V , and the

error will increase. For the datasets we consider, this situation only arises when using less than

0.01% of the original matrix.

In practice, we reconstruct the SVBRDF datasets containing isotropic materials at an angular

resolution of 100 × 30 × 15 (θh × θd × φd), while representing anisotropic datasets with a 64 × 64

parabolic map [44] for the half-angle term at 30× 15 different positions of θd and φd respectively.

The spatial resolution of the samples are approximately 5002. If we were to represent the SVBRDF

matrix explicitly, this would require 125GB of memory for the isotropic case, and 5,149GB for

anisotropic samples. Instead, we rely on subsampling: we compute blending weights using 50

columns of the original matrix at qualitatively different positions (i.e., specular highlights, back-

scattering, perpendicular and grazing angles), and reconstruct full resolution tabular BRDFs at

100 randomly selected positions.

4.5.9 Initialization of ACLS

While the simplest strategy for all ACLS variants is to initialize the matrices W and H with random

positive values (subject, of course, to any additional desired constraints such as monotonicity), the

fact that ACLS performs local minimization leaves it susceptible to local minima. We have found

that a more robust strategy is to first run k-means clustering with a relatively large k (for example,

20), then initialize ACLS with a random subset of the cluster centers. For even greater robustness,

we repeat the ACLS minimization with many randomly-chosen subsets of cluster centers, and take

as our final result the one with smallest error. In our experiments, this strategy is robust in avoiding

incorrect local minima, and ameliorates the undesirable lack of provable global convergence (shared

by all algorithms considered here, except PCA).

4.6 Normal and Tangent Estimation

For materials containing normal variation or (for anisotropic materials) variation in tangent di-

rection, we can augment our SVBRDF decomposition tree with the addition of normal and/or

tangent maps. If both are present, we are effectively estimating a full rotated coordinate system at
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each spatial location, thus capturing effects similar to those recently demonstrated by Marschner

et al. [72]. All these effects are captured with the following tree, which we use instead of Tree 1:

Tree 3 S(u, v, ωi, ωo, λ)

↓

Normal/tangent mapping

ւ ↓ ց

n(u, v) t(u, v)
∑

ւ ց

⊗ ⊗

ւ ց ւ ց

T1(u, v) ρ1(ωi, ωo, λ) T2 ρ2

We estimate normal and tangent directions at each spatial position in three stages. First, we fit

a generic BRDF with an anisotropic Gaussian specular lobe (i.e., a Ward BRDF) at each location,

with the rotation angles defining the coordinate system as free parameters to the fit. Using these

initial orientation estimates, we build the matrix described in the previous section and compute its

k-term factorization. We then refine our estimates using this factorization, again solving for the

best-fit normal and tangent. We can repeat these steps until the overall error converges, though in

practice we found that two iterations are sufficient to accurately recover the fine geometric surface

detail present in our samples. We show the final normal maps and tangent maps for two datasets

in Figure 4.11.

4.7 Results: Editing

The benefit of obtaining a decomposition of the SVBRDF into a meaningful shade tree is that any

leaf node may be independently edited. In this section, we describe several possible edits at both

the material level (altering the spatial texture of which component material appears where) and at

the BRDF level (changing salient aspects of a material’s reflectance using our curve-based model).

The supplementary video shows further real-time editing results. While most of these edits are

straightforward given our intuitive shade tree representation, they are to our knowledge the first

demonstration of non-parametric editing of spatially-varying measured materials, and would not be
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Figure 4.11: Normal and tangent maps. Left: We show N · L for the Dove normal map and a
near grazing light direction. For tangent maps, we set the hue of each pixel to be the tangent
direction. Note that this direction is undefined in regions with isotropic reflectance. Middle:
original images. Right: images rendered using a 3-term shade tree with normal and tangent maps
(note: blending weights not shown).

easy with alternative matrix factorization methods, which do not provide a meaningful separation

of materials or individual BRDFs.

4.7.1 SVBRDF Editing

Changing Spatial Distribution of Materials: Perhaps the most obvious edit is to change the

spatial distribution or “texture” of the basis materials. In Figures 4.1 and 4.13 we have changed

the texture by re-painting the blending weight maps. To achieve the edit shown in Figure 4.14,

we first define a transparency mask for the tape as the product of its blending weights and a

user-set constant. Our resulting shade tree composites the tape over the additional layers using

this mask. Because our separation was not perfect for this challenging case, we manually repaired

some error in the wood blending weights below the tape. We can also interactively re-position the

tape (shown in the supplemental video) or remove it altogether. This edit would not be possible
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Interactive SVBRDF Viewer/Editor

Figure 4.12: We have implemented a prototype system for interactive rendering and manipulation
of SVBRDFs represented as different shade trees.

using the decompositions achieved by alternative algorithms (Figures 4.7 and 4.19).

Changing or Combining Basis Materials: Figure 4.1 shows an edit in which one of the

component materials was made less shiny (using the BRDF curve editing techniques discussed

below), while the hue of the other material was changed. A related edit involves completely

replacing basis materials with other measured BRDFs. In Figure 4.15 we replace the metallic-

silver BRDF in the Dove data with several measured BRDFs from the Matusik [74] database.

4.7.2 BRDF Editing

The BRDF edits available using our 2D anisotropic factors and 1D curves for isotropic materials

include many of those that have become familiar to users of parametric models, but have thus

far not been easy to perform with non-parametric BRDFs. Several possibilities are shown in

Figure 4.16:
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Figure 4.13: A key benefit of our Inverse Shade Tree framework is that it supports editing. Here
we change the normal map and blending weights in the Season’s Greetings shade tree: we retain
the original BRDFs, but spell a slightly embossed SIGGRAPH 2B0ST0N6.

a. The diffuse color is changed by editing the sd(θd, λ) curve. Since this is represented in HSV

space, it is easy to make changes to the overall color while maintaining any desaturation,

color shift, or Fresnel effects present in the original data.

b. The shape of the highlight is represented by the fs(ωh) map (or the ss(θh) and rs(φh) curves

if a decomposition into 1D factors has been performed). Warping this maintains the shape

of the highlight while making it narrower or wider, or varying the amount of anisotropy.

c. One drawback of measured data is that it contains noise that may be difficult to remove when

using previous non-parametric representations. Although our curve-based model is faithful

to the measured data, we can remove noise by smoothing the 1D curves. In the figure,

we demonstrate this by smoothing the ss(θh) curve to remove some noise in the specular

highlight.

d. The Fresnel reflection law predicts that specular highlights will become stronger and less

saturated towards grazing incidence. We may introduce such an effect, or exaggerate it, by

editing the ss(θd, λ) curve.

Additional effects possible in our framework include changing retroreflective behavior (via the

sd(θd) curve), simulating the color shift of gonio-apparent paints (via the ss(θd, λ) curve), and

introducing nonphotorealistic behavior by quantizing the curves.
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Original Reconstruction Removed Tape

Figure 4.14: The Wood-Tape dataset consists of a piece of oak partially covered by semi-transparent
tape and retroreflective bicycle tape. Left: Three original images illustrate that the tape disap-
pears for some incident and reflected directions, making this a challenging dataset to separate into
its component materials. Also note the significant brightening of the lower image due to retrore-
flection. Middle: Reconstruction provided by a shade tree with five terms, computed using the
ACLS algorithm. Right: We edit the weight maps to remove the tape. Although our separation
was not perfect, the resulting edits display few artifacts.
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Original Image Reconstruction Bronze Pearl Paint Nickel

Figure 4.15: An example of material transfer: one of the subtrees of our decomposition is
completely replaced with a different one. Here, we replace one of the component BRDFs with
several materials from Matusik’s database, while retaining spatial texture and normal maps.

(a) Changing diffuse (b) Varying highlight (c) Smoothing noisy (d) Desaturating toward
color by editing shape by editing data by editing grazing by editing
sd(θd, λ) curve fs(ωh) map ss(θh) curve ss(θd, λ) curve

Figure 4.16: Our system allows for BRDF edits similar to those available with parametric repre-
sentations, implemented by moving or warping the 1D curves and 2D maps defined in tree 2.

4.8 Comparison to Analytic Models

Our ACLS algorithm was designed to create meaningful decompositions into non-parametric shade

trees that can be edited. We have compared to earlier matrix factorizations, and it is clear that

those methods do not provide separations useful for editing—indeed, this was not their design

goal. The best previous methods for creating intuitive decompositions are those that fit parametric

BRDF models at each point, followed by clustering to give a user control of individual materials

everywhere they appear on the surface [34, 64]. In this section, we compare to these methods,

showing our higher qualitative and quantitative accuracy.

For these comparisons, we use the Ward BRDF model (as did Goldman et al. [34]). We use
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the full anisotropic version of the model, and augment it for retro-reflective materials with a back-

scattering lobe consisting of a Gaussian function of θd. While other parametric models such as

Lafortune lobes can have an arbitrary number of terms, it is difficult to stably fit more than 2-3

lobes, and the form of this model does not represent complex materials and anisotropy well [81].

SVBRDF Accuracy: Figure 4.17 shows a comparison of our algorithm and approximating the

SVBRDF as unique parametric fits at each surface position, as well as the result of clustering these

fits. Due to the inherent flexibility of our non-parametric representation, our method introduces

less error than clustering at any given term count. In fact, with only 2 materials, we are more

accurate than fitting an independent Ward model to each position.

Because the RMS error is dominated by large values of the BRDF, arising from either shiny

materials or measurements near grazing angles, it is important to also provide a qualitative com-

parison as done in Figure 4.18. Note that the Ward model is unable to match the irregular shaped

anisotropic highlight in the wallpaper (the supplemental video contains additional comparisons).

In the bottom of Figure 4.18, it also poorly approximates the shiny materials for positions outside

their specular highlights. This is a common problem that occurs when the error of the analytic

fit is dominated by the large values of the BRDF near specularities and grazing angles. Because

we represent the BRDF as a sampled function, our shade tree is flexible enough to match the

measured appearance of these datasets qualitatively better than the analytic model.

SVBRDF Material Separation and Editability: We also evaluate our approach in its ability

to provide a final separation of materials that is suitable for editing. We present qualitative

comparisons of the separation achieved using our techniques, and parametric clustering, for two

particularly challenging cases.

The top rows of Figure 4.19 show the separation of the Season’s Greetings dataset into four

blending weights computed from clustering Ward fits (top row), and using our ACLS algorithm

(second row). Note that clustering the parameters improperly assigns a cluster to the combination

of the gold foil and white paper (top row, second image) in addition to incorrectly combining the

gold and silver foils into a single cluster (top row, left). ACLS correctly associates the four com-

ponent materials with unique terms, providing a final separation that can be edited (Figure 4.13).

The bottom pair of rows in Figure 4.19 show separation results for the Wood+Tape dataset. In
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Figure 4.17: Quantitative comparison of representing a measured SVBRDF using the Ward BRDF
and k-means clustering vs. our method for increasing number of clusters/terms. For reference,
Figure 4.18 shows a visual comparison of the reconstructions of these methods for different numbers
of terms.

this case, the parametric approach is unable to recover the transparent tape layer, as its reflectance

is always observed in combination with the underlying wood. This results in a separation that

incorrectly assigns the same cluster to regions of the wood grain and the tape (second to bottom,

third column). On the other hand, ACLS (bottom row) automatically separates the SVBRDF into

two distinct types of wood grain, a separate layer for the semi-transparent tape, and separate terms

for the two colors of the retroreflective bicycle tape. This produces a shade tree with components

appropriate for rendering and editing (Figure 4.14).

BRDF Accuracy: We compare the accuracy of our decomposition of the BRDF into 2- and

1-D factors with fitting the anisotropic Ward BRDF model to the original measurements. In

Figure 4.20, we show both numerical and qualitative analysis of the error in using these techniques

to represent (top) retroreflective bicycle tape and (bottom) green anisotropic wallpaper. Recall

that the original measurements are rasterized into a uniformly spaced table of values organized

into a matrix. This introduces error into the approximation, which is quantified between the

second and third columns in Figure 4.20. Further decomposing this tabular BRDF into 2D factors

and 1D curves introduces additional error, as shown in the two rightmost columns. Along the

leftmost column, we show qualitative comparisons and error numbers for using the Ward BRDF

model to approximate these original measurements. The fixed form of the parametric model leads

to higher qualitative and quantitative error for some light sources and views. In particular, the
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Visual Comparison: Wallpaper #1

Ward Ward Original SACLS
Unclustered 2 Clusters Image 2 Terms
RMS=0.062 RMS=0.087 RMS=0.038

Visual Comparison: Season’s Greetings

Ward Ward Original SACLS
Unclustered 4 Clusters Image 4 Terms
RMS=0.375 RMS=0.432 RMS=0.291

Figure 4.18: Visual comparison between unclustered Ward model (fit independently to each spatial
location), clustered Ward fits, original images, and our method. We also list the RMS values shown
in Figure 4.17.
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Separation using k-means on Ward Parameters

Separation using ACLS

Separation using k-means on Ward Parameters

Separation using ACLS

Figure 4.19: Visual comparison of the separation achieved by applying k-means clustering to the
fits of a Ward BRDF and that computed by the ACLS algorithm for two different datasets. We
computed four terms (resp. clusters) for the (top two rows) “Season’s Greetings” dataset and
(bottom two rows) the “Wood-Tape” dataset. For the ACLS algorithm, we weighted the sparsity
and L1 norm constraints with λ = 100.0 and µ = 10.0 for Season’s Greetings, and λ = 100.0 and
µ = 800.0 for Wood-Tape.
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Retroreflective Bicycle Tape

Ward Fit Original Tabular 2D Factors 1D Factors
RMS=0.092 RMS=0.030 RMS=0.039 RMS=0.043

Green Anisotropic Wallpaper

Ward Original Tabular 2D Factors 1D Factors
RMS=0.044 RMS=0.027 RMS=0.039 RMS=0.041

Figure 4.20: Analysis of the error introduced by several levels of our tree-structured decomposition
for BRDFs, and comparison with Ward fits. For each material, the top and bottom rows show
parabolic maps of ωh distributions at (θd = 15◦,φd = 90◦) and (θd = 45◦, φd = 90◦) respectively.
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analytic model overestimates the magnitude of the back-scattering lobe near θd = 0. Moreover, the

precise shape of the anisotropic highlights (for wallpaper) is not well approximated by an elliptical

Gaussian.

4.9 Limitations

Our approach is designed for a variety of real-world spatially-varying materials. An important

assumption, however, is that BRDFs are blended linearly over the surface, as in most real materials.

It is theoretically possible for the 6D SVBRDF to vary smoothly, but not be easily expressible as

a linear combination of basis materials or 4D BRDFs. In these cases, alternative representations

may be more compact but not editable, since this has not been addressed by previous techniques.

Another limitation on this work is that we must build a regularly-sampled data matrix before

applying our factorization. By contrast, methods such as nonlinear parameter fitting, homomorphic

factorization, or radial basis function interpolation operate directly with scattered input data. In

practice, our use of confidence weighting and subsampled reconstruction minimizes the resampling

error and additional computational time associated with our use of regularly-sampled matrices.

4.10 Shade Trees for Heterogeneous Subsurface Scattering

We have also investigated how the shade tree framework could be used to represent the spatial

component of the Bidirectional Subsurface Scattering Reflectance Distribution Function (BSSRDF)

for heterogeneous translucent materials [86]. Unlike homogeneous subsurface scattering, like that

observed in milk, these materials cannot be easily fit to simple analytic models such as the dipole

approximation [49]. This is because their complex internal structure results in discontinuities that

arise from both geometric deficiencies (e.g. veins, cracks, etc.) and the presence of multiple types

of materials (see Figure 4.21, top row).

We use a projector-camera pair to record the spatial component of the subsurface scattering

of these materials. Specifically, we project a pattern of dots onto a planar material sample and

recording its response with a digital camera. This setup allows us to recover a 2D slice of the

BSSRDF for a fixed light and view direction: S′ = S(xin, xout) = S(xin, ωi, xout, ωo). This

function can be thought of as encoding the amount of light that is transported between all pairs
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Sample Material Physical Resolution Kernel Size No of No of Original Factored Ratio Min/Avg/Max

Size (cm2) (pixels) (pixels) Terms Clusters Data Size Data Size Relative Error

Candle (Red and Yellow Wax) (a) 19.8 × 14.3 212×154 49×49 12 100 898MB 13MB 1 / 69 0.002 / 0.031 / 0.050

White and Green Marble (4×4) (b) 12.6 × 12.6 277×277 39×39 20 100 1.4GB 39GB 1 / 37 0.003 / 0.010 / 0.060

White and Green Marble (8×8) 25.1 × 25.1 222×222 39×39 8 10 859MB 12MB 1 / 72 0.003 / 0.019 / 0.094

Vertical Lines (White Onyx) (c) 15.2 × 15.2 229×229 39×39 20 10 914MB 26MB 1 / 35 0.004 / 0.017 / 0.100

Cracked Material (Crystal Onyx) (d) 18.5 × 17.6 270×260 45×45 12 5 1.6GB 22MB 1 / 74 0.011 / 0.040 / 0.560

Marble (close up) 2.6 × 2.6 128×128 39×39 16 1 286MB 6.6MB 1 / 43 0.006 / 0.013 / 0.056

Densely Veined Marble 13.0 × 13.0 213×211 29×29 8 10 433MB 9.9MB 1 / 44 0.003 / 0.096 / 0.163

Slightly Veined Marble 17.9 × 17.9 207×207 29×29 20 1 413MB 21.0MB 1 / 19 0.001 / 0.005 / 0.024

Table 4.2: Statistics and details regarding acquired and factored subsurface scattering materials.

of points on the surface. Acquiring the full 8D BSSRDF is still an open research question.

Unlike the SVBRDF, the structure of S′ makes it poorly suited for a linear separation. How-

ever, remove its diagonal structure by independently estimating a set of distinct responses that

correspond to the core materials of the sample through a clustering procedure. The residual het-

erogeneity is caused by geometric deficiencies in the material such as veins or cracks and is suitable

for direct separation using a modified version of the NMF algorithm.

In the end, we have computed a multi-stage decomposition that can be described by the fol-

lowing shade tree:

Tree 4 S(xin, xout)

↓

⊙

ւ ց
∑

Reparameterization

ւ · · · ց ↓

⊗ ⊗ ∑

ւ ց ւ ց ւ · · · ց

F1(xin) H1(xout) Ft Ht ⊗ ⊗

ւ ց ւ ց

r1(xin) g1(d) rk gk

where ⊙ represents component-wise multiplication, k are the number of clusters and t are the

number of terms in the non-negative factorization.

Table 4.2 lists the statistics for the various datasets we acquired. Figure 4.21 presents a qual-

itative analysis of the error present in our factored representation. Note that the discontinuities
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Figure 4.21: A selection of acquired and factored materials. For each material, a photograph of
the original object, the diffuse albedo map, a relative error distribution plot, and a selection of
measured responses with the corresponding factored approximations are shown. The locations of
the responses are marked on the diffuse albedo map. The dashed square illustrates the relative size
of the responses. Table 4.2 gives additional information regarding the range of the relative errors.
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Figure 4.22: A shade tree computed from a composite wax material applied to the Stanford dragon.
The material is composed of two kinds of wax with different scattering properties. Left: illuminated
by an area light source from above. Middle: the material’s diffuse albedo (no subsurface scattering).
Right: illuminated from above by a textured projection light source.

in the subsurface scattering are preserved by our representation. In Figure 4.22 we show images

rendered with a shade tree that was computed from measurements of a composite wax candle

material.

4.11 Conclusions and Future Work

We have introduced a nonparametric Inverse Shade Tree framework for representing and editing

measured spatially- and directionally-dependent surface appearance. The representation is more

accurate than parametric models, more intuitive than other non-parametric methods, and well-

suited for interactive rendering and editing.

As future work, we would like to investigate algorithms that automatically infer the structure

of the tree according to the data, including automatic selection of the number of terms to use at

each decomposition. In addition, we may simultaneously decompose the same dataset into multiple

trees, any of which may be edited depending on the desired change. Another possible direction

for future work is to incorporate additional aspects of reflectance variation such as displacement

maps or fine geometric detail typically represented as Bidirectional Texture Functions (BTFs).

Another avenue of future work is related to the ACLS techniques we have proposed. Their

flexibility and provable local convergence make them ideal candidates for a broad range of dimen-

sionality reduction applications in data mining and other machine learning contexts. We wish
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to evaluate the efficiency and noise-tolerance properties of ACLS, and investigate the impact of

various types of additional linear constraints.
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Chapter 5

Global Illumination Rendering

5.1 Introduction

The goal of rendering algorithms is to compute the light energy (i.e. radiance) arriving at a virtual

camera’s image plane positioned within a 3d scene. The amount of radiance traveling along each

ray in space can be expressed with the rendering equation [51]:

Lo(x, ωo) = Le(x, ωo) +

∫

Ω+

Li(x, ωi) fr(x, ωi, ωo) cos θi dωi, (5.1)

where Lo is the radiance leaving point x along the direction ωo, Le is the radiance that is emitted

by the material at point x, Li is the radiance arriving at point x along the direction ωi and fr is

the BRDF of the material at x. Recall the cosine term is necessary to convert the radiance arriving

from direction ωi into the irradiance incident to the surface at x.

The goal of global illumination algorithms is numerical integration of Equation 5.1. The ap-

proach of Monte Carlo algorithms is to evaluate the incoming radiance Li by recursively casting

rays through the scene to simulate light transport paths.

In order to reduce the variance of a Monte Carlo estimator, it is desirable to importance sample

reflected rays by preferentially considering paths carrying high energy. For scenes with glossy

materials and slowly-varying illumination, we prefer to sample according to the product of the

BRDF fr and the incident cosine term ωi · n. Section 5.4 describes a factored representation of
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the BRDF suitable for importance sampling complex analytic and measured materials. It is also

possible to importance sample according to the lighting Li, as in sampling light sources for direct

illumination. In the special case when Li is described by an environment map, effective illumination

sampling methods have recently been demonstrated [1, 55]. In Section 5.5 we introduce a new

technique for sampling multi-dimensional measured functions that we apply to sampling incident

illumination fields. We also show how this technique allows us to combine strategies for sampling

the BRDFs and the illumination.

5.2 Previous BRDF Models

There exist many analytical models for the BRDF that approximate the way specific materials

reflect light. Some of these are phenomenological, such as the popular Phong shading model [89].

More sophisticated, physically-based analytical models can capture effects including Fresnel reflec-

tion and rough microgeometry [101, 20, 42]. Anisotropic reflection models characterizing the reflec-

tive properties of oriented surfaces such as brushed metal have also been developed [50, 109, 90, 5].

Other analytical BRDF models, such as those meant to describe dusty surfaces, exhibit backscat-

tering phenomena [39, 84]. Despite the large amount of research on these BRDFs, most of these

models have so far been difficult to sample efficiently. This typically arises because the analytic

formula is difficult or impossible to integrate and invert.

The potential benefit of using measurements of a BRDF has also gained recent attention [109,

37, 21, 70]. The measurements of Matusik et al. [74] provide a dense (90 × 90 × 180) sampling

of many isotropic BRDFs. The main drawback of these models is their size, since they typically

represent the full 3D isotropic BRDF in tabular form. In his thesis, Matusik [74] also describes one

approach for sampling these measured BRDFs, but this representation requires as much storage

as the original BRDF, making it difficult to use for scenes containing many materials.

In an effort to reduce the size of measured BRDF models while maintaining an accurate rep-

resentation of their effects, several researchers have investigated techniques for factoring these

large datasets into a more compact, manageable form [53, 77, 98]. In all cases, the 4D BRDF is

factored into products of 2-dimensional functions that can be represented as texture maps and

used to shade a model in real-time. However, in most cases these factorizations allow only a sin-
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gle term approximation. More relevant, there are no techniques for importance sampling these

representations.

5.3 Importance Sampling

The benefit of stratified importance sampling within the context of physically-based rendering has

certainly been justified by the work of Cook [19]. Since Shirley demonstrated how to efficiently

sample the traditional Phong BRDF [96] and Lafortune introduced a generalization of this cosine-

lobe model [56], a reasonable approach to importance sampling an arbitrary BRDF has been to

sample a best-fit approximation of one of these simpler models. Although this technique marks a

clear improvement over random sampling, it has several drawbacks. First, it is not always trivial

to approximate the many complex BRDFs that exist in nature with one of these models. Often, a

nonlinear optimizer has difficulty fitting more than 2 lobes of a Lafortune model without careful

user intervention. Second, since the sampling is only as efficient as the approximation is accurate,

it is not always the case that this strategy will optimally reduce the variance for an arbitrarily

complex BRDF. Our approach, on the other hand, robustly detects the energy in a BRDF during

the factorization step and provides a more efficient sampling strategy.

5.4 A New BRDF Representation for Sampling

In this section, we consider the requirements and design choices in choosing our BRDF representa-

tion for sampling. We discuss why our requirements are different from those of previous factored

representations, and present a new factorization approach optimized for the needs of importance

sampling. Sections 5.4.1 and 5.4.2 go on to discuss implementation details of our representation

and sampling algorithms.

We begin with the observation that, in the context of a standard backward ray- or path-

tracer, we will generally know the outgoing direction (θo, φo) and will need to sample lighting and

visibility over the incident hemisphere. A straightforward approach would be to tabulate (θi, φi)

slices of the BRDF for a dense set of directions covering (θo, φo), and use the appropriate one.

This is essentially the approach taken by Matusik [73] and, as far as we know, is the only previous

approach for importance sampling of arbitrary measured materials. However, as already noted,
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(a) (b) (c) (d) (e)

Figure 5.1: Steps in factoring a BRDF into our representation, shown for a Phong-like anisotropic
BRDF [5]. (a) We first sample the BRDF at a fixed set of incoming and outgoing directions. Notice
that in this case the flattened highlight moves according to the position of perfect specular reflection
for each view. (b) We would like to maximize the symmetry in these 2D slices of the BRDF to
make the factorization more accurate. We accomplish this by reparameterizing the samples of
the BRDF with respect to the half-angle vector, as the energy in this BRDF is symmetric about
this direction. (c) We organize these samples into a 2D matrix by unfolding each 2D slice of the
BRDF into a separate column in the matrix according to its half-angle parameterization. Notice
that our choice of parameterization produces a data matrix that has a rank very close to 1. (d &
e) We use non-negative matrix factorization to factor this data matrix into the outer product of
two vectors. Because the rank of the original matrix was close to 1, we need only one term in the
factorization. (d) In the end, we are left with a column vector dependent only on the incoming
direction (G1 reparameterized with respect to the half-angle vector in this case) and (e) a row
vector F1 dependent only on the outgoing view direction.

this representation requires a large amount of storage space for both analytical and measured

materials—as large as or larger than the tabulated BRDF itself.

Instead, we observe that for nearly all common materials there is coherence in the BRDF for

different outgoing directions—for instance, the shape of the lobe in a specular BRDF will often

remain similar. Our goal is to exploit this coherence to develop a compact representation. First,

we reparameterize the BRDF, e.g. by using the half-angle [94]. As a number of authors have

observed, reparameterization by the half-angle properly aligns BRDF features such as specular

reflection, making them simpler to represent. Next, we use factored forms, writing the 4D

BRDF as a sum of a small number of products of 2D factors, to exploit the coherence in the

BRDF and develop a compact representation. Similar approaches have been developed for real-

time rendering, and have shown that reparameterization and factorization can be a compact and

accurate way to represent most BRDFs [53, 77].

The specific factored decomposition we use is the following:

ρ(ωi, ωo) (ωi · n) ≈
J

∑

j=1

Fj(ωo)Gj(ωp), (5.2)

92



where we have decomposed the original 4D BRDF function (multiplied by the cosine of the incident

angle) into a sum of products of 2D functions. One of the functions always depends on the

view direction ωo, and the other function is dependent on some direction ωp arising from the

reparameterization. In the case of a half-angle parameterization, ωp is taken to be

ωh =
ωi + ωo

| ωi + ωo | . (5.3)

Unlike previous factorization approaches, this representation satisfies a number of key properties

for sampling:

• One factor dependent on outgoing direction: When sampling according to our rep-

resentation, we know the outgoing direction ωo but not the incident direction (since we are

sampling over it). Therefore, we can directly evaluate F and it is critical that it depend only

on the outgoing direction.

• Sum of products of two factors: Each term above is the product of two factors F and G,

where F depends only on the outgoing direction. Thus, it is easy to sample according to the

second factor G only. On the other hand, approaches such as homomorphic factorization [77]

or chained matrix factorization [98] can include multiple factors in a term, making importance

sampling difficult. We can also enable multiple terms (with different j) for more accurate

sampling—another feature that is difficult to incorporate in homomorphic factorization.

• Non-negative factors: As opposed to using a matrix decomposition algorithm such as

SVD [53], we use non-negative matrix factorization to ensure that all values are positive.

This is necessary for interpreting the resulting factors as probability distributions, according

to which we can then sample.

We now observe that most BRDFs can be compactly represented by further factoring each of

the Gj into 1D functions ujk(θp) and vjk(φp). By doing this, we can separately treat u and v

as 1D distributions, for which importance sampling is straightforward. Our final factored BRDF

representation is therefore

ρ(ωi, ωo) (ωi · n) ≈
J

∑

j=1

Fj(ωo)

K
∑

k=1

ujk(θp) vjk(φp). (5.4)
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There are a total of JK terms in the final factorization, each a product of a two-dimensional

function (Fj) and two one-dimensional functions (ujk and vjk).

It should be noted that this factorization fits the form of many isotropic and anisotropic BRDFs

well. For instance, a Blinn-Phong BRDF [9] can be fit exactly by a single term (J = K = 1), with

variation appearing only in the u(θh) function. Similarly, only 2 terms (J = 1, K = 2) are needed

for an anisotropic Phong BRDF [5]. The same holds approximately for many other materials, so

the above representation typically gives accurate results with a small number of terms.

Note that, unlike other uses of factored BRDF models, we typically use the representation

above only for choosing samples. For actually computing the BRDF value, we use an analytic

formula where available. In this case, the representation above is a compact means of sampling

these commonly used analytic models, which have hitherto been difficult to sample. Similarly, for

compact basis function representations, such as the Zernike polynomial expansions [54] used in the

CURET database [21], we can use the BRDF value represented by the basis functions, using our

representation only for importance sampling. In other cases, such as the dense measured BRDF

representations of Matusik et al. [74], we take advantage of the compactness of our multi-term

factorization and use it as the primary representation for both reconstruction and sampling. This

provides a 200-fold savings in storage in many cases, while remaining faithful to the original data.

5.4.1 Factorization

We now describe the details of our method to factor a tabular BRDF—Figure 5.1 provides an

overview of the process. Unlike some previous methods, we use multiple non-negative terms in

equations (5.2) and (5.4). This disallows common techniques such as homomorphic factorization

or singular value decomposition. Instead, inspired by Chen et al. [16], we use non-negative matrix

factorization (NMF) [62] to decompose the reparameterized BRDF. NMF is an iterative algorithm

that allows multi-term factorizations, guaranteeing that all the entries in the factors are non-

negative. We have found it to be robust for both single- and multi-term decompositions, and

capable of producing accurate approximations for a wide range of both analytical and measured

BRDFs.
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(a) Incident factor G1 (b) ujk terms (c) vjk terms
(reshuffled from Fig. 5.1d)

Figure 5.2: In order to optimize our representation for importance sampling, we perform another
factorization step on the 2D functions dependent on the incoming direction (a) We first re-organize
each column in G into a matrix such that the rows and columns vary with respect to the elevation
and azimuthal angles respectively. We again apply NMF to decompose this matrix into an outer
product of terms. In this example, we choose to factor this matrix into two terms. In the end, we
are left with (b) two column vectors that each depend only on the elevation angle and (c) two row
vectors that depend only on the azimuthal angle of the incoming direction. These are the u and v
terms, respectively, in our final representation.

Data matrix: We first organize the set of values of the original reparameterized BRDF into

a matrix. We consider taking Nθo
regular samples along the outgoing elevation angle and Nφo

samples along the outgoing azimuthal angle. For each of these Nωo
view directions, we record Nωp

samples of the BRDF intensity (multiplied by cos θi), spaced equally in azimuthal and elevation

angles for the chosen BRDF reparameterization. We organize the initial data samples into an

Nωp
× Nωo

matrix Y .

First factorization: Using the appropriate NMF update rules, which are summarized in the

appendix, we factor Y into the product of two matrices of lower dimension:













Y













=













G













[

F

]

(5.5)

As shown in Figure 5.1, G is an Nωp
×J matrix, with each column corresponding to a factor Gj in

equation (5.2), while F is a J×Nωo
matrix, with each row corresponding to a factor Fj in equation

(5.4). In practice, we rarely need more than 3 or 4 terms to achieve an accurate approximation,
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and we always reduce the size of the original BRDF by at least an order of magnitude since our

factored representation involves 2D functions rather than a 3D or 4D BRDF.

If we were interested only in reducing the size of the BRDF, or in using our representation for

real-time rendering, it might be reasonable to use these 2D functions directly. Notice, however,

that we have approximated the intensity of the BRDF, ρint(ωi, ωo) times the cosine term, which

is appropriate for importance sampling. Therefore, we would need to update this representation

to account for the wavelength dependence in the original BRDF. We accomplish this by using

NMF to compute a single-term approximation of the BRDF at a particular wavelength (e.g. red,

green or blue) divided by the intensity. For the red color channel, we would factor a data matrix

composed of samples of the function: ρred(ωi, ωo)/ρint(ωi, ωo) and reconstruct the red value of the

BRDF by scaling our approximation of the intensity by the approximation of this function.

There also remains a challenge in sampling according to the 2D distribution Gj . It is possible to

use explicit tabular approaches, by storing a Cumulative Distribution Function on θp for each φp,

but such representations are not compact. Furthermore, effectively generating stratified samples

given these 2D tabulated CDFs proves to be a difficult problem1 Therefore, we perform a second

factorization of Gj into 1D functions dependent on θp and φp, which not only matches the form

of most common BRDFs, but also makes the representation easy to sample and further reduces

storage requirements.

Second factorization: As shown in Figure 5.2, we separately factor each column of the matrix

G, corresponding to a 2D function that depends on the reparameterized incoming direction (θp, φp):


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
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









[

vj

]

, (5.6)

where uj(θp) is an Nθp
× K matrix, with each column corresponding to a factor ujk in equation

(5.4), and vj(φp) is a K × Nφp
matrix, with each row corresponding to a factor vjk.

1Effective 2D stratification in the context of environment map sampling has been proposed by Agarwal et al. [1]
using Hochbaum-Shmoys clustering, but this approach requires fixing the number of samples a priori, while in our
case the number of samples for each Gj depends on the view.

96



Normalization: For the purposes of sampling, it is desirable to treat ujk and vjk as normalized

1D probability distribution functions. To do this, we first define

ujk =

∫ π

0

ujk(θp) sin θp dθp, vjk =

∫ 2π

0

vjk(φp) dφp. (5.7)

Then we normalize each term Tjk as

Tjk = Fj(ωo)ujk(θp) vjk(φp)

= (ujk vjk Fj(ωo))

(

ujk(θp)

ujk

) (

vjk(φp)

vjk

)

= F ′
jk(ωo)u′

jk(θp) v′jk(φp). (5.8)

Finally, dropping the primes and using a single index l, we obtain the final form of our factored

representation, where ul and vl are proper 1D probability distribution functions,

ρ(ωi, ωo) (ωi · n) ≈
L

∑

l=1

Fl(ωo)ul(θp) vl(φp), L = JK. (5.9)

Discussion: Our representation is designed with a view to developing a sampling algorithm, and

lacks two properties that are sometimes theoretically desirable. First, the terms in equation (5.2),

whose form is essential for sampling, do not explicitly enforce reciprocity. (Of course, since we

factor the product of the BRDF and the cosine term, the input function is not reciprocal to begin

with.) Second, the representation is not guaranteed to be continuous—there can be a discontinuity

at the pole θp = 0 in the second factorization in equation (5.4). In either case, we have not observed

any drawbacks in practice because of these properties and it can be seen from our results that our

multiple-term fits are accurate.

5.4.2 Sampling

We now describe how to use our representation in equation (5.9) for importance sampling. Intu-

itively, each term in the approximation corresponds to a specific “lobe” of the original BRDF, and

the factorization algorithm works to find the best set of lobes to approximate its overall structure.

We first randomly select one of these lobes according to the energy it contributes to the overall
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Figure 5.3: The main benefit of our factored representation is that it can be used to efficiently
sample a BRDF. (a & b) In the top row, we graph the values of the 1D terms in our factorization of
the BRDF considered in Figures 5.1 and 5.2. The green lines show the values of u1(θh) and u2(θh),
whereas the blue lines represent v1(φh) and v2(φh). Using the strategy detailed in Section 5.4.2,
we select either the first or second term to generate an incoming direction. (c) Using only the first
term to generate samples, we notice that the directions accumulate around a pair of lobes along
the y axis, centered within the highlight. (d) Using only the second term to generate samples,
the directions accumulate around two lobes centered at φh = 0 and φh = π. (e) When we select
between these two terms with equal probability, we produce a sampling pattern that matches the
energy in the original BRDF.

BRDF for the current view. Next, we sample the hemisphere according to the shape of this lobe

by sequentially generating an elevation and azimuthal angle according to the 1D factors ul and vl.

To further demonstrate this idea, consider the pair of factors that we computed to approximate

the anisotropic BRDF in Figures 5.1 and 5.2. The first term creates a pair of lobes that extend

along the y-axis, centered about the specular direction (Figure 5.3a), and the second term creates

a pair of flattened lobes that extend along the x-axis (Figure 5.3b). We could imagine sampling the

hemisphere according to just one of these terms (Figure 5.3c,d): using each term alone generates

samples in a different region of the BRDF. If we generate samples according to both terms with

equal probability, however, the aggregate effect is that we distribute samples along the anisotropic

highlight (Figure 5.3e).
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Original Resolution Terms Param Normalized MAE
BRDF θo×φo×θp×φp J×K Factored Lafortune

Cook-Torrance 16×16×32×16 4×1 ωh 0.192 0.632
Ward 16×16×100×100 2×4 ωh 0.094 1.092

Poulin-Fournier 16×16×32×16 3×1 ωi 0.142 0.348
Hapke-Lommel 16×16×32×16 3×1 ωi 0.186 0.464

Nickel 16×16×128×16 2×1 ωh 0.201 0.643
Plastic 16×16×128×16 3×1 ωh 0.266 0.874

Metallic-Blue 16×16×128×16 4×1 ωh 0.118 0.464

Table 5.1: Accuracy of the factored BRDF representation. We factored 4 analytical BRDFs:
Cook-Torrance (d = 0.1,Rd = [0.12, 0.22, 0.48],s = 0.9,F0 = Rd,m = 0.2), Ward (ρd = 0.1,ρs =
1.2,αx = 0.2,αy = 0.02), Poulin-Fournier (d = 2.0,h = 0.0,n = 20.0,Rs = 0.8,Rd = 0.2), and
Hapke-Lommel (g = 0.6,f = 0.1,r = 1.0), along with 3 measured BRDFs from Matusik et. al.
[2003]: nickel, plastic, and metallic-blue. For each BRDF we list the resolution of the original data
matrix Y , the number of “outer” and “inner” terms (J and K, respectively) of the factorization,
and the parameterization of the incoming hemisphere. We report the mean absolute error (MAE)
of the final factorization, normalized by the mean BRDF value. This is compared to the error
resulting from fitting a multi-lobe Lafortune model to the original BRDF using a standard non-
linear optimizer.

Importance Sampling

We now describe the mathematics of sampling more formally. We will be interested in evaluating

the integral of the incident illumination for a fixed outgoing direction ωo at a given pixel with

location x and surface normal n,

∫

Ω2π

Li(x, ωi) ρ(x, ωi, ωo) (ωi · n) dωi

≈ 1

n

n
∑

s=1

Li(x, ωs)

[

ρ(x, ωs, ωo) (ωs · n)

γi(ωs | ωo)

]

. (5.10)

The first line is simply the reflection equation—the incident lighting Li may be evaluated

iteratively or recursively for global illumination. The second line is a Monte Carlo estimator that

describes the standard approach to importance sampling. It represents a weighted average of each

of the samples, each divided by the probability γi of generating sample direction ωs assuming that

ωo is fixed. The subscript in γi denotes that the probability distribution is over incident directions.

γi should be non-negative and normalized, i.e.
∫

Ω
γi(ωi | ωo) dωi = 1. Our representation is used

to generate samples ωs, according to the probabilities γi. For analytic models, the actual BRDF

can be used to evaluate ρ. The more accurate our representation is, the lower the variance, but

99



equation (5.10) is always accurate and unbiased.

If our factored representation exactly represents the BRDF multiplied by the cosine term, the

numerator in the bracketed term in equation (5.10) will be exactly proportional to the denominator,

and that term will simply be a constant. The estimator will then represent the ideal importance

sampling method based on the BRDF, and will have low variance. In fact, in the limiting case of a

constant environment (Li is constant), there will be zero variance. In practice our representation

is not exact, but it is a good approximation and importance sampling with it significantly reduces

variance.

Sampling Algorithm

We now describe how to choose directions ωs and evaluate γi in equation (5.10). Our method

chooses the lobe l, azimuthal angle φp, and elevation angle θp in turn, with each step involving

computing one random number and inverting a 1D Cumulative Distribution Function.

Choosing a term l : The probability of choosing a term l, for a given outgoing direction ωo is

given by

γ(l|ωo) =
Fl(ωo)

∑L
j=1 Fj(ωo)

. (5.11)

From these probabilities, we calculate a 1D CDF over l. To select a term, we generate a uniform

random variable in [0, 1] and perform a binary search on the CDF to transform the random variable

into a value of l. Notice that the probabilities depend on the view direction, so we must recompute

this CDF each time the outgoing direction changes. However, L is typically very small, and the

same CDF can be used for all samples through a given pixel (since ωo is fixed), so the computation

is inexpensive.

Choosing azimuthal and elevation angles φp and θp: Having chosen the term l to sample,

we must now choose φp based on the probability distribution vl(φp). As before, we generate a

uniformly distributed random variable in [0, 1], and numerically invert the CDF at that value to

determine φp. Choosing θp follows the same methodology, but because of the sin θp area measure,

we find it simpler to define z = cos θp, and use ul(z) as the probability distribution. Inverting the

CDF then yields z, from which we find θp = cos−1 z. Note that we can precompute these CDFs

100



because the probabilities do not depend on ωo—a significant benefit of our factorization.

Computing probability: Given θp and φp, it is straightforward to generate a direction ωs. Due

to reparameterization, it is possible for the sample directions ωs to occasionally take values below

the horizon, but we can simply set the estimator to 0 for those directions without introducing

inaccuracy or bias. Otherwise, we calculate the probability for equation (5.10) as the sum of the

marginal probabilities for each term:

γp(z, φp|ωo) =

L
∑

l=1

Fl(ωo)ul(z) vl(φp)
∑L

j=1 Fj(ωo)
. (5.12)

One issue we must address is reparameterization, since equation (5.10) is in terms of the

incident direction ωi while our factors are reparameterized using the half-angle or, in general, some

alternative parameterization ωp. Since it is easy to convert between them, there is no difficulty

in evaluating equation (5.10). However, our probability distributions γp are in terms of the new

parameterization, and must be modified to conform to equation (5.10). In particular,

γi(ωi | ωo) = γp(ωp | ωo)

∣

∣

∣

∣

∂ωp

∂ωi

∣

∣

∣

∣

, (5.13)

where the last term is equivalent to the Jacobian for changing variables in multidimensional inte-

gration, and converts differential areas in ωp to those in ωi. For the half-angle, this function has

been computed in many derivations, such as for calculating the Torrance-Sparrow BRDF [101],

and is given by
∣

∣

∣

∣

∂ωh

∂ωi

∣

∣

∣

∣

=
1

4 (ωi · ωh)
. (5.14)

Stratification: The preceding algorithm generates single samples independently, but it can eas-

ily be extended to generate stratified samples: we simply stratify each of the individual stages.

Because these stages depend only on 1D probability distribution functions, this is accomplished

by stratifying the domain of the uniform random variables used in those stages. We have found

this to be an effective method of further reducing variance in the generated images.
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5.4.3 Results

We now present the results of factoring both analytical and measured BRDFs, describing the

accuracy and compactness of our representation. In 5.4.3, we analyze the efficiency of sampling

according to this representation.

Factorization

We factored four analytic BRDF models of varied behavior: the Cook-Torrance [20] rough-surface

model, an anisotropic Ward model [109], Poulin-Fournier [90] anisotropic reflection from cylinders,

and the Hapke-Lommel BRDF [39] with strong back-scattering effects. We also tested three

measured BRDFs acquired by Matusik et al. [73]: nickel, plastic and metallic blue. Table 5.1

lists the resolution and parameterization of each factorization along with the normalized mean

absolute error (MAE) in the approximation. These errors were computed over a dense set of

samples of the 4D domain, independent of the resolution of the factorization. We compare this

with a best-fit 2-lobe Lafortune model, except for the Cook-Torrance BRDF, to which we fit a

3-lobe model. For most materials, we chose a half-angle parameterization ωp = ωh, while for the

more diffuse models (Poulin-Fournier and Hapke-Lommel), we used the standard parameterization

by incident angle ωp = ωi.

We see that in all cases factorization produces an accurate result, in many cases significantly

more accurate than fitting an analytic model such as Lafortune. This accuracy in the representation

explains the high quality of our sampling algorithm. We further note that fitting a 3-lobe Lafortune

model can be unstable, often taking minutes to hours to converge in a nonlinear minimizer, and

can require manual tuning to find a good fit. By contrast, our method is automatic, robust, and

fast (taking only a few minutes to factor the BRDFs considered in these experiments).

We observe, as previous authors have, that MAE or RMS errors are imperfect measures of the

accuracy and visual quality of a BRDF approximation: in practice, the numerical error is domi-

nated by regions such as the specular highlight and grazing angles. To this end, Figure 5.4 shows

the appearance of some factored models, as compared to the originals, under point illumination.

We see that throughout most of the BRDF the representation accuracy is, in fact, better than

the numbers in Table 5.1 would suggest, and the error of our approximation decreases rapidly as

more terms are added (Figure 5.5). For the case of measured nickel, note that our representation
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(a) Cook-Torrance (b) Factored Cook-Torrance

(c) Anisotropic Ward (d) Factored Anisotropic Ward

(e) Measured Nickel (f) Factored Measured Nickel

Figure 5.4: Accuracy of the BRDF factorization. The left column shows a vase rendered with (a)
a Cook-Torrance BRDF, (c) a Ward anisotropic BRDF and (e) a measured nickel BRDF under
direct illumination. (b, d & f) The right column shows the same vase rendered with a factored
approximation of the original BRDF. (b) Notice the slight banding effects that appear in the
factored highlight of the Cook-Torrance BRDF, which result from the finite sampling resolution
along θh. (d & f) The factorization actually regularizes some of the measurement noise that appears
in the highlight of the measured nickel BRDF.
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regularizes some of the measurement noise around the highlight, relative to the original data. We

conclude that, for measured data, our representation appears to produce results comparable with

measurement error (Matusik et al. observe errors, such as deviation from reciprocity, of 10 − 15%

at normal angles, ranging to 60 − 70% at grazing angles [personal communication]).

Selecting the appropriate resolution for the factorization, and the parameterization of the in-

coming hemisphere is a manual process. In most cases, the analytical formula (for parametric

BRDFs) or general appearance (for measured BRDFs) provides enough information for an accurate

estimate of how many samples are sufficient and what parameterization is optimal. Theoretically,

the number of terms should be proportional to the ranks of the matrices Y and Gj (or, at least,

the number of significant eigenvalues of these matrices). In practice, however, we simply increase

the number of terms (J and K) until the error in the approximation plateaus. Figure 5.5 shows

this convergence process for factorizations of the anisotropic Ward BRDF listed in Table 5.1.

Since our goal is to develop a representation suitable for efficient sampling, rather than a

factorization method more accurate than previous approaches, we did not directly compare with

previous factorization approaches that cannot be easily sampled. However, we did factor a Poulin-

Fournier model with qualitatively comparable parameters to the one listed in [77], and produced

a factorization with RMS error comparable with that approach (although not given in Table 5.1,

the RMS error for that factorization is 0.094). While this is not the focus of our paper, these

results indicate that the benefits of a multi-term nonnegative factorization may be applicable in

other areas such as real-time rendering.

Sampling

We next consider the efficiency of importance sampling using our factored representation. For a

controlled quantitative comparison, we conducted tests involving images of a sphere (so visibility

is not considered), lit by a constant environment map (so complex illumination is not considered).

The comparison methods are uniform sampling of a cosine-weighted hemisphere, analytic sampling

of either a best-fit multi-lobe Lafortune model [56] or a generalized Blinn-Phong model developed

by Ashikhmin and Shirley [5]2, and an approach based on explicit tabulation of the BRDF [73].

All methods were stratified.

2Because we are interested in sampling the BRDF, we actually fit the probability distribution they present,
ph(h), plus a diffuse term to the original BRDF.
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Figure 5.5: Comparison of the RMS approximation error of an anisotropic Ward BRDF, as a
function of the number of terms in the factorization. Each line shows a different number of
“outer” terms (J) while the number of “inner” terms (K) increases along the x axis. Note the
drop in error at K = 2: this shows that at least two inner terms are necessary to capture the
anisotropic shape of this BRDF.
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Figure 5.6: Image variance as a function of the number of samples. These plots show the rela-
tionship between the average image variance and the number of samples/pixel for all 5 sampling
strategies considered in this paper. Top: the variance in the image of a sphere with the Cook-
Torrance BRDF from Table 1 under constant illumination. Bottom: variance in the image of
a sphere with a measured metallic-blue BRDF under constant illumination. As expected, the
variance converges to 0 as the sample counts increase, confirming that each strategy produces an
unbiased estimate. At 100 paths/pixel we see the values for which the factor of improvement is
listed in Table 2.

We compared variance (averaged over 50 trials) as a function of the number of samples used

(ground truth was taken as the limit with a very large number of samples) for the BRDFs considered

in Table 5.1. We verified for all sampling techniques that they were unbiased, and that the image

variance decayed approximately as the inverse of the number of samples (Figure 5.6). Table 5.2

reports the ratio of the variance of the comparison methods to our approach with 100 samples—

the relative performance with a different sample count would be essentially the same. This is an
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Efficiency of BRDF Sampling in Constant Environment

Original Improvement relative to:
BRDF Unif. Laf. A&S Mat.

Cook-Torrance 16.38 13.27 3.53 0.75
Poulin-Fournier 5.86 1.85 6.11 n/a
Hapke-Lommel 3.32 2.14 11.61 1.99
Measured Nickel 306.17 11.52 2.17 1.66
Measured Plastic 157.12 14.40 1.34 18.53

Measured Metallic-Blue 8.88 6.73 6.75 0.44

Table 5.2: Efficiency of importance sampling the BRDF. This table lists the factor of improvement
in variance resulting from sampling the BRDF according to our factored representation, compared
to four alternative approaches: uniformly sampling a cosine-weighted hemisphere, sampling a best-
fit multi-lobe Lafortune model, sampling a best-fit generalized Blinn-Phong model described by
Ashikhmin and Shirley, and sampling from a dense set of tabulated CDFs, as described by Matusik.
Because variance is linearly proportional to running time, these values can be interpreted as the
factor of time, or number of paths, that would be required for the other sampling approaches to
reach the same noise level as our representation. All results are for an image of a sphere in a
constant environment, and use 100 stratified samples.

appropriate metric, since it directly corresponds to how much longer the alternative approaches

would need to run (i.e., how many more samples they would require) to produce the same quality

results as our method. The image RMS error corresponds roughly to the standard deviation, which

is the square root of the variance.

We see that compared to uniform random sampling, BRDF importance sampling always does

at least 5 to 10 times better, and significantly better for shiny materials such as measured nickel.

Relative to analytic models, the degree of improvement depends on how closely the analytic model

is able to match the BRDF. Lafortune’s model, for instance, is a good fit of the Poulin-Fournier

and Hapke-Lommel BRDFs (as seen in Table 5.1). Note that these materials are more diffuse and

random sampling also does fairly well on them. However, we always do at least twice as well as

sampling based on a Lafortune fit, and for measured materials, and even for the widely known

Cook-Torrance model, we do an order of magnitude better. On the other hand, the Ashikhmin-

Shirley model represents lobes depending on the half-angle well, and therefore does better than

Lafortune at sampling metals and plastics such as the Cook-Torrance, nickel and plastic BRDFs.

However, our method is still at least a factor of 2 better, and for many of the materials, we see an

improvement by a factor of 5-10.

We also measured the effectiveness of importance sampling the BRDF using the factored rep-

resentation under complex illumination (Table 5.3). The experimental setup is identical to that
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for Table 5.2, except that the sphere was placed in the beach environment3. Because the shape of

the integrand of the rendering equation is affected by varying illumination, sampling the BRDF

alone will not be as efficient as for constant illumination. As expected, for more diffuse BRDFs

(Hapke-Lommel and Poulin-Fournier) we notice that the illumination becomes the dominant factor

in the integrand and uniform random sampling is a reasonable strategy. For the more specular

BRDFs, however, we still see the benefits of importance sampling the BRDF, and our method

decreases the variance by a factor of 2-20 over best-fits of either parametric formula. One ex-

ample of this is the measured metallic-blue BRDF. The specular peak of this BRDF deviates

substantially from the ideal specular direction, and is also not well approximated by a function

of θh, particularly as the view approaches the horizon. As a result, the best-fit Lafortune and

Ashikhmin-Shirley parametric models fail to match the BRDF well in these regions. Although our

factored representation parameterizes the incoming hemisphere with respect to the half-angle as

well, it can handle small deviations from this direction through the inherent flexibility a numerical

factored approximation provides. As a result, our technique samples this BRDF more efficiently

than a parametric fit (Figure 5.7). Together, these results indicate the generality and efficacy of

our approach for importance sampling compared to fitting a specific analytic model.

The only method competitive with ours is that of Matusik [73]. For a set of fixed view di-

rections, this method computes a 2D CDF over incident directions according to the spherical

parameterization of the hemisphere. For accurate results, this approach requires dense sampling

along all variables, and does not provide the compactness of our factored representation. In fact,

Matusik reports using resolutions of 90 × 90 × 180 for isotropic materials, and acknowledges the

infeasibility of this approach for anisotropic materials. Even with these resolutions, however, there

are still situations when the closest CDF (i.e. the closest view for which the CDF is tabulated)

differs significantly from the actual shape of the BRDF. This is apparent with measured nickel and

measured plastic, for which the BRDF has a sharp specular peak. For views near normal incidence,

sampling according to the spherical coordinates of the incident direction is sufficient to accurately

capture the shape of the BRDF. Near grazing angles, however, the 2D CDF for the nearest view

often varies significantly from the actual shape of the BRDF, degrading the sampling efficiency in

these regions (Figure 5.8). Our factored representation, on the other hand, avoids this situation

3http://www.debevec.org/Probes/
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Efficiency of BRDF Sampling in Beach Environment

Original Improvement relative to:
BRDF Unif. Laf. A&S Mat.

Cook-Torrance 25.79 10.28 2.23 0.75
Poulin-Fournier 1.40 1.09 1.53 n/a
Hapke-Lommel 0.89 1.61 1.87 1.00
Measured Nickel 572.76 3.45 2.17 4.80
Measured Plastic 381.94 21.60 1.67 55.64

Measured Metallic-Blue 9.17 5.96 5.71 0.55

Table 5.3: Importance sampling the BRDF under complex illumination. This table presents the
factor of improvement of our sampling strategy compared to alternative approaches when rendering
a particular BRDF in the beach environment. Because the illumination contributes to the shape of
the integrand in the rendering equation, sampling according to the BRDF alone will be less efficient
than when the illumination is constant. Although our factored representation still outperforms the
alternative sampling strategies by a factor of 2-20, these results suggest the potential desirability
of combining environment and BRDF sampling.

through a better parameterization of the hemisphere and a more continuous approximation of the

BRDF over all views. Moreover, our representation supports anisotropic reflection and is more

compact. For the BRDFs presented in this paper, the complete factored representation requires

roughly 200KB as compared to the 60MB required to store the samples of the 3D BRDF along

with the pre-computed 2D CDFs required for the approach of Matusik.

In generating a sample using our approach, the dominant cost is that of inverting three 1D CDFs

using a binary search. This makes our approach reasonably fast, comparable with analytically

drawing a sample according to the Lafortune and Phong sampling algorithms. It is somewhat

slower than the simpler random sampling, and almost identical to the approach of Matusik, which

also inverts a pair of 1D CDFs. In practice, all of these times are small compared to the cost of

propagating a sample or tracing a ray for global illumination, and hence the number of samples

(and the results in Table 5.2) corresponds closely to actual running time.

Global Illumination

We also rendered a complex scene with global illumination using a path tracer (Figure 5.9). In this

case, the incident illumination and visibility are unknown and, consequently, importance sampling

the BRDF is the only reasonable strategy (i.e., environment sampling is not possible). We used

our factored representation to sample all five BRDFs in the scene and to represent the three

measured BRDFs. We compare our results with those of a system using best-fit Lafortune models
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(a) Lafortune (b) A&S (c) Factored

Figure 5.7: Importance sampling a BRDF according to best-fit parametric models and our factored
representation (cf. last row of Table 5.3). These images show a metallic-blue sphere in the beach
environment, rendered with 100 samples generated according to (a) a best-fit 2-lobe Lafortune
model, (b) a best-fit Ashikhmin-Shirley model, and (c) our factored representation. We show both
a variance plot on a logarithmic scale and a closeup at a region where the view approaches the
horizon. In this part of its domain, the BRDF has a shape that is difficult to fit with either of the
parametric models, and our factored representation allows more efficient sampling.

to sample the different BRDFs. We present rendered images at equal time (300 paths/pixel for

both sampling strategies) and equal quality (1200 paths/pixel for Lafortune sampling) along with

false-color visualizations of the variance in the scene on a logarithmic scale and several magnified

views showing different BRDFs in the scene. Clearly, different regions of the scene converge at

different rates, but our method is roughly 4-5 times more efficient overall and an order of magnitude

more efficient on difficult BRDFs such as the plastic handle. This example highlights the usefulness

of a general approach to both representing and importance sampling BRDFs.

5.4.4 Limitations

One limitation of our representation is that it does not obey reciprocity. In practice, however, we

factor the product of the BRDF and the cosine term, ρ(ωi, ωo)(ωi · n), so the original function is

not reciprocal either.

As mentioned previously, another limitation of our system is that we cannot handle mixed
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Matusik Sampling Factored Sampling

Figure 5.8: Sampling measured nickel with a dense set of 2D CDFs, as described by Matusik
et. al. and using our factored representation (cf. fourth row of Table 5.3). For such shiny BRDFs,
computing a fixed set of 2D CDFs can still cause problems for regions of the domain for which the
nearest pre-computed CDF of a particular view poorly matches the actual BRDF. Our factored
representation, on the other hand, gains better continuity through an appropriate parameterization
and approximation, resulting in more efficient importance sampling throughout the domain.

parameterizations of the BRDF. We would like to extend our representation to allow each term

in the approximation to use a different parameterization of the incoming hemisphere. This would

greatly improve the accuracy of our approximation in cases where the BRDF exhibits several

different types of scattering (e.g. side, backward and forward) at the same time. Another limitation

of our system is that we cannot use measured BRDF data directly. Instead, we rely on a simple

reconstruction of the scattered data (e.g. Zernike polynomials, bi-cubic polynomials, McCool’s

factorization method [77]) and evaluate this reconstruction at regular intervals over the 4D domain

in order to seed the initial data matrix F .
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(a) Lafortune sampling (b) Our factored sampling (c) Lafortune sampling
300 paths/pixel 300 paths/pixel 1200 paths/pixel

Figure 5.9: This scene was rendered using a path tracer for global illumination. (a) We generated
300 stratified importance samples of the local hemisphere using a best-fit Lafortune model for
each of the 5 BRDFs in the scene. (b) We sampled the incoming hemisphere using our factored
representation of each BRDF. (c) Lafortune sampling with 1200 samples. The bottom row shows
a false-color variance plot and closeups of some regions. On the whole, we see that our method
is approximately four times more efficient than Lafortune sampling, and substantially better for
difficult BRDFs such as the plastic teapot handle.

5.5 Sampling n-Dimensional Measured Functions

While several specific representations of measured environment maps and BRDFs do allow direct

sampling, there is still no single representation that is appropriate for general multidimensional

measured functions. As higher-dimensional datasets find their way into rendered scenes (e.g. light

fields, reflectance fields, etc.), a general method for sampling them will become more important.

Moreover, for the specific case of environment maps, existing representations do not account for

the local orientation of the surface (i.e. the cosine term in the rendering equation). This property
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Figure 5.10: We represent a 1D CDF with a set of non-uniformly spaced samples of the original
function. This results in a more compact yet accurate approximation of the original function than
uniform spacing would allow. In addition, the final CDF maintains many key properties necessary
for unbiased multiple importance sampling.

can limit the effectiveness of environment map sampling in reducing variance for many scenes.

Another important drawback of some existing environment map representations is that they are

not readily incorporated into a multiple importance sampling framework [108].

In this section, we apply a curve approximation algorithm to the task of compressing multi-

dimensional tabular Cumulative Distribution Functions (CDFs) derived from measured datasets.

Assume we have a 1D CDF, P (x), sampled uniformly in x. In order to compress this function,

we lift the restriction that the samples must be uniformly spaced, as shown in Figure 5.10. We

use the Douglas-Peucker greedy algorithm for polygonal approximation of 2D curves [27, 45] to

compute the location of these adaptive samples. We further extend this algorithm to represent

multidimensional CDFs. To accomplish this, we compute marginal 1D CDFs in each dimension

by summing the energy contained across the orthogonal dimensions. Each of these 1D CDFs is

represented by non-uniformly spaced samples and the resulting set of these “cascading CDFs”

approximates the original high-dimensional distribution. There are several benefits of using this

adaptive numerical representation:

• Allowing placement of non-uniformly spaced samples reduces the number that must be stored

to accurately represent the original CDF. This is especially true for multidimensional distri-

butions because the storage grows exponentially with the number of dimensions. Significant

reduction is also achieved for common “peaky” distributions, for which many methods require

O(n) storage.
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• Generating directions according to the distribution, accomplished using numerical inversion

of the CDF, simply requires a binary search over the sorted samples of P (x). This is essen-

tially the same algorithm as is used for uniformly sampled CDFs, but with the position of

each sample along the domain stored explicitly.

• Storing a “cascading set” of conditional 1D CDFs, each represented by non-uniformly spaced

samples of the original functions, promotes a direct implementation of unbiased stratified

importance sampling. This results from the fact that each dimension can be sampled inde-

pendently.

• The probability of a sample not drawn from the CDF itself can be efficiently computed from

the final representation. This property is critical for combining distributions with standard

multiple importance sampling algorithms.

To demonstrate the benefit of our adaptive representation, we present a novel algorithm for

sampling measured environment maps in an orientation-dependent manner. This is accomplished

by sampling the 4D function that results from modulating an environment map with the horizon-

clipped cosine term in the rendering equation. This algorithm is more efficient than existing

techniques that sample only a single spherical distribution. Lastly, we show how our adaptive

representation can be used within a multiple importance sampling framework.

5.5.1 Related Work

Monte Carlo importance sampling has a long history in Computer Graphics [107]. For stratified

sampling from 2D CDFs on a manifold (in the practical examples of this paper, the manifold is a

sphere or hemisphere), Arvo [3] describes a particular recipe when an analytic description of the

function is available, with analytic sampling strategies available in some cases [2]. When dealing

with measured illumination or reflectance data, as in this paper, nonparametric or “numerical”

CDFs are unavoidable, and it is important to compress them.

One possible approach is to use general function compression methods, such as wavelets or Gaus-

sian mixture models. Wavelets have been previously used for importance sampling of BRDFs [17,

57]. However, the computational cost for generating a sample can be significant, especially if non-

Haar wavelets are used (as is necessary to avoid many kinds of blocking artifacts). Additionally,
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the implementation for multidimensional functions such as measured illumination and BRDFs can

be difficult, requiring sparse wavelet data structures and a hexa-decary search.

A second approach to compact CDF representation that has been applied for BRDFs is factor-

ization [60]. This method takes advantage of the structure of the BRDF to factor it into 1D and 2D

pieces, thereby reducing dimensionality while still allowing for accurate representation and efficient

importance sampling. The technique proposed here differs in considering compression of general

tabulated CDFs, and is not limited to BRDF sampling. Additionally, the CDF compression con-

sidered here is independent of dimension and orthogonal to any factorizations of the input data.

It could therefore be applied equally well to methods that use a full tabular BRDF representation

and sampling scheme (as shown in this paper), or to lower dimensional components.

Another specialized CDF compression approach, which has been applied to environment maps,

is to decompose the function into piece-wise constant Voronoi or Penrose regions on the sphere

[1, 55, 85]. As compared to our method, these techniques offer more optimal stratification, but do

not directly extend to multidimensional distributions. Another drawback of these representations is

that they are difficult to use with standard multiple importance sampling algorithms that require

computing the probability of a direction generated from a separate distribution. Lastly, these

representations ignore the fact that half of the environment is always clipped against the horizon

of the surface and that the illumination is scaled by a cosine term (Figure 5.19).

5.5.2 Background

We seek to generate samples according to some Probability Density Function (PDF), p, which

by definition is non-negative and normalized (i.e., it integrates to 1). We accomplish this using

the inversion method, which pre-computes the corresponding Cumulative Distribution Function

(CDF)

P (x) =

∫ x

−∞

p(x′) dx′ (5.15)

and evaluates its inverse P−1(ζ) at locations given by a uniformly distributed random variable

ζ ∈ [0, 1].

We are interested in the case of a PDF specified numerically: in 1D, we assume that we are

given probabilities pi at locations xi. We precompute the corresponding CDF values Pi and, at
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run-time, invert the CDF by performing a binary search for the interval [Pi, Pi+1] that contains

the random value ζ. Note that this search is required whether or not the xi are spaced uniformly.

This will be the key property used by our representation: we can represent many functions more

efficiently by having non-uniformly spaced xi without increasing the run-time cost of importance

sampling.

In 2D, the situation is more complex. We must first decompose the 2D PDF p(x, y) into two

pieces, one dependent only on x and the other on y:

p̃(x) =

∫ ∞

−∞

p(x, y) dy (5.16)

p(y|x) =
p(x, y)

p̃(x)
(5.17)

The numerical representation then consists of a discretized version of p̃, given as samples p̃i at

locations xi, together with a collection of discretized conditional probability functions pi(y|xi).

This technique generalizes naturally to any number of dimensions, producing a “cascading set” of

CDFs where a value in each dimension is generated sequentially using the appropriate 1D marginal

CDF at each step [95]. As an important special case, we note that functions on a sphere may be

represented using the parameterization p(z, φ), where the usual change of variables z = cos θ is

used to normalize for the area measure dω = sin θ dθ dφ.

If the CDFs are uniformly sampled along their domain, the total size of this set of CDFs

will be slightly larger than the size of the original function. In Computer Graphics, it is often

the case that these functions can be both high-dimensional and measured at high resolutions.

Consequently, the combined size of the resulting 1D CDFs can quickly become prohibitively large.

This motivates our investigation into efficient techniques for compressing these sampled functions

without compromising their accuracy or utility.

5.5.3 Numerical CDF Compression

We use polygonal curve approximation algorithms to compress a densely sampled CDF by repre-

senting it with a reduced set of non-uniformly spaced samples selected to minimize the reconstruc-

tion error.
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Figure 5.11: The Douglas-Peucker algorithm greedily computes a polyline approximation of a
smooth 2D curve. It works by inserting the next sample in the approximation at the point of max-
imum deviation between the (black) original curve and the (red) current polyline approximation.

5.5.4 Polygonal Curve Approximation

With early roots in cartography, several efficient algorithms have been developed for computing

polygonal approximations of digitized curves. Polygonal approximation algorithms take as input

a curve represented by an N -segment polyline and produce an M -segment polyline with vertices

so as to minimize the error between the two (typically M ≪ N).

Although algorithms exist that output the optimal solution [14, 35, 15], we instead use the

Douglas-Peucker [27, 45] greedy algorithm because of its simplicity and speed. It has also been

shown that these greedy algorithms typically produce results within 80% accuracy of the optimal

solution [93].

The Douglas-Peucker curve approximation algorithm works by iteratively selecting the vertex

furthest from the current polyline as the next vertex to insert into the approximation (Figure 5.11).

Initially only the endpoints of the curve are selected, and the algorithm iteratively updates this

approximation until either an error threshold is reached or some maximum number of vertices

have been used. For curves derived from numerical CDFs, we found this algorithm sufficient for

producing near-optimal approximations with few samples.
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5.5.5 Applying Curve Approximation to CDFs

There are several ways of applying the above curve approximation algorithms to the task of rep-

resenting numerical probability functions. First, we can apply them to yield a piecewise linear

approximation of the CDF, which is equivalent to a piecewise constant approximation of the corre-

sponding PDF. Because the Douglas-Peucker algorithm, when applied to the CDF, is guaranteed

to yield a nondecreasing function with a range of [0..1], the resulting approximation may be used

directly as a CDF and differentiated to find the corresponding PDF.

A second way of using curve approximation algorithms is to apply them directly to the PDF to

obtain a piecewise linear approximation (which implies a piecewise quadratic CDF). In this case,

the resulting approximation is not guaranteed to integrate to one, and must be normalized before

it can be used as a probability function. Figure 5.12, bottom, compares these two strategies on

a (relatively smooth) function: note that the two approaches result in samples being placed at

different locations in the domain. For comparison, Figure 5.12, top, shows piecewise constant and

piecewise linear approximations using uniform sample spacing.

One important difference between uniformly-sampled and adaptively-sampled CDFs is the cost

of reconstructing the value of the approximated function (i.e., evaluating the probability) at an

arbitrary position. This property is necessary for combining several distributions using multiple

importance sampling algorithms [108]. When the samples are uniformly spaced the cost is O(1),

whereas adaptively sampled representations require O(log N) time (here N refers to the number

of non-uniform samples). This increased complexity results from having to perform a binary

search over the values of the function sorted along the domain to find the desired interval. Because

adaptive representations provide such large compression rates, however, N is typically small enough

to make this added cost insignificant in practice. In addition, the time complexity of generating a

sample (as opposed to evaluating the probability) remains the same at O(log N) in both cases.

In our experiments, we always used a piecewise constant approximation of the PDF (i.e. piece-

wise linear CDF). Although this results in a slightly larger representation, in our experience this

drawback was outweighed by the simpler implementation required for sampling a piecewise con-

stant approximation.
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Figure 5.12: A probability density function (corresponding to environment map in Figure 5.16) and
its piecewise linear and piecewise constant approximations with 8 samples placed uniformly (top)
and computed by the Douglas-Peucker algorithm (bottom). The piecewise constant approximation
was computed by running Douglas-Peucker on the integral of the PDF (i.e. the CDF). Note that,
for this relatively smooth function, the piecewise linear approximation is closer to the original.
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5.5.6 Multidimensional CDFs: The Cascading Douglas-Peucker Algo-

rithm

In the previous section, we discussed how to apply curve approximation algorithms to the task of

efficiently representing numerical 1D CDFs. In this section, we extend these ideas to accommodate

distributions of higher dimension. For the sake of explanation, we first restrict our discussion to the

2D case and provide an example with synthetic data in Figure 5.13. Extending these techniques

to higher dimensions is straightforward and briefly discussed at the end of the section.

Recall that we can convert any 2D distribution (Figure 5.13 top) into a single marginal CDF

plus a set of conditional CDFs according to Equations 5.15, 5.16 and 5.17. In order to generate

(x, y) pairs with probability proportional to the magnitude of the original function, we first generate

a value of x from the marginal CDF P̃ (x) (Figure 5.13 bottom, red curve) and then generate a

value of y from the corresponding conditional CDF P (y|x) (not shown in Figure 5.13).

As described previously, we use the Douglas-Peucker algorithm to select a set of non-uniformly

spaced samples that accurately represent the marginal 1D CDF, P̃ (x). For the example in Fig-

ure 5.13, we can perfectly approximate the marginal CDF with samples at the endpoints A and

E and at internal locations B and D. Next, we would compute a set of conditional CDFs, P (y|x);

one for each of these regions in x (e.g. in Figure 5.13 these regions are AB, BD and DE ). Each

conditional CDF is the average across its associated range:

p(y|xi) =
1

xi − xi−1

∫ xi

xi−1

p(x′, y)

p̃(x′)
dx′. (5.18)

For all the examples in this paper on measured data, building a cascading set of CDFs according

to Equation 5.18 was sufficient for accurately approximating the original distribution. However,

there are potential situations where this approach alone ignores error introduced by approximating

the distribution of energy within a region with a single CDF. Figure 5.13 illustrates such a situation.

In this case, the distribution of energy within the region BD would be poorly approximated by

a single conditional distribution because the two area light sources are at different heights. In

order to address this issue, we must also consider the gradient in the x-direction of the original

distribution:

g(x) =

∫ ∞

−∞

∣

∣

∣

∣

∂p(x, y)

∂x

∣

∣

∣

∣

dy. (5.19)
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When the function g(x) is large this indicates locations in x where the conditional CDFs, P (y|x),

would not be well approximated by a single distribution. Therefore, after our first application

of the Douglas-Peucker algorithm to represent P̃ (x), we add additional samples according to this

gradient function. Specifically, we can compute a numerical CDF from g(x) and generate a fixed

number of stratified samples along the domain (e.g. the x-axis) such that they occur at locations

where this function is large. Adding samples according to the gradient guarantees that both P̃ (x)

is well represented by the non-uniformly spaced samples and that the conditional CDFs computed

for each region, P (y|xi), well approximate the variation present in the orthogonal dimensions. In

the example in Figure 5.13, we additionally sample the marginal CDF at location C, separating

the 2D distribution into a total of four regions (AB, BC, CD and DE ), where each region is now

well approximated by a single CDF.

Lastly, we extend this sampling algorithm to arbitrary dimensions by simply expanding the

integrals over the entire range of free variables (as opposed to just y for the 2D example considered

above). For an N-dimensional distribution, p(x1, x2, . . . xN ), both the marginal and conditional

CDFs are proportional to the integral across the remaining free variables (note: we omit the

normalization constant for clarity):

p(xi|x1 . . . xi−1) ∝
∫ ∞

−∞

dxi+1 . . .

∫ ∞

−∞

dxN p(x1 . . . xN ),

and the gradient function would be computed similarly:

g(xi|x1 . . . xi−1) =

∫ ∞

−∞

dxi+1 . . .

∫ ∞

−∞

dxN

∣

∣

∣

∣

∂p(x1 . . . xN )

∂xi

∣

∣

∣

∣

.

5.5.7 Evaluation of Algorithm

In general, global illumination algorithms perform numerical integration of the rendering equation:

Lo(x, ωo) = Le(x, ωo) +

∫

Ω2π

dωi Li(x, ωi) ρ(x, ωi, ωo) (ωi · n).

A common approach to estimating the value of this integral is to perform Monte Carlo inte-

gration over the space of incoming directions. Because the entire integrand is usually not known a
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Figure 5.13: Efficiently approximating multi-dimensional distributions requires computing a cas-
cading set of 1D marginal and conditional CDFs. Here we show (top) a synthetic environment
map that contains only two equal sized area light sources. We compute (bottom, red curve) a
marginal CDF in x by summing the total energy across y. We also consider (bottom, green curve)
the average gradient in the x-direction. We place non-uniformly spaced samples according to
the Douglas-Peucker algorithm at positions A, B, D and E and any additional points where the
gradient function is large (i.e. at position C ).

priori, a reasonable strategy is to sample according to the terms that are known. For example, if

the incident illumination Li is represented by an environment map, we may perform environment

sampling. BRDF sampling, on the other hand, generates samples according to either ρ itself or

ρ · (ωi ·n). Although algorithms exist for sampling BRDFs and environment maps, these functions

provide a convenient platform to evaluate our representation. Moreover, our approach has several

desirable properties that these existing techniques lack. These enable novel applications that we

present in Section 5.5.10.
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(a) Grace Cathedral (b) Optimal Probability
Light Probe Distribution

(c) Distribution w/ 16 × 16 (d) Distribution w/ 16× 16
Uniform Samples Non-Uniform Samples

(e) Distribution w/ 64 × 64 (f) Distribution w/ 64 × 64
Uniform Samples Non-Uniform Samples

Figure 5.14: False-color visualizations of spherical probability density functions on a logarithmic
scale (red = largest probability, green = smallest probability). Directions are mapped to the unit
circle according to the parameterization used by Debevec [22]. (a) A measured environment map
of the inside of Grace Cathedral. (b) The probability density resulting from using a numerically
tabulated CDF sampled uniformly at the same resolution of the original map. The probability
distribution of numerical CDFs computed from (c) 16×16 uniform samples (d) 16×16 non-uniform
samples (e) 64 × 64 uniform samples and (f) 64 × 64 non-uniform samples.
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Figure 5.15: Two different probability distribution functions and the RMS error in approximating
them using different numbers of points and different sampling strategies. The different sampling
algorithms use either uniform or adaptive placement of sample locations.

5.5.8 Environment Map Sampling

One direct approach for generating samples according to a measured environment map [22], is

simply to compute a family of numerical 1D CDFs directly from the 2D spherical function [88].

Recall that one CDF will quantify the distribution along φ, P̃ (φ) and a set of 1D CDFs will control

the distribution of samples along θ at each sampled location of φ, Pi(θ|φi). These are derived from

the intensity of each pixel in the environment map (i.e. weighted average of color values) using

the method described in Section 5.5.2.

If the resolution of these CDFs is proportional to that of the environment map (as it should

be to avoid aliasing) this representation will be slightly larger then the original measured dataset

itself. Therefore, there is significant opportunity for compression using our adaptive representation.

Figure 5.14 shows false-color visualizations on a logarithmic scale of the full-resolution 1000×1000

123



(θ × φ) PDF of the Grace Cathedral environment (http://www.debevec.org/Probes/), together

with 16×16 and 64×64 approximations using both uniform and non-uniform sample selection. As

compared to uniform sampling, adaptive sample placement results in a significantly more accurate

approximation of the original distribution.

Figure 5.15 compares the error of our adaptive numerical representation with uniform sample

placement on two distributions with qualitatively different behaviors. The upper graphs show a

single scanline (i.e. varying phi for a constant theta) of the environment map, while the graphs

at bottom plot the RMS error of the approximation as a function of the number of samples used

(note that the horizontal axis is logarithmic). At left, we consider a relatively smooth function. In

this case, the gain from nonuniform placement of samples is relatively modest. At right, we show a

“peakier” function that is easier to compress with nonuniform sample placement. In this example,

our adaptive representation reduces the number of samples required at equal approximation error

by a factor of 16 compared to uniform downsampling.

5.5.9 BRDF Sampling

The BRDF gives the ratio of reflected light to incident light for every pair of incoming and outgoing

directions: ρ(ωo, ωi). For glossy materials, it is advantageous to sample the environment according

to the distribution of energy in the BRDF. Because this is a 4D function (3D if the BRDF is

isotropic), a tabular representation at a modest resolution would still be quite large. Consequently,

we apply our adaptive representation to the task of efficiently storing numerical CDFs derived from

measured BRDFs.

We compared the size and accuracy of this representation with a standard approach of pre-

computing the CDFs at their full resolution [73] for the same set of viewing directions (Figure 5.16).

We evaluated the efficiency of generating samples using an adaptive numerical CDF computed from

two measured BRDFs [74]: nickel and metallic-blue.

For these results, we first reparameterized the BRDF into a view/half-angle frame in order

to maximize the redundancy among slices of the function giving greater opportunity for compres-

sion [60]. Each uniformly-sampled CDF had a resolution of 32×16×256×32 (θo×φo×θh×φh) and

occupied 65MB. Here, θh and φh are the elevation and azimuthal angles of the half-angle vector re-

spectively. To compute the corresponding adaptive numerical CDFs required, on average, roughly
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Cook-Torrance BRDF

65MB 1.5MB

Measured Nickel BRDF

Original (65MB) Compressed (3.9MB)

Measured Metallic-Blue BRDF

Original (65MB) Compressed (2.3MB)

Figure 5.16: BRDF importance sampling with adaptive numerical CDFs. We compare the variance
in images rendered using a path tracer that generates samples using the fully tabulated CDF and
the adaptive CDF. In all cases we estimate the radiance with 80 paths/pixel. We also list the total
size of the probability representation below each image.
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100%

42%

18%

7.8%

3.3%

(a) Illumination (b) Sampling Efficiency

Figure 5.17: For some orientations and lighting, sampling from a single distribution will be ineffi-
cient because most of the energy is occluded by the horizon. (a) We examine this inefficiency for an
example in which the majority of light is above and slightly behind the object being rendered. (b)
A false-color image visualizes the percentage of samples that will be generated above the horizon
and, consequently, make a positive contribution to the radiance estimate at that pixel. In many
regions of this image only 5% of the samples are generated above the horizon.

30 samples in θh and 10 samples in φh. Using the Douglas-Peucker algorithm, these adaptive

samples were selected from an initial set of 2048×1024 (θh×φh) uniformly-spaced samples—a res-

olution prohibitively expensive for the fully tabulated CDFs. It required 20 minutes of processing

time to compute the adaptive representation for each BRDF.

We found that for these BRDFs, sampling the adaptive numerical CDF is nearly as efficient as

the full tabular approach. For the measured nickel BRDF, the compact CDF actually produces

slightly less variance in the image because the uniform sampling was not sufficiently dense to

capture the very sharp highlight.

5.5.10 Novel Applications

In this section we present a new algorithm for sampling illumination from an environment map

according to the local orientation of the surface. Additionally, we demonstrate how our represen-

tation facilitates multiple importance sampling of both illumination and the BRDF.
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nθ = 0, nφ = 0 nθ = π, nφ = 0

nθ = 0.78, nφ = 1.57 nθ = 0.78, nφ = 4.71

nθ = 2.35, nφ = 1.57 nθ = 2.35, nφ = 4.71

Figure 5.18: False-color visualizations of several CDFs computed at different surface orientations.
Each distribution is visualized on a logarithmic scale as in Figure 5.14. For each surface normal
considered we clip the environment map to the visible hemisphere and multiply each radiance value
by (n · ωi) before computing an adaptive CDF representation of the resulting 4D distribution.
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5.5.11 Local Environment Map Sampling

Using adaptive numerical CDFs, we introduce a novel algorithm for sampling an environment

map in an orientation-dependent manner. In previous methods of sampling environment maps,

incoming directions are drawn from a single spherical distribution [1, 55, 85, 88]. This approach

is inefficient when a significant amount of light in the scene happens to fall below the horizon for

a large number of pixels. In Figure 5.17, there are many regions of the image where as few as

5% of the samples are generated above the horizon—this also indicates the inefficacy of standard

techniques like rejection sampling to address this problem. Furthermore, sampling from a single

spherical distribution cannot consider the cosine term that appears in the rendering equation (i.e.

max(0,n · ωi)). Accounting for this cosine-falloff would require sampling from a 4D function (i.e.

there are two degrees of freedom in the incoming direction and two in the normal direction). We

show several 2D slices of this function for different normal directions in Figure 5.18. As with

BRDFs, representing a 4D distribution even at a modest resolution could require prohibitively

large storage.

We can store the 4D distribution that results from modulating an environment map by the

cosine term using our adaptive CDF representation. During rendering, each pixel corresponds to a

normal direction that becomes an index into the 4D distribution, producing a 2D distribution over

incoming directions that we sample from. In our experiments, we evaluated the local environment

map distribution at 25× 10 (φ× θ) normal directions and 1000× 2000 (φ× θ) incoming directions.

Storing this tabular CDF directly would require approx. 4GB of space. In contrast, our repre-

sentation requires 10-20MB of storage and 1-2 hours of compute time to provide an acceptable

approximation.

We compared local environment map sampling with jittered sampling of a stratified represen-

tation [1] and sampling from a uniformly-spaced CDF [88] (see Figure 5.19). Jittered sampling

(Figure 5.19 left) performed the worst mainly because this technique is ineffective for such low

sample counts (note: we are using only 20 samples here). Moreover, there is significant error

due to the bias introduced by approximating each strata with a radial disk. Although unbiased

jittering is not impossible to achieve, it is not a simple extension to published algorithms and

has not been reported in previous work. We also compared our algorithm to sampling from a

uniformly-sampled CDF and rejecting those samples that fell below the horizon [88] (Figure 5.19
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St. Peter’s Basilica

Galileo’s Tomb

Grace Cathedral

Jittered Full CDF Local
Sampling With Rejection Env. Sampling

Figure 5.19: We compare the variance of a Monte Carlo estimator computed according to (left
column) jittered sampling of a stratified representation [1], (middle column) a uniformly-sampled
CDF [88] where we reject samples that fall below the horizon and (right column) using our local
environment map sampling algorithm. We have rendered a perfectly diffuse object at 20 sam-
ples/pixel in three different environments that all exhibit high-frequency lighting. Cutouts include
a magnified region of the image and a variance image (note: these are false-color visualizations of
the logarithm of RMS error in image intensity where black ≤ 0.135 and red ≥ 20.08). All three
sampling methods required approximately 15 seconds to render these images.
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middle). This strategy is most comparable in quality to our own, but because it does not account

for the horizon-clipped cosine term in the rendering equation, it fails to achieve the same rate

of convergence. Quantitatively, local environment map sampling achieved approx. 5 times lower

variance than sampling a single CDF computed at full resolution and approx. 20 times better than

jittered sampling for these test scenes.

5.5.12 Multiple Importance Sampling

In practice, neither the BRDF nor the incident illumination alone determine the final shape of the

integrand in the rendering equation. Therefore, it is critical that a CDF representation supports

multiple importance sampling [108]. The main criterion this imposes is that the representation

must allow efficient computation of the probability of a direction that was not generated from the

distribution itself. Algorithms that decompose environment maps into non-overlapping strata [1,

55, 85], for example, do not readily provide this property because determining the probability of

an arbitrary direction would require searching over the strata. Although not impossible, making

this search efficient has not previously been demonstrated and could be one direction of future

work. With our adaptive numerical CDF, however, the probability of an arbitrary direction can

be computed in O(log N) where N is the number of non-uniformly spaced samples. Moreover,

because of the compression ratios possible with our representation, N is typically small enough to

make this operation inexpensive in practice.

We show several scenes for which multiple importance sampling is critical (Figure 5.20). In

these results, we use the balance heuristic introduced by [108] to combine 50 samples of the BRDF

with 50 samples of the environment. The BRDF samples are generated using our adaptive CDF

discussed in Section 5.5.9 and the illumination samples are generated using local environment

map sampling (see Section 5.5.11). To demonstrate the benefit of a representation that supports

multiple importance sampling, we also compare these images to those rendered using 100 samples

drawn from either the BRDF or environment alone.

5.5.13 Conclusions and Future Work

This work addresses a long-standing graphics problem of efficiently importance sampling complex

analytic and measured BRDFs. We have introduced two methods for importance sampling the
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Cook-Torrance BRDF in the Beach Environment

Measured Nickel BRDF in Grace Cathedral Environment

Measured Plastic BRDF in Galileo’s Tomb Environment

Illumination BRDF Environment Relative Combined
Sampling Sampling Efficiency Sampling

Figure 5.20: Multiple importance sampling using adaptive numerical CDFs computed from both
BRDFs and image-based lighting. The 4th column visualizes the relative reduction in variance
using environment sampling vs. BRDF sampling: red = BRDF sampling has 8x less variance than
environment map sampling, blue = environment sampling has 8x less variance than BRDF sam-
pling. For these scenes, sampling from either the BRDF or environment alone will not effectively
reduce variance over the entire image and performing multiple importance sampling is critical.

BRDF that reduces sampling to inverting a handful of 1D cumulative distribution functions. This

provides a compact practical representation and a simple algorithm for sampling, which in many

cases reduces variance and sampling times by an order of magnitude relative to previous meth-

ods. We use our representation and importance sampling method to efficiently render scenes with

multiple isotropic and anisotropic materials with global illumination under complex illumination.

In future work, we would like to extend our technique to allow for mixed parameterizations of

the factored BRDF, such that each term may have a different parameterization. This would allow us

to better approximate BRDFs that exhibit several different types of scattering (e.g. side, backward

131



and forward) at the same time. Our factorization method might also have applications in sampling

bi-directional texture functions (BTFs) and light fields—two examples of high-dimensional func-

tions that, like BRDFs, typically have significant redundancy. More generally, we see our work

as a first step towards efficient techniques to sample high-dimensional measured functions. With

the increasing importance of measured and image-based data in computer graphics, this problem

promises to have growing significance.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Providing computer models that accurately characterize material appearance is central to many

problems in computer graphics and computer vision. Conventional techniques based on parametric

surface reflectance functions and texture maps cannot capture the complex appearance of many

real-world materials. Recent techniques for measuring the way a material reflects light have pro-

vided more accurate appearance representations at the cost of expensive acquisition times, delicate

calibration procedures and large storage requirements.

A common approach to incorporating measured appearance data into computer generated

imagery is to fit the parameters of an analytic scattering function (e.g. the Bidirectional Reflectance

Distribution Function (BRDF)) to the measurements. Although this technique provides significant

compression ratios, gives a designer the ability to edit the appearance and is already integrated

into state-of-the-art rendering algorithms, it can introduce significant approximation error for many

materials. On the other hand, nonparametric approaches, including basis function decomposition

and standard matrix rank-reduction algorithms such as PCA, can retain high fidelity to the original

data. Although these representations provide greater accuracy and generality, they have so far have

not incorporated the important design goal of editability. Furthermore, previous representations

are not optimized for importance sampling; an important technique for improving the efficiency of

physically-based rendering algorithms.
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We have introduced several new nonparametric representations of surface reflectance func-

tions that address the shortcomings of previous techniques. In particular, the Inverse Shade Tree

(IST) framework provides a general approach to estimating the “leaves” of a user-specified shade

tree from high-dimensional measured datasets of appearance. These leaves are sampled 1- and

2-dimensional functions that capture both the directional behavior of individual materials and

their spatial mixing patterns. In order to compute these shade trees automatically, we map the

problem to matrix factorization and introduce a flexible new algorithm that allows for constraints

such as non-negativity, sparsity, and energy conservation. Although we cannot infer every type of

shade tree, we demonstrate the ability to reduce multi-gigabyte measured datasets of the Spatially-

Varying Bidirectional Reflectance Distribution Function (SVBRDF) into a compact representation

that may be edited in real time. We also introduce a compact representation for the spatial com-

ponent of the Bidirectional Subsurface Scattering Reflectance Distribution Function (BSSRDF).

Unlike previous techniques that fit a simple analytic model to BSSRDF measurements, our ap-

proach can represent materials with heterogeneous subsurface scattering properties.

We also introduce an importance sampling technique for a wide range of BRDFs, including

complex analytic models such as Cook-Torrance and measured materials. Our approach is based

on a compact factored representation of the BRDF that is optimized for sampling. We show

that our algorithm consistently offers better efficiency than alternatives that involve fitting and

sampling a Lafortune or Blinn-Phong lobe, and is more compact than sampling strategies based

on tabulating the full BRDF. We are able to efficiently create images involving multiple measured

and analytic BRDFs, under both complex direct lighting and global illumination.

Lastly, we apply algorithms traditionally used for curve approximation to reduce the size of

a multidimensional tabulated Cumulative Distribution Function (CDF) by one to three orders

of magnitude. These adaptive representations enable new algorithms for sampling image-based

illumination and measured BRDFs in the context of global illumination rendering.

6.2 Areas of Future Work

Our work suggests several different areas of future research:
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Acquisition Existing techniques for measuring material appearance (such as those discussed in

Chapter 3) densely sample the domain of a particular light transport function. These approaches

quickly become impractical for high-dimensional functions. Furthermore, the redundant informa-

tion in these datasets suggests that dense acquisition is not necessary. For example, we are able

to generate accurate shade trees of the SVBRDF from a very small portion of the complete input

using the subsampling procedures discussed in Section 4.5.8. Future research might consider the

question: “How can we optimize our acquisition to avoid measuring redundant or less visually

important regions in the input?” It seems that the challenge is two-fold. First, it is unclear what

type of device would allow measuring the most useful subset of a particular scattering function.

Second, an optimal acquisition strategy will depend on the material properties of the particular

sample. Recent work has demonstrated the potential for making use of this redundancy for a vari-

ety of appearance functions [63, 113, 65, 41]. Nonetheless, this remains an active area of research

and future work might consider applying these ideas to acquiring the appearance of more general

light scattering functions.

Another promising approach is to parallelize the acquisition process using multiple sensors.

Recent designs [112, 24, 110] have a rigid assembly of many cameras and light sources. Each

camera simultaneously records an image of the sample material illuminated by each light-source

in rapid succession. This allows acquisition times on the order of a few seconds. However, because

the locations of the cameras and lights are fixed, this setup does not allow adaptive acquisition.

Investigating setups that combine parallel acquisition with view-planning and adaptive exploration

of a function’s domain would be another interesting area of future research.

Representation We believe the Inverse Shade Tree framework could provide novel representa-

tions for many other high-dimensional measured appearance functions beyond the BRDF, BSS-

RDF and SVBRDF previously considered. One possible direction of future work is to incorporate

additional aspects of reflectance variation such as displacement maps for fine geometric detail typ-

ically represented as Bidirectional Texture Functions (BTFs). Due to the complex shadowing and

masking at the surface of these materials, existing algorithms would not be suitable for efficiently

estimating their shade trees and future work should consider more general inference.

There are usually multiple ways to factorize a high-dimensional transport function into lower-
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dimensional components. For example, the dependency of the SVBRDF on wavelength can be

preserved in either the spatial blending weights or the basis BRDFs (we do the latter in Chap-

ter 4). However, different edits would be easier with different decompositions. Future work might

investigate alternative decompositions for a particular appearance function. Along these lines, we

would like to investigate techniques for automatically inferring the structure of the tree (including

the number of terms used at each stage in the decomposition). This could include decomposing

the same dataset into multiple trees, either of which could be edited by a designer.

Alternating Constrained Least Squares Another avenue of future work is related to the

Alternating Constrained Least Squares (ACLS) techniques we proposed in Section 4.5. Their

flexibility and provable local convergence make them ideal candidates for a broad range of dimen-

sionality reduction applications in data mining and other machine learning contexts. Future work

could evaluate the efficiency and noise-tolerance properties of ACLS, and investigate the impact

of various types of additional linear constraints.

Out-of-core Factorization The massive size of most appearance datasets makes computing

their decomposition infeasible. Although subsampling procedures provide one solution, they do

so by considering only a small portion of the input. Future work in this area might develop

factorization algorithms that work in parallel across a cluster of computers. Another direction

would be developing out-of-core factorization algorithms that require storing only a small amount

of the complete data within main-memory at any one time, but eventually consider the entire

input.
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of spatially varying BRDFs. In Proceedings of Eurographics, pages 473–482, 2003.

[66] Thomas Leung and Jitendra Malik. Representing and recognizing the visual appearance

of materials using three-dimensional textons. International Journal of Computer Vision,

43(1):29–44, 2001.

[67] Robert R. Lewis. Making shaders more physically plausible. In Fourth Eurographics Work-

shop on Rendering, pages 47–62, 1993.

[68] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique with an ap-

plication to stereo vision. In Proceedings of the Joint Conference on Artificial Intelligence,

pages 674–679, 1981.

[69] Tom Malzbender, Dan Gelb, and Hans Wolters. Polynomial texture maps. In SIGGRAPH

2001, pages 519–528, 2001.

[70] S. Marschner, S. Westin, E. Lafortune, K. Torrance, and D. Greenberg. Image-Based BRDF

measurement including human skin. In Eurographics Rendering Workshop 99, pages 139–152,

1999.

[71] Stephen R. Marschner, Henrik Wann Jensen, Mike Cammarano, Steve Worley, and Pat

Hanrahan. Light scattering from human hair fibers. ACM Transactions on Graphics (ACM

SIGGRAPH 2003), 22(3):780–791, 2003.

[72] Stephen R. Marschner, Stephen H. Westin, Adam Arbree, and Jonathan T. Moon. Measuring

and modeling the appearance of finished wood. ACM Transactions on Graphics (ACM

SIGGRAPH 2005), 24(3):727–734, 2005.

143



[73] Wojciech Matusik. A Data-Driven Reflectance Model. PhD thesis, Massachusetts Institute

of Technology, 2003.

[74] Wojciech Matusik, Hanspeter Pfister, Matt Brand, and Leonard McMillan. A data-driven

reflectance model. ACM Transactions on Graphics (SIGGRAPH 2003), 22(3):759–769, 2003.

[75] Wojciech Matusik, Hanspeter Pfister, Matthew Brand, and Leonard McMillan. Efficient

isotropic brdf measurement. In Eurographics Workshop on Rendering, pages 241–247, 2003.

[76] David McAllister. A Generalized Surface Appearance Representation for Computer Graphics.

PhD thesis, UNC Chapel Hill, 2002.

[77] Michael D. McCool, Jason Ang, and Anis Ahmad. Homomorphic factorization of brdfs for

high-performance rendering. In Computer Graphics (SIGGRAPH 2001), pages 185–194,

2001.

[78] NAG. Numerical algorithms group c library, 2005.

[79] John Nelder and Roger Mead. A simplex method for function minimization. Computer

Journal, 7:308–311, 1965.

[80] L. Neumann and A. Neumann. Photosimulation interreflection with arbitrary reflection

models and illumination. Computer Graphics Forum, 8(1):21–34, 1989.
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mon Rusinkiewicz, and Philip Dutré. A compact factored representation of heterogeneous

subsurface scattering. ACM Transactions on Graphics (SIGGRAPH 2006), 25(3), 2006.

[87] Ken Perlin. An image synthesizer. In Computer Graphics (ACM SIGGRAPH 1985), pages

287–296, 1985.

[88] Matt Pharr and Greg Humphreys. Physically Based Rendering : From Theory to Implemen-

tation. Morgan Kaufmann, 2004.

[89] Bui Thong Phong. Illumination for computer generated images. Communications of the

ACM, 18:311–317, 1975.

[90] Pierre Poulin and Alain Fournier. A model for anisotropic reflection. In Computer Graphics

(SIGGRAPH 1990), pages 273–282, 1990.

[91] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Nu-

merical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge

(UK) and New York, 2nd edition, 1992.

[92] Kekoa Proudfoot, William Mark, Svetoslav Tzvetkov, and Pat Hanrahan. A real-time pro-

cedural shading system for programmable graphics hardware. In Computer Graphics (SIG-

GRAPH 2001), pages 159–170, 2001.

[93] Paul L. Rosin. Techniques for assessing polygonal approximations of curves. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 19(6):659–666, 1997.

[94] Szymon Rusinkiewicz. A new change of variables for efficient BRDF representation. In

Eurographics Workshop on Rendering, pages 11–22, 1998.

[95] Richard L. Scheaffer. Introduction to Probability and Its Applications (Statistics). Duxbury

Press, 2nd edition, 1994.

145



[96] Peter Shirley. Physically Based Lighting Calculations for Computer Graphics. PhD thesis,

University of Illinois at Urbana Champaign, 1990.

[97] Jos Stam. Diffraction shaders. In Computer Graphics (SIGGRAPH 1999), pages 101–110,

1999.

[98] Frank Suykens, Karl vom Berge, Ares Lagae, and Philip Dutré. Interactive rendering with
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