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Abstract
This thesis demonstrates the way in which various methods for controlling detail and
creating effects in computer graphics may be unified under the general theme of the
rendering filter. Generally stated, such a filter is a passive, stateless operator that acts
upon a decomposition of terms in the rendering equation. In the first Part, we present
background that motivates this concept, and provides an understanding of the way in
which the rendering filter follows logically from existing use in other domains. First, in
Chapter 1, we discuss the general and historical use of the term “filter,” especially as a
useful metaphor that encapsulates various similar operations. We present examples of
filters in photography, electronics, imaging and geometry processing. In Chapter 2, we
provide background specific to rendering in graphics, examine the process of rendering
as inherently related to filtering, and define the rendering filter itself.

In the second Part, we see the application of these concepts by three specific examples
of rendering filters. In addition to demonstrating the utility of the methods themselves,
we show how these distinct algorithms are unified by the underlying rendering filter
framework. In Chapter 3, we show various ways in which artists use “abstract,” or
otherwise unrealistic shadows to achieve compositional purposes; to allow similar control
in real-time graphics, we present the stylized shadow filter. This filter accepts an intuitive
set of controls, with which it converts an accurate shadow into a stylized shadow, and
simulates many of the same artistic effects. Importantly, we present an algorithmic
framework sufficiently efficient for real-time, interactive rendering. In Chapter 4, we
present the subtractive shadow filter, which derives from the principle that rather than
adding unshadowed light contributions from multiple lights in the scene to produce a
shadowed result, we rather subtract extraneous light from an unshadowed rendering. By
doing so, we enable user control over shadow level-of-detail in a progressive and flexible
manner, so as to achieve a time/quality tradeoff over rendering, analogous to existing
filtering techniques for other domains. In Chapter 5, we focus on improving the quality
of realistic light transport through the path-density filter, which removes outlier points
that degrade the quality of the scene. Their removal leads to significant improvement in
rendering quality while retaining plausibility of the result. These particular filters serve
as specific examples of rendering filter in practice, but by no means constitute the limit of
what may be achieved according to this framework. It is hoped that by introducing these
concepts we may stimulate the subsequent development of many additional methods.
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Part I

Foundations and Motivations of
Rendering Filters
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Chapter 1

The Filter as Convenient Metaphor

In this thesis we present three novel computer graphics algorithms that enable both con-
trol over rendered detail and the creation of stylistic effects. While these may appear at
first glance to be unconnected, we suggest that they can all be considered specific exam-
ples of rendering filters, and that this concept provides a coherent framework that unifies
a wide range of computer graphics algorithms. Our primary goal is to introduce the
metaphor of the rendering filter by recognizing the connection between these algorithms
and the general concept of filtering as traditionally employed in many fields. We may
then apply many of the same techniques and extensive background to the rendering filter.

Many of the metaphors used in computer graphics – cameras, filters, lights, etc. –
have natural correlates in physical photography, and therefore a long history on which to
draw upon for understanding. Resultingly, it is useful to first consider the development
of these terms in photography and depiction, as we do in the next section. We then
continue our discussion with the generalization of the term to analog electronics and
signal processing in Section 1.2, and to digital signal processing in Section 1.3, during
the course of which we provide a discussion of the mathematical basis of these methods.
This leads to the further application of filtering to computer graphics applications in
Section 1.4. Subsequently, the next chapter will discuss the use of filtering specific to
rendering.
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Chapter 1. The Filter as Convenient Metaphor

1.1 Filters in traditional photography

The term camera as used in photography derives from the camera obscura (Latin for
veiled room), in which a small opening (or aperture) is made in the side of an otherwise
darkened room, causing an image of the view through the aperture to be projected on the
opposite wall. Well-known since the Renaissance, the camera obscura is diagrammed in
the notes of Leonardo da Vinci (see [51], pp. 180-183 for an accessible edition). The
first widespread method to permanently preserve the resulting image was introduced by
Louis Daguerre in 1839. The daguerreotype, as images produced by his method came
to be known, consists of a polished silver plate coated with silver iodide. The photo-
sensitive silver iodide tends to form atomic silver when exposed to light; this effect is
more pronounced in regions with greater light. By development of this plate with mercury
vapor, an image becomes visible [29].

As photography became more widely used, other sources produced alternate pho-
tographic plates to those of Daguerre. Plates made of varying compositions of pho-
tosensitive materials correspondingly display varying sensitivity to light. The result,
therefore, was that two photographs taken of the same scene at the same time, but with
different makes of photographic plates, would show differences in color and relative
level of exposure. To compensate, most manufacturers of photographic plates would
also supply “filters” – transparent colored discs that attach to the lens – specially adapted
to their plates (see [98] pg. 335). Similarly, filters allow the photographer to compensate
for the ambient colors in the environment. For example, the left image of Figure 1.1
was taken under incandescent tungsten lighting, which has an overall amber-red hue.
Were the photographer to use a #80A Cooling Filter over the lens, the filter would
disproportionately remove red frequencies so as to correct the hue [28]. The inverse
of the #80A is the #85 Filter, which makes a scene taken in bluish daylight appear to
be in artificial light. These numbers given are part of the Wratten number standard,
promoted by Eastman KODAK Company; in addition to their Wratten number, filters
are also specified in terms of their density (60% in the figure). The use of a standard
numbering allowed a photographer to easily select and use the particular filter for the
task. In many ways, then, this allowed the concept of a photographic filter to have a
natural relation with that of a liquid filter – particular filters have specific properties in
terms of the objects they block, and those that they allow to pass through.

3



Chapter 1. The Filter as Convenient Metaphor

Original, Tungsten Lighting Color-Corrected with #80A Filter

Figure 1.1: Color Correction Using Photographic Filters. Uncorrected tungsten
lighting lends an artificial amber-red tone to objects in the photograph that would be
perceived as white by a viewer in the scene. The use of a #80A Cooling Filter (60%
density), which is specifically designed for this purpose, corrects to display more neutral
tones. (Note specifically that the image has been altered using the #80A Filter in Adobe
Photoshop CS3).

The traditional definition of filter, the only one which early photographers would
have been familiar with, is that of an object used to free a fluid from particles held in
suspension; the term originates from an alternate spelling of “felt,” which was often
employed for such purposes. The usage in photography is the first known generalization
to an alternative definition, according to The Oxford English Dictionary, around 1900: to
separate specific frequency bands of light from a wider spectrum [68].

As the art of photography developed, practitioners found use of filters for stylistic
reasons, in addition to correctness. An essential aspect of the cinematographer’s role in
movie production is setting the tone and hue of the images so as to achieve a particular
look and feel [69]. This may have a significant impact on the perception of the images
by the audience, and their reaction to it. Images with dominant red hues are considered
“warmer”, and evoke a different response from those “cooler” images with dominant blue
or green hues. Particular photographic filters would be used and changed as needed to
reflect the director’s intentions.

As a specific example of this, consider the still frames from the short movie Elephant’s

Dream1 shown in Figure 1.2. The movie focuses around two characters: the boy and old

1Elephant’s Dream was produced by the Blender Foundation and the Netherlands Art Institute, and has
been released under a Creative Commons License that permits its use here.
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Chapter 1. The Filter as Convenient Metaphor

Red Colors / Warmer Mood Green Colors / Colder Mood

Figure 1.2: Stylistic Filtering for Compositional Purposes. In the left scene, while the
focus of the plot is on the boy, the color hue is red (evoking a warmer mood), reflecting
the character. When (approximately a second later) the old man becomes dominant, the
overall hue switches to his own, colder, greens. In this way, filtering has been used to
convey additional information from the cinematographer to the viewer.

man shown in the images. The director makes strong use of hue to differentiate the
characters, and switches back and forth to set the mood of the scene, according to the
character in the focus of the plot at that moment. The frames shown are taken a second
apart. While the boy is talking (left) the reddish hue is designed to evoke warmth and
calm, reflecting the character. The old man grows angry (right), and in response presses a
button so as to explicitly change the dominant hue to his own colder greens, representing
a change of focus on the characters, as well as a change of mood in the scene. While
this film makes the connection between hue and plot explicit, this concept is present in
subtler forms in a wide range of films [80]. We demonstrate similar stylistic filters for
compositional effect later in this work.

Another common physical filter is the use of the soft-focus lens, in which the camera
forms blurred, or “softer,” images. Originally, soft focus was the result of imperfections in
the surface of the lens that prevent light rays from converging at a focus point. However,
in certain photographic applications, this may be desirable, such as in removing imper-
fections and creating a more surrealistic image. Photographic filters have been developed
to achieve this effect artificially; for example, the popular Dallmeyer-Bergheim stigmatic
lens has been used for adjustable soft focus since the late 19th Century [98]. In addition
to commercial filters, this effect can be approximated with such home-made solutions as
petroleum jelly coated across the camera lens [34].
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Chapter 1. The Filter as Convenient Metaphor

Contrasting with the soft-focus, the unsharp mask filter increases apparent sharpness
in the image. The filter derives its name from a blurred version of the image that is used
to partially block light when the image is developed – the eponymous mask. The use of
the unsharp mask blocks similar low-frequency features more so than high frequencies,
causing an increase of apparent sharpness [33].

Since the development of digital photography, it became possible to replicate these
effects in the computer, as well as achieving additional effects that are difficult or impos-
sible to produce with traditional physical filters. Our work in this thesis revolves around
extending filter concepts to other problem domains. To understand such filtering methods,
it is important to understand the mathematical foundations of filtering as developed in the
field of signal processing, which we discuss in the next section.

1.2 Filters in signal processing

Much of the formal concepts applied to filter design were developed in the context of
electrical and electronic engineering, and we proceed with a discussion thereof. Within
several decades after the use of “filter” as an object that removes certain frequencies of
light, a similar definition became applied to electronic circuits. In particular, filtering in
both the electrical and photographic contexts involves operations in frequency space.
Specifically, an electronic filter is defined as a passive circuit that attenuates signals
according to their frequency bands [68].

The properties of such circuits can be formally studied according to a branch of
mathematics known as spectral, or Fourier, analysis. In general, an electromagnetic
signal, such as electrical current or light, can be viewed as possessing a magnitude
that varies continuously in time, usually of an oscillatory nature. As shown by the
mathematician Joseph Fourier in 1807, any such continuous signal can be represented
exactly by the (possibly infinite) sum of regularly oscillating sine and cosine waves of
varying amplitudes (for an overview see [93]). For example, the irregular signal f (t) in
Figure 1.3 (top left) can be expressed as a linear combination of simpler, regular cosine
waves.

The projection of a function onto sine and cosine bases is known as the Fourier
transform F [·], which transforms a function f (t) in the time domain to a function F(ω)

6



Chapter 1. The Filter as Convenient Metaphor

in the frequency domain. While the example of Figure 1.3 is decomposed into a discrete
number of cosine waves, a general function will consist of a continuous spectra, or
combination of cosine and sine waves. The analytic form of the transform is given as:

F(ω) = F [ f ] =
Z

∞

−∞

f (t)e−2πitωdt, (1.1)

yielding a frequency-space representation F(ω) equivalent to f (t), but instead expressing
the function in terms of frequency ω rather than t. The transform is invertible by the
related Inverse Fourier transform F −1, allowing processing directly in frequency space,
with subsequent recovery of a modified signal in the temporal space.

This form allows for simplification of many filtering operations. Let us denote the
result of applying the filter K to a function f (t) as K[ f ](t). For example, the low-pass
filter Klow

ω0
[·], which removes all frequencies above ω0 in its input, can be conveniently

represented as a multiplication in frequency space. Given the filter kernel function

Klow
ω0

(ω) =

1 if |2πω| ≤ ω0,

0 otherwise
(1.2)

the Fourier transform of the filtered function is represented as

F ′(ω) = Kω0(ω)F(ω). (1.3)

Applying the inverse transform back to the temporal domain produces the filtered result.
We illustrate this in Figure 1.3, in which the function f (t) has been transformed to
the equivalent F(ω) (bottom left, represented as 4 pairs of Dirac delta distributions2).
Application of Klow

2π
removes all but the two low frequency components less than or equal

to 2π, yielding a low-pass filtered result.

The filtering operation can also be performed directly in the temporal domain through
the use of the convolution operator, where for functions f (t) and k(t),

(k ∗ f )(t) =
Z

∞

−∞

k(t−u) f (u)du (1.4)

2The Dirac delta δ(t), or impulse function, is zero everywhere except at t = 0, where δ(0) is
infinitely large such that the total integral

R
∞

−∞
δ(t)dt = 1. This definition has the consequence thatR

∞

−∞
δ(t − x) f (t)dt = f (x), so that the integration of δ(t − x) with a test function f (t) selects the value

f (x) [92].
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Chapter 1. The Filter as Convenient Metaphor

f (t) = cos(πt) + 1
2 cos(2πt) + 1

4 cos(4πt) + 1
32 cos(16πt)

∗
−3 −1 1 3

=

High-Frequency f (t) Sinc function sin(t)
t Low-pass Klow

2π
[ f ](t)

1
2

1
2 1

4
1
4 1

8
1
8

1
64

1
64

1/21 2 8-1/2-1-2-8

·

1-1

1

=

1
2

1
2 1

4
1
4

1/21-1/2-1

Discrete F(ω) = F [ f ] Box Kernel Klow
2π

(ω) Filtered (FK)(ω)

Figure 1.3: Low-pass Filtering in Time and Frequency. The example function
previously given is equivalently represented in frequency space as a sum of delta
distributions, shown bottom-left with their offsets and scales, one pair for each frequency.
By multiplying with a rectangular filter kernel, the high frequencies are removed. Note
the equivalence between the multiplication in frequency space and the convolution in
time.
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Chapter 1. The Filter as Convenient Metaphor

The convolution bears a special relationship with the Fourier transform operator, in
that convolution of two functions in temporal space is equal to multiplication in Fourier
space (and vice versa).

(k ∗ f )(t) = F [k](ω)F [ f ](ω) = (KF)(ω). (1.5)

The convolution k∗ f is equivalent to K[ f ] when k = K[δ](t), in which case k is termed the
impulse-response function of K. While it is possible to evaluate (1.4) directly (that is to
say, in the time domain) the reasons for using frequency space are twofold. First, complex
integral operators can be expressed in greatly simplified form in frequency space, leading
to ease of filter design and analysis. For example, note from Figure 1.3 that the low-pass
filter in (1.2) has a compact form in frequency space, but the transcendental, infinitely-
supported sin(t)/t = sinc(t) in temporal space. Second, for computational purposes a
simple multiplication in frequency space is significantly more convenient than evaluating
a convolution. With the use of an optimization known as the Fast Fourier Transform,
discussed in the next section, we can efficiently compute the spectra of functions, so as
to perform filtering operations.

With these filters in hand, we can directly apply common operations to simple signals,
such as sound and radio waves, whose information content is contained directly in the
signal frequency. While sound is not an electromagnetic wave, per se, but rather a wave
of kinetic motion of mass-bearing objects, such waves are converted into electromagnetic
signals through use of an electroacoustic transducer (such as a microphone), and can then
be filtered by electronic circuits.

However, any perfect high- or low-pass filter is unrealizable in practice due to an
infinite impulse response. The pair of Klow(ω) and sinc(t) is one such example, which can
be shown to generalize to any filters that perfectly block specific frequencies. Therefore,
we must be satisfied with a filter that attenuates frequencies outside a frequency band,
rather than removes them entirely. One common example is the Gaussian Gσ(t) =

e−
t2

2σ2 , the Fourier transform of which is also a Gaussian, G2πσ. While it has infinite
support both in temporal and frequency space, over 99% of its energy is within three
standard deviations of the origin, and therefore is often truncated at that point without
noticeable effect. In the next section, we look at other practical issues that arise in the
implementation of real-world systems.
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Chapter 1. The Filter as Convenient Metaphor

1.3 Signal Processing in a Digital System

Analog circuits suffer from the problem of partial information loss due to the attenuation
of the analog signal. This is especially a problem as circuit complexity increases, as
errors in early stages propagate and increase over the system as a whole. In contrast,
digital circuits suffer from information loss only at the conversions between analog to
digital representations at the input and outputs to the circuit. This allows for arbitrarily
complex circuits, and digital signal processing has proved especially useful.

First, however, one must establish how a continuous analog signal can be represented
in the context of a discrete digital system. According to the Sampling Theorem [84], a
continuous signal can be exactly represented by a discrete sampling under the following
condition:

If f (t) contains no frequencies higher than B cycles per second, it is completely

determined by giving its ordinates at a series of points spaced B
2 seconds apart.

The frequency B is known as the band-limit, and the quantity B/2 is the minimum
sampling rate required for reconstruction, often known as the Nyquist rate. It follows that
for a window of length W seconds, reconstruction requires at least 2 ·WB samples. Note
that any such independent samples, if known accurately, are suitable for reconstruction;
the restriction to regular samplings is not required. However, for our purposes we assume
regularity.

We can consider the discrete sampled function as XT (t) f (t), the multiplication of
f (t) with the impulse-train function XT (t) = T ∑

∞
i=−∞ δ(t− iT ), consisting of an infinite

series of impulse functions spaced T seconds apart. The parameter T is the inverse of
sampling rate. We see directly that because both the X function and X f are discontin-
uous, their Fourier decompositions have infinitely high frequencies.

The Fourier transform of an impulse train is in fact also an impulse train, in particular
F [XT ] = X(1/T ). Therefore, according to (1.5), XT (t) f (t) = X(1/T )(ω)∗F(ω). This
can be visualized as a sequence of images or copies of the spectrum F(ω), one for each
impulse function in the train, such as in Figure 1.4. The images may overlap (we discuss
the implications of overlapping images in a moment).

The intuition of reconstruction is that we will filter the sampled representation to
remove the frequencies above the band-limit that are induced by the discontinuities (those

10



Chapter 1. The Filter as Convenient Metaphor

images in addition to the primary image), and in doing so reconstruct the original func-
tion. To demonstrate, consider our running example, which we know is band-limited
to B = 16 cycles/second, by construction. Therefore our minimum sampling is 32 sam-
ples/second. The sampled X2B f (Figure 1.4a) can also be visualized in frequency space
(c) as a infinite series of F (which we have already seen consists of four pairs of delta
distributions). Because the function is sampled at 2B, the images are spaced 2B apart, and
non-overlapping. By filtering the spectrum to limit frequencies to the function band-limit
(shaded region) we are left with specifically F(ω), from which we can directly find f (t)
via the inverse Fourier transform.

Contrast this, however, to sampling with a lower sampling rate; in particular, we
visualize X19 f and its spectrum in Figure 1.4 (b & d). The result is a spectrum with
overlapping images; in particular, the band-limit region now contains an additional two
pairs of delta distributions. In temporal space, these produce two additional cosines terms,
leading to errors in reconstruction. This phenomenon is termed aliasing, in which two
frequencies are indistinguishable “aliases” of one another in a particular sampling.

Two problems now present themselves when applying the theoretical guarantees of the
Sampling Theorem to real-world problems. First, as we have seen previously, a perfect
low-pass filter is unrealizable in practice, implying the need to choose a realizable, albeit
imperfect filter from the options available. The choice of reconstruction filter will have
subtle, yet noticeable, impact on the reconstructed result, especially in its behavior with
regards to high frequencies from spectrum images. We consider the trade-offs shortly.
As these filters are unable to remove entirely such high frequencies, but merely attenuate
them, there is the additional implication that systems should sample at rates somewhat
higher than that specified by the Sampling Theorem.

This leads to the second problem: in many cases the functions in question have
significantly high frequencies, rendering such sampling impractical; or indeed, are dis-
continuous and therefore have infinite frequencies, in which case perfect sampling is
impossible. This is a particular problem in rendering, in which discontinuities (especially
prevalent due to occluded visibility) and perspective may lead to arbitrarily high detail
concentrated in a fixed region. We therefore consider the effect that a choice of filter
kernel has on such functions, keeping in mind that many such effects will appear in
computer graphics problems.

11



Chapter 1. The Filter as Convenient Metaphor

(a) Well-sampled Function, X32 f (b) Under-sampled Function, X19 f

−8 8−8 8

1

64

1

32

1

16

1

8

1

4

1

2

(c) Spectrum X1/32F of (a)

−1.5 1.5−8 8

1

64

1

32

1

16

1

8

1

4

1

2

(d) Spectrum X1/19F of (b)

Figure 1.4: Sampling and Reconstruction. When the band-limited function f (t), with
highest frequency B = 16, is sampled using X2B=32 (a), the resulting frequency spectrum
(c) avoids overlap between F (in red) and its images due to sampling (blue). Applying a
low-pass filter for the shaded region, F is isolated, and produces the original function f
when converting to temporal space. By contrast, sampling using X19 (b) has insufficient
separation of the images (d); filtering for the low-pass region will include two additional
cosine terms, 1

32 cos(3πx)+ 1
4 cos(15πx), causing incorrect reconstruction (b, green line).
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Chapter 1. The Filter as Convenient Metaphor

f = step(x)

rect⊗Xf

Gauss⊗Xf

Sinc⊗Xf

f(x) = sin(x2)

rect⊗Xf

Gauss⊗Xf

Sinc⊗Xf

(a) Reconstruction of Step Function (b) Reconstruction of sin
(
x2)

Figure 1.5: Varying Reconstruction Filters on High-Frequency Functions. Two high-
frequency functions are reconstructed using varying kernels, from the 25-point sampling
as shown. While convolution with the (time-domain) box function matches the sharp
transition of the step (a), it introduces discretization artifact in the continuous sine (b).
Alternatively, the Gaussian better matches (b), at the cost of a smoothing across the
transition in (a). The windowed Sinc function interpolates exactly the samples in (b),
and with a sharper transition in (a), but with the cost of ringing.

Arguably the simplest filter to implement is the time-space box filter (frequency-space
sinc), which amounts to an averaging across a neighborhood of elements. Because of
this simplicity, it is often implemented in practice. In Figure 1.5, we show the effect of
reconstructing an alternating step function and a sine function of increasing frequency,
using the box filter, the Gaussian filter, and frequency-space sinc. As expected, the box
filter introduces sharp discontinuities in the reconstruction due to the high-frequencies of
its spectrum; this is suitable for reconstructing the discontinuous step function, but not
for the sine. Instead, we use a continuous reconstruction kernel with bounded influence
at higher frequencies, such as the Gaussian, which preserves the continuous nature of
the sine function. However, this gives the negative effects of “smoothing across” the
otherwise sharp discontinuity in the step functions. In many application domains, includ-
ing computer graphics, discontinuities are a key element of the viewer’s perception [32].
Therefore, a filter that poorly preserves discontinuities will have a detrimental effect on
the perceived result.

Finally, we show the result of filtering with a windowed sinc filter: a sinc modulated
with a Gaussian to give it bounded influence. This most closely resembles the ideal
frequency-space box filter, but without requiring infinite inputs. As can be seen, the
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result provides significantly sharper interpolation of the step and the sine function than
does the Gaussian. However, it does so at the cost of “ringing” artifacts just before and
after significant discontinuities in the sampling. Known as Gibbs’ phenomenon, this is a
result of any truncated Fourier approximation of a sharp discontinuity [59]. We note that
these artifacts may be reduced by increased sampling, but not eliminated; rather, they are
inherent limitations of linear filters (those represented by a convolution). Because the
signals we encounter in Part II contain such discontinuities, we will later discuss several
non-linear filters to address this situation.

Once a continuous function has been reconstructed from the discrete samples, we may
then of course compute the value for any t. Additionally, we may apply an alternate
impulse train XT , distinct from the original. This operation is known as resampling, and
has important usage in operations such as data compression and image resizing, as well
as a key component of the subtractive shadow filter presented in Chapter 4.

To see an example of filtering in practice, we use a dataset of temperature readings
shown in Figure 1.6, which consists of hourly temperature measurements (not averages)
in the Princeton area for the 10 years from 1998 through 2007, comprising about 88
thousand measurements3.

First, as we can see the data is quite noisy, due to periodic fluctuations on multiple
scales, and imprecisions of measurement - or even outright errors. Suppose we wished
to compute a running average of the weekly temperature; that is, at any point sample we
compute the average of the nearest 7 days worth of temperature readings. We can frame
this as a filtering problem, in which the input function is convolved with the rectangle
function with a width corresponding to 7 days (168 hours).

As we have discussed at length, the Fourier transform of a box function is a sinc;
therefore if our temporal filter is a box, convolution will result in a frequency-space
multiplication with a sinc function. As the sinc function has infinitely high frequencies,
this will lead to high-frequencies in the result, as in Figure 1.6(b). By instead choosing

3This dataset was measured at the Weather Monitoring Station located at Trenton-Mercer Airport, as
provided by Weather Underground (wunderground.com). In most cases measurements are taken hourly; in
the case of multiple measurements per hour, all but the first are discarded. In limited cases (about 6.6% of
the total measurements) temperature data has been marked as unavailable; we report such measurements as
unchanged from the previous, a method known as zero-order hold [60]. Certain clear outliers exist in the
data, particularly in temperatures known to be above record highs. We have intentionally not made an effort
to filter these manually; a discussion of automated outlier detection and correction is given in Chapter 5.
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(a) Observed Hourly Temperature at Trenton-Mercer Regional Airport, in Fahrenheit

(b) Original and Filtered Frequency Spectra
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(c) Avg. Weekly Temp. (Box) (d) Avg. Weekly Temp. (Gaussian)

Figure 1.6: Digital Filtering of Temperature Data. Raw hourly measurements of
temperature have significant noise and variation, making interpretation difficult (a). In
the function spectrum, we see that significant energy is collected in high frequency
components (b, black). Filtering allows for easier interpretation of statistics, such as
viewing data as a weekly average (c and d). A naive weekly average (box filter) fails to
remove high frequencies (b, red; and c), compared to a Gaussian filter kernel chosen for
its spectral properties (b, blue; and d).
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a Gaussian function with variance equal to that of the box, and which is smooth both in
time and frequency, we can compute a running average with the same basic shape but
with reduction in the high frequency content.

Note that we have approached the selection of a filter kernel from a different per-
spective than before: whereas previously, we were selecting a kernel for its frequency
properties and finding the best matching temporal function, in this case we are selecting
a filter first in temporal space, then considering the implications this choice will have on
the resulting filtered spectrum. This running average could be resampled to provide either
finer grained statistics consistent with the data, or zoomed out (weeks, etc.). The filtered
representation better represents the continuous variations and trends occurring over the
course of the week, removing the high-frequency changes due to random variations. In
the next section, we will show how these filters on 1D signals can be generalized to handle
higher dimensional signals that appear in computer graphics applications.

1.4 Higher-dimensional Computer Graphics Filters

As can be observed in the illustrations in Figure 1.6, the application of a low-pass filter
to a signal serves to visually smooth the output. We can readily transfer these concepts
to smoothing or noise removal in images. Rather than assume a one-dimensional signal
f (t) as a function of time, we will treat an image I(x,y) as a two-dimensional function
of spatial positions x and y. As with 1-dimensional functions, we will again repre-
sent an image using a sampled representation, now using the 2D function XT (x,y) =

∑
∞
i=−∞ ∑

∞
j=−∞ δ(x− iT )δ(y− iT ). The DFT is separable: the 2D transform is equivalent

to performing the 1D transform on each row of the image, and subsequently transforming
each column of the row-transformed intermediate result.

We may thus perform the same sorts of filtering operations on 2D images as we have
previously seen on 1D signals, as shown in Figure 1.7. By filtering with a Gaussian
kernel G(x), all but the lower frequencies are attenuated, smoothing the reconstructed
image. Alternatively, in certain applications, it can be useful to accentuate the higher
frequencies to make details stand out. We can accomplish this with a filter kernel that
amplifies higher frequencies, while keeping low frequencies as-is. For example, the filter
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(a) Original Image (b) Smoothed Image (c) Sharpened Image

(d) Original Spectrum (e) Low-pass Spectrum (f) High-pass Spectrum

Figure 1.7: Frequency-Space Filters for Images. Using the 2D DFT, we apply similar
frequency-space filters to those of 1D function. The spectra (d,e,f) are shown on a
logarithmic scale, with (f) further scaled by 10. By removing the high frequencies from
the Fourier spectra (d), through multiplication with a Gaussian kernel, we produce a
smoothed filtered result (b). Alternatively, we sharpen the image (c) with a filter that
boosts the high frequencies relative to the low frequencies (f).

2−G(x), which ranges from 1 at the lowest frequencies, and converges to 2, produces
such an effect.

Low-pass filtering in particular has a particular importance in image resizing. Scaling
an image from size w× h to a new size w′× h′ can be thought of as reconstructing a
continuous function from the sampled input, then resampling at the new size. When
increasing size, a sharpening filter can be useful to preserve edges in the resulting im-
age. When decreasing size, the criteria of the sampling theorem must be taken into
account; otherwise, high-frequency image content will be expressed as aliasing in the
down-sampled image. This can be seen in downsampling the image in Figure 1.7a to a
smaller image according to a naïve direct sampling, as in Figure 1.7b. By filtering the
input image according to a kernel chosen to match the sampling rate, the aliasing artifacts
can be avoided (Figure 1.7c).
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(a) Original Image (b) Naïve Scaling (c) Filtered Scaling

Figure 1.8: Image Resampling. While direct subsampling of a high-frequency
image (a) leads to artificial low-frequency aliasing artifacts (b), analogous to those seen
in Figure 1.4b, sampling a low-pass filtered image removes the artifact (c).

It follows from the sampling theorem that low frequency information can be sampled
or represented at a lower rate. This is implicit in the representation given by the DFT,
in which the few low-frequency components have greater influence on the reconstructed
result that than larger number of high-frequency components. If an image has signif-
icant energy in low-frequencies, space efficiency can be achieved by storing only the
highest-energy components. Figure 1.9 demonstrates this effect, visualizing the result
of discarding a progressively increasing percentage of low-energy frequencies. Because
the image spectra (shown previously in Figure 1.7d) has greatest energy concentrated
in low frequencies, discarding high-frequencies has a relatively insignificant effect on
the reconstructed image quality. We will employ a similar strategy in Chapter 4 to
accelerate rendering of scenes with soft shadows, by computing the low-frequency at
a lower sampling rate, while computing the high-frequency illumination at full detail.

An aspect of this representation worth noting is its progressive nature: a low-quality,
low-storage representation of the image can be progressively enhanced to a high-quality
image (even to the full quality of the original) by inclusion of additional frequencies in
the representation. This can be viewed as an example of a method for variable level-

of-detail (LOD); such methods allow for a tradeoff between quality/detail and some
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5% of Original, .033 RMS 1% of Original, .047 RMS 0.1% of Original, .076 RMS

Figure 1.9: Compression via Filtering. By discarding all but the strongest 5% of
frequencies, we achieve significant storage savings with relatively minor decrease in
image quality (compared to original previously shown in 1.7a). By discarding additional
frequencies, we achieve progressively greater storage efficiency, albeit at the cost of
image quality.

efficiency parameter, such as time or storage cost. Transforms such as the Fourier, and
related operations such as the Cosine Transform, are key components in level-of-detail
algorithms used in image and video compression. A contribution of this thesis is to adapt
this sort of LOD algorithms to other graphics fields: Chapter 4 presents a system to
establish a quality-speed tradeoff in real-time graphics, while Chapter 5 demonstrates the
effect of filtering to allow for a progressive enhancement of quality in realistic rendering.

As we showed in Figure 1.5, linear filtering has certain limitations with regards to
sharp transitions: specifically, that one faces a tradeoff between smoothing and ringing.
For certain applications, we employ non-linear filters, two of which we discuss: the
median filter and the bilateral filter.

For the former, consider the image shown in Figure 1.10a. Random pixels of a
photographic image have been corrupted by being set to a random value; this introduces
high-frequency energy localized to that sample. However, standard low-pass filtering will
have difficulty removing this peak because of its large magnitude, instead blurring it to
neighboring pixels. As we see in Chapter 5, the filtered value of the corrupted pixel is an
example of a non-robust estimator, such that corruption of a single data point may induce
arbitrary error in that statistic as an estimate of the true parameter.

Standard filters, such as the Gaussian, compute their outputs according to a linear
combination of the input elements. Recall Equation (1.4), in which the filter kernel K is
a function only of x− t, rather than the input value f (x). The median filter Kmed

w solves
this problem by using the function values themselves to determine their contribution to

19



Chapter 1. The Filter as Convenient Metaphor

(a) Corrupted Image (b) Gaussian Filtering (c) Median Filtering

Figure 1.10: Median Filtering. An image of which random pixels have been corrupted
thus contains localized high-frequency information (a). Because of the linear nature
of Gaussian low-pass filtering, the noise is insufficiently attenuated before removing
important edge detail in the correct portions of the image (b). The non-linear median
filter, in particular the variant using MAD as described in the text, is able to correct only
those areas in error (c).

the output. For width w, the filtered value Kmed
w [ f ](i, j) is equal to the median of pixels

in the w×w box centered at (i, j). A variant replaces a value f (i, j) with the median m

if and only if the distance between f (i, j) and m is greater than the median of absolute

deviations (MAD) of the neighboring values, where

mad(X) = median(|Xn−median(Xn)|). (1.6)

This avoids modifying any values unless f (i, j) is clearly inconsistent with its neighbor-
hood. It is this variant that we display in Figure 1.10c; which performs effectively at
removing the noise present in the corrupted image. Median filters do have significant
limitations, and the filtering method of Chapter 5 was developed to address these.

Another common type of non-linear filter is the bilateral filter [94], which generalizes
linear filtering with a Gaussian kernel with an additional term explicitly taking function
values into account. This allows the bilateral filter to better preserve sharp transitions in
its input. The bilateral filter is defined as following; compare to the linear filter in (1.4):

Kbi
σ,τ[ f ](t) =

Z
∞

−∞

kσ(t−u)sτ ( f (t)− f (u)) f (u)du. (1.7)
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Figure 1.11: Bilateral filtering.
The use of a range filter preserves
edges compared to Figure 1.7b

In this formulation, k(·) is the filter kernel as before,
termed here the spatial filter, and s(·) is a function
of the difference in image values, termed the range

filter. Assuming that both k and s are Gaussian
kernels with standard deviations σ and τ respectively,
edges are preserved by setting τ to a finite value.
In Figure 1.11, we show the result of smoothing an
image with the bilateral filter (see Figure 1.7 for the
original and linear-filtered images).

As with median filtering, bilateral filtering also
has its limitations. We delve into the specific
limitations of bilateral filtering later; however, several concerns are common to both
filtering methods. As they are not convolutions, the convolution theorem does not
apply, and they cannot be implemented with the Fast Fourier Transform; nor is either
filter separable, leading to an exponential increase in time complexity with increasing
dimension. As a result, straightforward implementations of either will be very slow
for significant spatial widths. However, a number of significant optimizations have
been recently presented for both that significantly improve their running time. A key
optimization is filtering in the joint domain to compute the bilateral filter [18]. In this
method, rather than viewing the image as a dense sampling of a 2D function, f (x,y)
for all x and y, it is a sparse sampling of the 3D points (x,y, f (x,y)). This 3D function
is resampled onto a 3D grid, which is a separable procedure. The output filtered value
K[ f ](i, j) is equal to the value of the joint 3D bilateral grid ρ(i, j, f (i, j)). A similar
joint-domain filter is used in Chapter 5.

Other operations can be applied for a wide variety of effects, either for increased
realism, or for any arbitrary range of effects. We term filters that are not realistic, but
instead intended to convey a certain perceptual effect, as stylistic filters.

For example, the bloom filter intentionally takes high-energy pixel values and spreads
their energy, in such a way as to simulate a similar effect seen in actual photographs. This
effect, in which light appears to produce a glare around bright objects and spread to their
surroundings, is a result of imperfect focus in the lens. While it is therefore “incorrect”
in the sense of being a measurement artifact, the use of this stylistic effect results in an
image more closely aligned with the viewer’s expectations. Such a filter is implemented
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Original Rendering Added Bloom Final Image

Figure 1.12: Bloom Filter. By blurring the high-intensity energy with a long-tailed filter,
and adding this bloomed image back into the original, we produce a stylized result which
nevertheless more accurately represents the viewers expectations of bright objects.

Original Mesh Smoothing Filter Inflation Filter

Figure 1.13: Mesh Filters. As with images, we may apply stylistic filters to polygonal
meshes to achieve a range of effects. For example the octopus mesh (a) has been filtered
with a smoothing filter that reduces high-frequency detail (b), as well as an inflation filter
that produces an offset surface. Noting that the filter naturally affects the shadow, as
well as the object, we show in Chapter 3 a rendering filter that performs such operations
directly, and in a more efficient and user-configurable manner.

using a kernel with a longer “tail.” An example is shown in Figure 1.12. Other stylistic
filters can be applied for alternate effect; for example, to artificially increase the contrast
of the object as in histogram equalization or for other visualization or artistic purposes.
We will see the result of stylistic filters specifically for shadows in Chapter 3.

Filters can be further extended to even higher dimensions, and generalized to datasets
represented by more complex functions. One extension of the concepts previously shown
would be to 3D datasets, or volumes, in which a fixed region of space is mapped to
a density or color. These types of datasets see frequent use in computer graphics to
represent solid objects, and many of the same filtering methods – including smoothing,
sharpening, compression and level-of-detail – have application to volumes. Arguably
more common for the representation of solid objects, however (and on which we will
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2M Faces 30K Faces 5K Faces 1K Faces

Figure 1.14: Level-of-detail of Triangle Meshes. Just as with images, geometric
representations such as triangle meshes may be filtered to allow for variable level-of-
detail. In this example, the high-resolution David model is reduced in detail by vertex
clustering [26], allowing a tradeoff between both rendering time and storage size on
the one hand, and mesh resolution on the other. In Chapter 4, we present a rendering
filter that allows a similar time/quality tradeoff for shadows, and in Chapter 5, for global
illumination.

focus in the remainder of this chapter) are boundary representations, such as polygonal

meshes, in which an object is represented through its surface.

We may view a polygonal mesh as a function mapping all points on a 2D surface into
3D space. We may perform filtering operations on either the 2D function or upon its
embedding in R3. Many of the filters that we have previously seen have been imple-
mented on meshes. For example, in Figure 1.13, an input mesh (a) has been filtered with
a low-pass smoothing filter defined over the embedding in space (b) and with a stylistic
inflation filter relative to the parametric surface orientation (c). Additionally, a large
amount of research has been dedicated to level-of-detail in polygonal meshes (see [56]
for an extended overview). In Figure 1.14 for example, we demonstrate a high-resolution
mesh that has been reduced in detail by a vertex clustering filter [54].

As we have shown, filtering is a ubiquitous concept in computer graphics. While it
encompasses many wide and varying sort of operations, across disparate applications,
these all share common themes that make the notion of a “filter” a useful construct. We
conclude the chapter in the next section with a discussion of these shared themes.
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1.5 Applying the Metaphor

The notion of a photographic filter, or of a computational filter, is particularly useful in
that it has a natural correlate to the physical filters that one encounters in the real world,
and its related concept of “filtering.” Therefore, it serves as a metaphor: a construct that
enables transfer of existing knowledge and intuition from one domain into another. We
propose, then, the following definition of filter within the context of computation:

A filter is a passive, stateless operator with parameters independent of data size.

• Operator. A transformation of a given input to an output; it is a function that
operates on another function (the input), and whose output is independent of the
original.

• Passive. All operations are performed on the input, as provided; this is in con-
trast to an “active” process, which interacts with or otherwise has feedback to its
environment to generate new data.

• Stateless. Any operations take into account only the input itself, rather than past
inputs, and on some set of parameters. Repeated application of the filter to identical
data produces identical results.

• Independent of Data Size. These parameters are themselves constant with respect
to the size of the data; the input data set may be increased arbitrarily for a fixed
definition of the filter parameters.

This has important implications, one in particular is that so long as the input and
outputs of multiple filters are of the same or of compatible formats, they may readily
be composited in a filter chain. As well, the lack of data-size dependent parameters
and of filter state allows for an arbitrarily large amount of data. This is consistent with
the intuitive notion of a filter as in common use. For example, the following real-world
pipeline consists of a system with multiple filters:

Tap water → purification filter → heating element → coffee grinds → paper filter → Coffee

In this system, the concept of an input that “passes through” to the output, and which is
modified along its route by the four filters in the system, is intuitively evident. Individual
filters could be swapped out, replaced, or added, and this would have an understandable
impact on the remainder of the system. Further, one does not have to know about
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the details of say, the water purifier, to understand how to change the coffee grinds so
as to produce a different result. The concept of the filter is essential to this intuitive
understanding.

We present in this thesis the concept of the rendering filter, which operates on specific
data acquired in the course of rendering a computer graphics image, and indicate why it
is useful to think of the operations presented in Part II specifically as filters rather than
as arbitrary computer graphics algorithms. Specifically, the view of them as rendering
filters makes it clear how they can be employed in filter chains, or as an intermediate
part in a much larger rendering pipeline that allows to “pass through” those components.
This modularity allows for greater encapsulation and interoperability between a range
of computer graphics-related algorithms, in the same way that a photographic filter – or
indeed, a physical filter such as one for water – allows in physical systems.
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Chapter 2

Background and Foundations

Rendering, or image synthesis, in the context of Computer Graphics is the mathematical
simulation of the imaging process as takes place in the camera. By formalizing the
problem we can develop algorithmic solutions; in doing so in this chapter, we will build
up an understanding of existing filtering methods that play a significant role in graphics,
yet also understand their limitations. We do so in order to establish our concept of the
rendering filter, and compare and contrast this novel formulation from existing filters as
presented both here and previously in Chapter 1. Subsequently, we demonstrate specific
examples of rendering filters in Part II.

First, we will describe how the rendering problem is one of simulating a lightfield [31],
which is represented by the 7-dimensional plenoptic function, p(x, t,ω,λ) [1]. This func-
tion yields the radiance of the light with wavelength λ incident to a (three-dimensional)
point x, from a (two-dimensional) direction ω, at a particular time t. We proceed now
with a definition of these concepts.

2.1 Rendering Fundamentals

Electromagnetic radiation (EMR) consists of oscillating, periodic waves of energy that
propagate through space. Generated from many sources, we may characterize such waves
as having a particular wavelength; those with wavelengths from about 400-750 nm are
detected by optical receivers in our eyes – we term this range the visible light spectrum.
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In this section, we present a model of visible light as used in computer graphics, and
discuss the relevance of filtering methods in this context.

A complete simulation of the wave model of light would require a representation of
the wave properties of amplitude, wavelength, frequency, phase, and orientation. While
use of the wave model would allow for simulation of a wide range of visual phenomena,
multiple waves combine in a non-linear fashion, and interact in a complex manner with
objects whose size is on the order of the wavelength. While these lead to the visual
phenomena of interference and diffraction, computer graphics generally assumes the
simplified geometric optics model of light propagation, and the loss of these effects is
often imperceptible. In this model, light originates at a point and travels an infinite
distance along a straight line, which we may model mathematically as a ray, x0 + tω

for all non-negative t. The point x0 is the origin of the light ray, and the vector ω is its
direction of travel. While light rays are considered to have a frequency λ, this exists solely
as a quantity of information carried by the ray, rather than an influence on its behavior.

The following assumptions are also commonly made in computer graphics; while not
inherent limitations to the geometric optics model, their use allows simplification of the
problem without significant loss of realism.

• Non-polarized light. Transverse-wave orientation is disregarded through the as-
sumption that light consists of a uniform distribution of all orientations simultane-
ously. Such an assumption prevents the simulation of effects due to polarization,
light with a bias towards particular orientations.

• Infinite speed. A reasonable approximation in the simulation of terrestrial scenes,
we assume that light travels infinitely fast. The resulting consequence is that a
lightfield will have reached an equilibrium state for any instant in time.

• Time independence. The notion of time in the simulation is further simplified by
assuming that any light energy in the system at time t was emitted exactly at t. This
is linked with the previous condition, and prevents simulation of phosphorescence:
the absorption and storage of energy for later emission.

• Non-interacting Wavelengths. The transport of light at any given wavelength is
assumed to be independent of the presence of light at alternative wavelengths. This
specifically prevents the simulation of florescence, in which energy absorbed at
high (often ultra-violet) frequencies is subsequently emitted at lower frequencies.
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As we have stated, light waves (or EMR in general) propagate radiant energy through
space. The system as a whole is termed a lightfield, which, following from the previous
assumptions, is characterized by the rate of emission of radiant energy at time t, or radiant

flux Φ(t). If energy is measured in the SI unit of joules, flux is given in watts, or joules
per second.

From the definition of a ray, a light source at the 3D point x0 emitting Φ watts of flux
directionally emits light as a function of the unit vector ω. The differential quantity of
watts per unit of direction is the radiant intensity I(ω)= dΦ

dω
, and represents the directional

distribution of a light source. The unit of direction is the portion of the unit sphere
subtended by a set of directions, or solid angle, and measured in steradians. Analogous
to the radian measurement in plane angles, a given solid angle may be as large as 4π

steradians.

A sphere of radius r and area A = 4πr2 centered at x0 will receive a total of Φ watts
of flux across its surface. We refer to the flux density at a point on the surface as
its irradiance, E = dΦ

dA , whose standard units are watts per square meter. For any point
x on the sphere, we may derive the direction vector from the light source to that point
as ω = x−x0

r . Note that as r increases, while the radiant intensity I(ω), remains constant,
the area of the surface increases by 4πr2, such that the irradiance E(x) at the points
corresponding to ω on two such distinct circles will decrease accordingly.

Therefore, we may see that the amount of flux arriving at a surface point is dependent
on the projected area of that surface onto the unit sphere about the light source. Alter-
natively stated, all surfaces with equivalent projections onto the unit sphere about a light
source will receive equal flux. This quantity is that of radiance L = dΦ

dωdA⊥ , the flux per
unit solid angle ω per projected area A⊥. It is this quantity that is invariant along a light
ray, and which we will use to describe the lightfield.

Given this, we may now define a lightfield as the radiance p(x,ω, t,λ) of light with
wavelength λ arriving at a point x from incident direction ω at time t. The function p(·)
is termed the plenoptic function, and is 7-dimensional. The light falling on a particular
point is equal to the integral over all other dimensions, and evaluating this integral is
fundamental to computer graphics. Note that in this context λ is strictly a quantity of
information, and does not imply any wave-like phenomena.
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Naturally, a high-dimensional integral such as this poses challenges for numerical
evaluation. In a rendering algorithm, we compute only a portion of this function, sim-
ulating that portion that is measured by a real-world camera. A camera measures the
light incident to a photosensitive plate, often referred to as the camera plane, through
an opening, or aperture, directed towards the objects of interest in the scene. Further,
because the camera is closed except for the aperture, only rays that pass through the
aperture will affect the photosensitive elements of the film. This reduces significantly the
region of interest in the plenoptic function. In the extreme, let us assume that the aperture
consists of a single point, a0, such that any ray of light entering the camera must pass
through a0. This is a so-called pinhole camera. Thus when computing the radiance on a
point c on the camera plane we need only evaluate p for ω = c−a0.

Lpinhole(c, t,λ) = p(a0,c−a0, t,λ) (2.1)

In the more general case, the aperture represents a small but finite solid angle, rather than
a single point. In this case the radiance at c requires an integral over the aperture A. A
photosensitive element will display a non-uniform response to light incident to points
across the aperture; strongest in the center and falling off towards the edges. We can
represent this in the integral with the sensor response function W . Further, in addition
to having a small, but finite size, the aperture is open for some period of time T, during
which the photosensitive element is exposed to light, with sensitivity S. Reconstructing
radiance at a point c and time tc in this case then becomes:

Lfinite(c, tc,λc) =
Z

A

Z
T

W (a− c)S(t− tc)p(a,c−a, t,λ) dadt. (2.2)

Note the similarity of the above to the convolution equation (1.4). Reconstruction of the
radiance on the camera plane can be viewed as the application of the filters W and S to
the plenoptic function p.

The camera is non-uniformly sensitive to light of varying wavelength λ, and this non-
uniform sensitivity is important to its perception of color. The color of a lightfield is
defined by its spectral power distribution (SPD), p(λ) for fixed x, ω and t. A color (as
opposed to black and white) photodetector has multiple sets of photosensitive elements,
each with their own distinct response sensitivity to portions of the SPD. In computer
graphics it is common to integrate the SPD against the sensitivity curves of the human
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eye (or similar), leading to a description of color as a triplet of red, green and blue
(corresponding to the eye’s long, medium and short wavelength sensors, respectively).
Projection of the radiance p onto a basis also takes the form of a filter, according to the
radiance-response function R:

Lλc(c, tc) =
Z

A

Z
T

Z
Λ

W (a− c)S(t− tc)Rλc(λ)p(a,c−a, t) dadt dλ. (2.3)
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Figure 2.1: Cone Responses

To reconstruct a color image, Lλc is evaluated for all
distinct λc components in the film with their distinct
sensitivity curves. For example, the responses for
the photoreceptors in the human eye are shown in
Figure 2.1 (Figure and data from [88]). Now that
we have identified the rendering problem as a one of
filtering the plenoptic function, we demonstrate in the
next section evaluation of the plenoptic function. This
leads to application of the filtering techniques shown in
Chapter 1 to problems encountered in rendering.

2.2 The Light Transport Equation

If we assume that light is emitted or reflected only at the surface of objects, calculating
p(a,c−a) is therefore is reduced to determining the object along the ray a+(a−c)t and
computing the outgoing radiance thereof (the sum of both emitted and reflected radiance).
We denote by r(x,ω) the first point of intersection between the ray x + tω and the scene.
At such a point r(·), light may be directed back towards the camera aperture either by
emission, or by reflection. The presence of reflected light at r(x,ω) requires that radiance
was emitted or reflected towards r(x,ω) from some other point in the scene, establishing a
recursive definition of exitant radiance. At any point x0 in the scene, we may express this
relationship according to the light-transport equation (LTE), also known as the rendering

equation due to its importance in this field [48].

L(x0 → ω0) = Le(x0 → ω0)+
Z

Ω

f (ω1 → x0 → ω0)L(ω1 → x0)dω1 (2.4)

L(ω1 → x0) = L(r(x0,ω1)→−ω1) (2.5)
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Equation (2.4) states that the outgoing radiance L(x0 → ω0) from point x0 towards ωo

is equal to the incident radiance L(ω1 → x0) from all directions ω1 as reflected towards
ωo, plus the radiance emitted Le. As shown by (2.5), the incident radiance L(ω1 → x0),
is itself equivalent to the exitant radiance from the first point of intersection along the ray
x0 + tω1. Therefore (2.4) is a recursively defined equation. At a point x on an object,
the ratio of reflected radiance toward ω0 relative to incident radiance from ω1 is given by
f (ω1 → x→ ω0), the reflectivity of the object1.

Evaluation of the whole requires recursive evaluation of the individual terms. We may
rewrite (2.4) as an expansion of the recursive terms of the integral. Before we do so, let
us make some auxiliary definitions. In particular, let the path vertex xn as a function of
all ωi such that i = 0 . . .n, as follows:

xn(ωn · · ·ω0) = r (xn−1(ωn−1 · · ·ω0),ωn) , (2.6)

that is, xn is the n-th surface point on the path generated by following the successive rays
given by (and thus is a function of) the directions ω0 · · ·ωn. Similarly, we define terms
for the n-th reflectance term and emission term.

Len = Le(xn → ωn) (2.7)

fn = f (ωn+1 → xn → ωn) (2.8)

We use these to define the camera radiance L as the path integral over all directions.

L0 = Le0 +
Z
· · ·

Z
Ω

f0Le1 + f0 f1Le2 + f0 f1 f2Le3 + · · · dω1ω2ω3 · · · (2.9)

Individual radiance samples are then filtered to reconstruct a 2D image, as in (2.3).
In a direct implementation, each of the individual rendering terms (Len , fn, etc.) are
kept only so long as to compute a single value of L, and then discarded. However, it
has frequently been shown that in many cases it is useful to filter these terms directly,
leading to an intermediate between image filters and geometry filters, for which we
suggest the term rendering filters. While similar filters might also be represented with

1In many cases, reflectivity is specified according to a bidirectional-reflectance distribution function
(BRDF), which is the ratio of reflected radiance to incident irradiance [64]. For the BRDF fr and surface
normal nx, in the LTE as given in (2.4) the reflectivity f (ω1 → x→ω0) is equal to the BRDF fr(ω1 → x→
ω0)(nx ·ω1), where the multiplicative term accounts for the conversion from irradiance to radiance.
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a combination of image- and geometry filters, the rendering filter allows for a greater
flexibility and ease-of-use. We show an example decomposition into rendering terms in
Figure 2.2. Note the differences in frequency content of each term; the reflectance f0 has
the highest detail, resulting from a spatially-varying texture on the surface, while indirect
illumination f0 f1Le2 has smoother changes in areas away from geometric discontinuities.
By processing these terms individually, rendering filters may better take advantage of
their distinct properties. An overview of many such filters are given in Section 2.4.

We can now partition the set of rendering algorithms into two general classes: those
of object-space algorithms, known also as rasterization, and those of image-space al-
gorithms, best represented by ray tracing. A rasterization algorithm starts with a basic
geometric object such as a triangle or line segment, for which the corresponding pixels in
the output image are located and evaluated. A ray-tracing system proceeds in the opposite
direction, that is, given each output pixel, the system identifies the corresponding objects
visible at that pixel and computes the color accordingly.

Observe that this distinction primarily amounts to a different order of evaluation of the
rendering terms of (2.9). As we will see, rasterization methods evaluate in parallel a large
number of lower-order terms across different rendering samples. In contrast, ray-tracing
methods are able to selectively evaluate terms of arbitrarily-high order per sample, but at
the cost of a slower evaluation overall. Both have their complementary advantages and
disadvantages, and have been the subject of extensive research to address their particular
shortcomings relative to the other.

2.3 Sampling via Rasterization Methods

The primary advantage of rasterization is the ability to exploit the coherency inherent in
an object-space evaluation of rendering terms. Many values can be computed sparsely,
and subsequently interpolated; all this occurs in a parallel fashion. To explain, we first
give an overview of rasterization. For each triangle, a rasterization algorithm:

1. Projects the vertices to the screen with a linear transformation

2. Interpolates the projected vertices to determine screen pixels

3. Interpolates values from each vertex over the pixels to compute color
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(a) Reflectance Only, f0 (b) Direct Illumination, f0Le1

(c) Indirect Illumination f0 f1Le2 (d) Global Illumination

Figure 2.2: Rendering Terms. Tracing rays from the camera position, the rendering
algorithm can directly determine (a) the reflectance and emissive terms Le0 and f0.
By tracing additional rays to evaluate the lighting (from the environment map shown
subsequently in Figure 2.6a) the rendering algorithm can compute (b) the direct
illumination term f0Le1 , and recursively evaluate the indirect illumination term f0 f1Le2 .
Note that (b) has sharper contrast between light and dark regions than (b), which has
softened subsequent to the additional filtering of illumination by f1. These are combined
to form (d) the global illumination image Le0 + f0Le1 + f0 f1Le2 .
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4. Conditionally updates the value of the screen pixel

Each stage can operate largely in parallel: every triangle, vertex, and pixel compu-
tation is independent of each other. The only data hazard occurs in the final update
of the pixel to the screen (a memory region known as the frame buffer in rasterization
terminology). Even this, however, occurs in a structured and localized manner that can
be implemented efficiently with simple atomic operations. Under our categorization
of rendering algorithms by their order of evaluation of rendering terms, a rasterization
algorithm evaluates common low-order terms for nearby, correlated pixels.

Consider the “one-bounce” term f0Le1 in (2.9), which is light arriving directly from
an emissive object to a given point and then to the eye. We refer to this as direct

illumination, and it can be computed by summing f (ωi → x → ωeye)L(ωi → x) for all
lighting directions ωi. In this case, x could either be a vertex position, in which case the
result is linearly interpolated across the face (thus the lighting is evaluated in Step 2 and
interpolated in Step 3), or x could be an individual pixel position (where all lighting is
computed in Step 3).

Several challenges arise. First, the algorithm must consider whether or not the pixel
has already been written to by a triangle closer to the viewer. The solution to this here is
depth-buffered hidden surface removal, also known as z-buffering [15]. In addition to the
frame buffer storing the color of each pixel rendered so far, it also stores the distance d

from the camera to the interpolated triangle at that point. Before updating a screen pixel,
the depth of the incoming pixel is tested against the existing depth. If d is closer to the
viewer, the color is written to the pixel, and the depth is updated.

Second, note that the algorithm does not consider the possibility that x has an occluded
view of the light source direction ω. This subset of the direct illumination is termed local

illumination. A solution to the complete direct illumination is to use a visibility algorithm.
We can rewrite the rendering equation as an integral over area,

L(x1 → x0) = Le(x1 → x0)+
Z

A
f (x2 → x1 → x0)L(x2 → x1)V (x2 ↔ x1)dx2, (2.10)
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where the pairwise visibility V (x2 ↔ x1) is 1 if and only if the space between x1 and x2 is
unobstructed by any other surface, and 0 otherwise. In terms of the ray casting operator,

V (x2 ↔ x1) =

1 if r(x1,(x2− x1)) = x2,

0 otherwise
(2.11)

Note also that the reflectance f has a slightly different meaning in this context than
in (2.4); here f indicates the fraction of radiance reflected through x1 from x2 to x0, and
as such must take into account the distance between x1 and x2, by dividing by ||x2− x1||.

We now consider the visibility function V as an additional rendering term, which we
compute by means of a visibility-determination algorithm. A direct visualization of this
term is shown in Figure 2.3. Assuming that we are limiting our discussion to direct
illumination, this is the most difficult term to compute, and we restrict our attention to its
computation for the remainder of this section. The most commonly used algorithms are
divided into two classes: shadow volumes, an object-based technique; and shadow maps,
which is a sampled, image-based technique (note that both are used in the larger context
of the object-space rasterization algorithm).

Rendering V (x↔ c)

Figure 2.3: Binary Visibility.

The shadow volume algorithm is so named because
it explicitly represents the volume of space in which
objects are shadowed (presented in [101], current
form results from [40]). For a point light source L, the
shadow volume consists of all front-facing triangles,
the projection of all back facing triangles out to the
infinite plane away from the light source, and the
triangles connecting them. The algorithm extracts this
volume by searching for all silhouette edges in the
model that separate a front-facing from a back-facing
triangle. We then trace a line from the light source to the silhouette edge and out to
infinity, bounding the shadow volume. We show a diagram in Figure 2.4.

Once the shadow volumes are extracted, rendering proceeds in 4 steps. Each step
expects that z-buffering is enabled, so that a write will not occur to any pixel such that
the existing depth value is closer to the viewer than the incoming value.
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1. Render the scene while writing only depth values (not color)

2. Render all shadow volume triangles that face the viewer into a stencil buffer, which
increments a per-pixel value, rather than writing a color.

3. Render all shadow volume triangles facing away from the viewer into the stencil
buffer, this time decrementing values per pixel

4. Re-render the scene with full lighting at pixels for which the stencil value is 0.

The stencil buffer contains a representation of the visibility function V between each
pixel and the light. If any pixel belongs to a surface point that is behind a viewer-facing
shadow volume triangle (i.e. it is inside the shadow volume), it will have a non-zero
stencil value, and will not be lit in the final pass. If, however, the pixel is outside the
shadow volume, it will have a value of 0 in the stencil, and lit normally. Multiple lights
are generally supported by repeating Steps 2-4 for each light, and accumulating the result.
However, in Chapter 4 we will see how a subtractive approach makes the task more
amenable to filtering operations.

While we have implemented stenciled shadow volumes for the implementations in
Chapters 3 and 4, they are dependent on high-quality geometry and the computational
ability to process potentially very large geometric datasets per-frame. In particular, tri-
angles meshes must be both closed (no holes exist in the surface) and be orientable
(possessing consistently defined front and back sides). Otherwise, the shadow volume
itself is undefined. In many common applications (especially games) this is not the case,
and shadow volumes are often supplanted by the alternative shadow map algorithm.

The shadow map algorithm derives its name from its use of an additional texture map
that contains the distances of all lit pixels to the light source [21]. This is generated by
first setting the camera to the light source position and orientation, and rendering the
corresponding view of the scene with depth-writing only (the color buffers are not set).
When rendering the scene itself, the algorithm proceeds with the following steps.

1. Project each pixel p into the coordinate frame of the light L

2. Identify the shadow map pixel S(p) corresponding to p

3. Compute the distance between p and L

4. If p is further from L than S(p) ignore, otherwise draw lit pixel
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Light Source

Object Geometry

Shadow Volume Geometry

Shadowed RegionShadowed Region

Silhouette

Silhouette

Light Source

Object Geometry

Shadowed RegionShadowed Region

Shadow/Depth Map

Distances
from Light
to Object

(a) Shadow Volumes (b) Shadow Map

Figure 2.4: Alternate Methods for Rasterized Shadows. The shadow volume
representation (a) explicitly represents the volume of space occluded by the object, by
identifying silhouette points and tracing boundaries from the light out to infinity. This
geometry is used during rasterization to prevent lighting of objects behind it. By contrast,
the shadow map (b) tabulates the measured distances of all points on the surface to the
light. When rasterizing, points are illuminated only if they match the expected distance
given by the shadow map.

The shadow map S contains the distance of the nearest surface to the light, for the rays
extending from the origin of the light through each pixel in S. Alternatively, the shadow
map indicates all surfaces that are visible to the light, and therefore illuminated by it.
When rendering the scene, at each pixel a test is performed to determine if that pixel is
visible; if not, the pixel is ignored.

The significant advantage of this algorithm is that it is independent of any specific
knowledge of the geometric representation, and of any assumptions on that geometry.
All it requires is that the geometry can be rendered consistently from multiple viewpoints
(that of the true camera and of the light). As a downside, however, this algorithm
is dependent on a high sampling rate in the shadow map to account for changes in
the geometry. Because any finite sampling will be unable to account for all points,
some approximations must be made when checking a distance against the shadow map.
This has led to a wide range of attempts at solving this problem (see for example [87,
102]), and the general algorithm is considered robust enough that it is commonly used in
production.

There also exist hybrids of these methods to leverage the strengths of both. For ex-
ample, one may use an approximate shadow volume geometry or extracted silhouettes to
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quickly limit the region of the frame that may potentially be in shadow, and subsequently
use a shadow map-like approach to compute the final shadowed result [16, 17].

A limitation of both of these algorithms is that they consider only light emitted from
a single point. This is inherent to the nature of the rasterization framework, in which
a low-order rendering terms are evaluated in parallel across all pixels. It is certainly
possible to represent a single surface light source as the union of many point lights, and
render them all accordingly, but this starts to become prohibitive quickly. Certain special
purpose algorithms for soft shadowing have been developed as adaptations of these two
algorithms. The penumbra wedge algorithm [6, 7], for example is a generalization of
shadow volumes in which a more complex volume that contains both umbra (the hard
shadow, equivalent to that extracted by standard shadow volumes) and penumbra (the
soft shadow) is extracted from the mesh. Most methods, however, tend to use shadow
maps as a foundation, and bear a resemblance to filtering methods. We observe that the
soft shadows generated from an area light can be thought of as having low frequency
compared to those high-frequency shadows generated from a point light. Therefore,
algorithms have been developed that filter either the visibility buffer itself, or use a filtered
shadow map in order to compute partial visibility (see for example [8, 13, 27, 30, 36]).

While many of these algorithms are able to make significant progress in evaluating the
direct illumination and visibility terms, rasterization in general is significantly limited in
its ability to extend to further terms. Computing the general global illumination of all
rendering terms would require evaluation of high-order rendering terms for the majority
of scene elements, which becomes unfeasible even with large-scale parallelization. In the
next section, we will discuss the use of ray tracing algorithms to better compute global
illumination at the expense of slower computation of direct illumination.

2.4 Sampling via Ray Tracing Methods

While the advantage of the rasterization framework was found in its highly structured
and coherent evaluation of rendering terms, ray tracing draws its strengths exactly from
breaking this assumption. Specifically, ray tracing allows for a random-order evaluation
of arbitrary rendering terms.
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As we have established, the value of a discrete pixel I(x) on the image plane is
evaluated through a resampling of the continuous LTE Lo(x,x−c) for camera center c and
all x on the camera aperture. While any structured attempt to evaluate all such rendering
terms (as rasterization does for low-order terms) will be prohibitive, it is possible to make
an progressive approximation of the integral by evaluating random terms. We first note
that the definite integral of a function f (x) is proportional to the expected value E[ f (X)]
for a uniformly distributed random variable X . The strong law of large numbers states
further that this is equal to the average of an infinite sequence of random f (Xi),

Z b

a
f (x)dx =

1
b−a

E[ f (X)] = lim
n→∞

1
n(b−a)

n

∑
i=1

f (Xi), (2.12)

where X is a uniformly distributed random variable, and Xi is the i-th independent sam-
ple from X . From the definition of expectation as a limit, we arrive at a method for
evaluating the definite integral of f (x); namely, continuing to draw random samples and
average their values. This is known as Monte-Carlo integration, after the casino. (For an
introduction to the relevant probability theory, see [81].)

While any uniformly random sequence Xi converges to the correct estimate of the
integral in the limit, the choice of Xi has important consequences for finite samplings.
Considering the regular samplings in Section 1.3, we saw that a regular sampling with
a rate below the Nyquist rate produces aliasing. Random numbers are defined by their
(near-)uniform energy across all frequencies; a random sampling therefore has the effect
of moving error into the high frequencies, converting aliasing into noise. While true
random numbers can only guarantee uniform density in the limit, quasirandom sequences

have the high-frequencies of true-random numbers, but in fact are not random at all, as
the density of any subset is guaranteed to be uniform [65].

Monte-Carlo methods allow us to progressively compute an approximation In of an
integral I where the expected error is proportional to 1√

nStddev[I]. Importantly, note that
this error bound is independent of the number of dimensions. Instead, it is a function only
of the number of samples n and the variance of I. Adding additional samples decreases
the approximation error, as shown in Figure 2.5. This dimensionality independence is es-
pecially important when drawing samples in infinite-dimensional path space, as in (2.9),
where standard quadrature methods would require time exponential in the number of
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2 samples/pixel 16 samples/pixel

64 samples/pixel 256 samples/pixel

Figure 2.5: Progressive Monte-Carlo Rendering. As the number of samples increases,
the quality of the approximation progressively increases, as well.

dimensions. (See [96] for a more detailed introduction to Monte Carlo methods as used
in rendering).

Observing that each level of recursion in the LTE represents the application of a filter
(the reflectance) to incident illumination, which represents the computationally intensive
part of the rendering process, significant work has gone into prefiltering an a priori fixed
illumination or reflectance of a convenient form. This prefiltered representation is stored
and may be recalled as-needed during the rendering process.

Of these, prefiltered illumination algorithms assumed that the incident radiance L(ω→
x) (or some portion thereof) is held fixed. If the reflectance is also held to be fixed,
the illumination and reflectance can be premultiplied, stored in an efficient basis under a
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(a) Mountain Environment and Sampling (b) Cathedral Environment and Sampling

Figure 2.6: Environment Importance Sampling. When the lighting Le is fixed, the
complete illumination may be approximated by choosing a priori a set of lighting
directions with high energy, as shown in the figures. Further, methods such as structured
importance sampling and wavelet importance sampling prefilter the radiance within each
region, assigning to the point at the center of each region the integrated contribution of
all points.

convenient representation, and accessed as needed. For diffuse reflectance, the color of an
illuminated surface is equivalent to the incident irradiance from its environment, and the
function f (·) acts as a low-pass filter. Prefiltering f L thus results in a low-frequency result
that can be stored using few coefficients. It is shown to be possible to reconstruct high-
quality results of the incident irradiance function, parametrized by surface normal, with
only the first 9 spherical harmonics (the spherical analog to the Fourier decomposition for
Euclidean functions) [78]. Reflectance functions more complex than the diffuse require
additional parametric dimensions, and similar methods have been applied to store this
parametrization efficiently using a spherical harmonic representation [79].

For slightly more complex reflectance functions that can be parametrized in 2 di-
mensions, such as the commonly used phenomenological Phong model [75], a common
approach is to create a prefiltered texture map parametrized by reflected direction. This
map can be created by convolving a lobe from the Phong model with the incident re-
flectance directly in the spherical domain, through the use of the spherical harmonic
basis. Alternatively, [41] presents method for approximating a spherical function in a
rectangular domain using the dual-parabolic mapping, allowing the use standard Fourier-
based filters. These have been extended to more general reflectance functions; in [49] a
method is presented for a more general type of BRDF lobe, while in [14] the authors
demonstrate a sparse sampling of arbitrary isotropic (3D) reflectance, and interpolate
values to extend to the entire domain. Many of these representations require that the
reflectance is fixed, as well as the illumination. Methods using summed-area tables [22]
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preprocess a fixed illumination in such a form as to allow for rapid reconvolution with
more arbitrary reflectance functions [42].

In order to allow for varying visibility, importance sampling methods such as struc-
tured importance sampling [2] and wavelet importance sampling [19] combine the pre-
processed, partially-filtered approach of summed-area tables with the selection of a set of
lighting directions for subsequent visibility testing. The directions preferentially selected
as the regions of highest energy (see Figure 2.6); within the Voronoi region of each
direction the radiance is preintegrated. Wavelet importance sampling extends previous
methods by providing a multiresolution sampling that can be evaluated at multiple levels
of detail. We will see more use of these in Chapter 4.

The previous class of prefiltering methods make the assumption that lighting (and
possibly reflectance) is fixed, and precomputes partial results accordingly. An alternative
approach is to pre-compute a composite filter of the f0 · f1 · · · fn term, and apply that to
varying lighting environments. These methods, known under the term precomputed radi-

ance transfer assume a constant geometry (with exceptions, to be discussed). Combined
with a fixed form of reflectance, the algorithms are able to relight complex scenes with
global illumination rapidly according to changing lighting conditions.

The largest variations among these methods are in their choice of basis representa-
tion, with certain ramifications thereof. The implicitly low-frequency spherical harmonic
representations of the original PRT methods have been replaced by alternative bases
with the goal of supporting both high- and low-frequency transport and illumination
terms (so called all-frequency). For example, the methods of [62, 63, 90] use the Haar
wavelet basis, a multiresolution basis that allows for varying scales of coarse-to-fine
detail. In [11], the higher-order Daubechies 4-tap wavelet [23] is used for reflectance
editing. While similar to the low/high frequency detail representable by the Fourier
expansion, wavelet representations differ in that they allow for localized features, in
contrast to the global effect of the trigonometric functions in Fourier representations
(an introduction to wavelets in computer graphics can be found in [89]). Alternatively,
another method uses a variable-width Gaussian basis for similar effect [35].

While many PRT methods expect that the sources of light are infinitely far from the
receiver (so that L(ω → x) for fixed ω and varying x is equivalent), this is increasingly
generalized, for example to deal with medium-range changes in incident illumination [4].
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Other methods have addressed the problem of partially deforming geometry, such as by
using a subset of the spherical harmonic basis more amenable to rotations [86].

Turning now from the prefiltering methods, which take an a priori approach towards
identifying the filtered rendering terms, other methods take an approach that combines
partial evaluation of rendering terms resulting from ray tracing. For example, it is ob-
served that the incident irradiance term L(ω → x) often changes smoothly across the
surface of visible objects. The high-frequency detail observed by the viewer is mostly a
result of high-frequencies in f0. In Figure 2.2, for example, while the scene (d) appears
high-frequency, much of this detail results from the surface texture reflectance (a). The
illumination itself contains mostly lower frequencies, which can be sampled at a lower
rate and interpolated. If the LTE is sampled to accurately compute incident irradiance
at a small sampling of points, these values can then be filtered to interpolate irradiance
at all visible points. This method is termed irradiance caching [100], and is particularly
useful for diffuse scenes, as the diffuse reflectance function acts as a low-pass filter. The
additional rendering terms of depth and surface orientation are also used in the filtering
step to avoid smoothing over boundaries in these terms. This method has seen many
extensions and optimizations, for example, derivative information may be used to provide
for better interpolation [99]. We use a similar method for soft shadowing in Chapter 4;
in particular, we note that the change in illumination due to a soft shadow varies slowly
over the image, allowing for shadowing computation at fewer points.

The method of photon mapping (originally presented in [44, 45], later given in ex-
tended form [46]) can be viewed as a spatial filtering of radiant flux in world space. Using
“forward” ray tracing (that is, proceeding from the light, as opposed to the traditional
“reverse” ray-tracing from the eye) the algorithm builds an estimate of incident radiant
flux at a large number of points in the scene, storing energy as photons in the eponymous
map. This very sparse estimate, however, may be interpolated spatially to compute an
estimate of radiant flux at all points in the scene. This has shown to be particularly
useful for reducing overall computation, as energy from nearby paths can be shared,
rather than recomputed for each path. The path-outlier filter presented in Chapter 5 bears
many similarities to photon mapping, especially in the use of shared information across
paths, and the use of a density estimate. Where it differs is in generalization to higher-
dimensional densities, especially to the joint density between both position and flux.
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Filter Type Filtered Terms Assumptions/Limitations
Summed-Area Environment Le Fixed, directional Le, constant V

Structured Importance Sampling Le Directional Le, requires additional
computation for correct V

Prefiltered Environment f0Le1 Directional Le, limited f , both of
which are fixed, constant V

Precomputed Radiance Transport f0 f1 · · · Generally implies static geometry,
V and f ; medium to far Le

Irradiance Caching f1Le2 + f2 f1Le3 · · ·
nx0 , x0

f is diffuse, nx is the surface
normal term at x

Photon Mapping f0 · · · fnΦ Filters incident flux Φ after arbi-
trary n bounces through scene

Anisotropic Diffusion L0, nx0 , x0
Bilateral Filter, α-trimmed Mean L0

Stylized Shadow Filter V0 See Chapter 3
Subtractive Shadow Filter f0Le1(1−V0) See Chapter 4

Path-density Filter ρ(x,L) ρ is joint density, see Chapter 5

Table 2.1: Rendering Filters Compared. A number of filters are listed with the
corresponding rendering terms on which they act, for purposes of comparison. We also
state a number of limitations and assumptions inherent to several of the filters. The last
three are the filters presented in Part II.

Finally, other methods apply filtering operations as a post-process on fully-evaluated
L0 in such a way as to reduce noise. Rather than reconstructing a pixel using the mean
of all samples, which is prone to corruption by large values resulting from variance, the
alpha-trimmed mean rejects those inconsistent with the remainder of the data [53]. The
trimmed mean is referred to as a robust estimator, and such estimators are the focus of
Chapter 5. Others use a method based on the bilateral filter as a robust estimator to
remove effects from both atypical outliers and common noise [91, 103]. The non-linear
energy-preserving filter of Rushmeier and Ward [82] operates by spreading the energy
of very large samples across a wide range of pixels; the greater the energy, the greater
the range. Such outlying values are identified by computing the effect of that sample
on the variance of each pixel estimator, relative to some number of existing samples.
The method of anisotropic diffusion [57] (which can be thought of as a generalization
of bilateral filtering; see [9] on this point) operates similarly; high-energy samples are
diffused across pixels in a region with similar distributions of sample values. We show a
comparison of these rendering filters in Table 2.1.
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2.5 Conclusion

Filtering methods are a powerful class of algorithms that see wide use in disparate fields.
As we have shown, they play an important part in the rendering process. We find it useful
to consider the rendering filter as presented here as being a distinct entity from either
image-based or geometry-based filters, instead acting on the intermediate representation
of the partially-evaluated rendering terms. By doing so, a rendering filter may leverage
the strengths of both and combine them in novel ways that provide greater flexibility
and efficiency than accomplished by either or both image and geometric filters acting
independently. In Part II of this thesis, we present a series of rendering filters that
have proven themselves useful in addressing certain common problems in computer
graphics, and their exploitation of this novel intermediate representation is critical to
their usefulness.
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Part II

Applications of Rendering Filters
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In Part I of this thesis, we have discussed our notion of the rendering filter and pre-
sented the theoretical foundation on which it is based. In discussing the development of
the term, we have shown specific examples of filters in other domains, and have indicated
its utility as a mental construct for addressing common problems experienced in computer
graphics. In this Part, we now present specific, novel examples of rendering filters, based
on the groundwork previously shown.

The first two filters focus on rendering of shadows, primarily in a rasterization context.
Shadows play a key role in scene visualization, perception, and establishing mood. In
Chapter 3, we present a series of stylized shadowing filters for creative and compositional
control over the appearance of shadows. As discussed in the chapter, in many cases
a “correct” shadow is inconsistent with either or both of the viewers’ expectations or
the presenters’ intentions. The filters presented therein are analogous to several of the
filters presented previously in the context of image and geometry filtering. However,
as rendering filters, they may accomplish these effects in such a way as to be efficient
for real-time, interactive feedback. In this context, rendering filters are an efficient and
convenient formulation for presenters to achieve their compositional goals.

In Chapter 4, rather than a focus on stylistic effects, we demonstrate with the sub-

tractive shadowing filter the use of filtering for efficiency. As we discussed in the pre-
vious chapter, shadowing poses a computational diffuculty for rasterization algorithms,
as they require a variable evaluation of rendering terms at each pixel. This filter takes
a step toward addressing this problem by enabling a form of continuous level-of-detail
for shadow rendering Using a filtering approach, this combines high-quality and high-
frequency prefiltered illumination with plausible low-frequency soft shadows. These
methods rely on results derived previously from Fourier theory regarding the frequency
content of signals. By separating high- and low-frequency rendering terms and filtering
them independently, we leverage the strengths of methods individually tailored to each.

Finally, we turn from rasterization in order to apply our rendering filter framework
to a common problem in ray-traced rendering, that of noise due to statistical outliers.
Chapter 5 presents the path-density filter to allow for rejection of extreme values incon-
sistent with the empirical distribution of rendering terms; which, if not discarded, cause
significant perceptual artifacts in the final renderings. By the use of this filter, we are able
to achieve a significantly more perceptually accurate results, and do so in a manner which
cannot be replicated with an image-based filter.
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Chapter 3

Stylistic Visibility Filters
for Creative Artistic Control

(a) Accurate Shadow (b) Shadow in Fine Art (c) Stylized Shadow

Figure 3.1: Traditional computer graphics algorithms produce “accurate” shadows (left).
Artists often deliberately render abstract shadows, such as the shadow with reduced
contour detail in this painting by John Vanderlyn, 1818 (middle). Our system offers
controls for creation of stylized shadows (right).

While much research has focused on rendering physically-correct shadows, a “correct”
shadow often exhibits unnecessary detail that distracts from the primary subject of the
scene. Artists often prefer to have creative control over the rendered appearance of the
shadow. This chapter presents a rendering filter that offers control over stylized shadows,
based on four intuitive parameters – inflation, brightness, softness, and abstraction –
that together support a broad range of effects. The filter can easily be incorporated into
existing rendering pipelines, and is independent of scene geometry or shadowing method.
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3.1 Introduction

Shadows play a significant role in our perception of the world. They provide cues for
light direction and atmospheric conditions (whether sunny, cloudy, dusty, etc.), as well as
position and shape cues inherent in projections of an object that augment that of the view-
ing transformation. Works of art and animation commonly include shadows to provide
such cues, which are particularly important when the viewer lacks 3D cues such as stereo
and parallax. In cel animation and other media where a character and background may
be rendered in different styles, shadows play the crucial role of anchoring the character in
the scene by showing where the character’s feet meet the ground. Finally, shadows offer
a mood cue for dramatic effect (cheerful, spooky, etc.), with a well-developed vocabulary
for cinematographers [3].

Artists typically avoid the use of physically accurate (“correct”) shadows for several
reasons. Even in situations in which they are easy to produce, such as in computer
graphics applications using global illumination solvers, the resulting shadows may be too
detailed and therefore distract from the subject. Fortunately, people tend not to notice or
care whether shadows are physically correct. This provides the artist a large design space
ranging from “plausible” to obviously abstract. See Figures 3.1b and 3.2 for examples
from fine art.

This chapter describes a method for stylizing shadows rendered in 3D scenes (Fig-
ure 3.1c). To control the visual characteristics of the resulting shadow, we introduce four
parameters that in combination provide a broad range of stylization effects:

1. Inflation i controls the size of the shadow, relative to the original, such that in-
creased i gives the effect of a shadow emanating from a larger version of the
shadow-casting object.

2. Brightness b is the intensity of the shadow region when fully occluded (or the effect
of indirect illumination).

3. Softness s indicates the width of the transition region from fully occluded to fully
visible, simulating the effect of an area light.

4. Abstraction α is a measure of shadow’s accuracy; lower values yield more detailed,
accurate shadows, whereas larger values produce rounder, simplified shadows.

We present an image-based algorithm that uses these parameters to produce styl-
ized shadows from a shadow matte (the V (·) visibility rendering term) as computed by
standard techniques. Our implementation, which makes use of efficient Monte Carlo
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Original Inflation Brightness Softness Abstraction

sampling techniques implemented on graphics hardware, provides interactive control of
the light, camera, and shadow parameters, affording the artist a fluid environment for
exploring this design space. Furthermore, because the algorithm and controls are based
in rendering space, the design space itself affords more intuitive navigation for artists
than would emerge from more conventional cinematic controls attached to lights in 3D.
Another benefit of the approach is that it works for general visibility-determination meth-
ods, from shadow volumes [21] and shadow maps [101] used in a scanline-rasterization
pipeline, to raytraced visibility used in an offline system.

Applications for this filter include computer-generated imagery for movies, cartoons,
games, industrial and architectural design – essentially any context in which an artist is
involved in the composition of the scene. For such applications, artists in practice already
use a variety of ad-hoc methods for abstracting shadows, for example by blurring either
shadow maps or the resulting mattes, or by rendering shadows from pre-simplified or
stand-in geometry. Thus the main contribution of this work is to provide a set of intuitive
controls that work well in concert, together with an efficient algorithm that implements
these controls such that they may be explored in an interactive setting.

3.2 Related Work

In art and cinematography, the interplay of light and shadow has a long-standing tradition
for dramatic effect. In both live action and computer generated film, artists have employed
a broad set of tools to compose abstract representations of shadows [10, 55]. For example,
a simple trick that has been used is to replace the “true” shadow casting geometry with
a simpler form that is meant to suggest that geometry. In live action the lighting director
may make use of a “gobo” (or “cookie”, or “blocker”) – a card with cutout shapes attached
to the light and thereby casting shadows into the scene.

Where shadows have been used in traditional cel animation, they have been hand
drawn, typically as light, blobby shapes that serve to anchor the characters in the scene
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Figure 3.2: Artistic Stylized Shadows. Artists make use of shadow stylization for
compositional purposes, as seen here (from the Metropolitan Museum of Art in New
York). Note the use of highly simplified shadows in the left images, used to allow shadow
cueing without adding distracting detail from the foreground object; in the bottom-left,
only a simple, softened circle is used. In the right images, distinct umbra and penumbra
are shown, with varying stylizations in each.

51



Chapter 3. Stylistic Visibility Filters for Creative Artistic Control

without distracting from the action. Petrovic et. al [73] developed a method for semi-
automatic creation of shadow mattes for cel animation, based on the hand drawn artwork
in the scene. While not directly concerned with abstraction, the shadows resulting from
their system tend to be abstract for two reasons. First, they are based on abstract char-
acters. Second, they are produced by casting lights from simple geometry created by
“inflating” the hand drawn artwork. Central to our process for abstracting shadows is an
inflation algorithm, which though different from that of Petrovic enjoys the property of
creating smooth shadow mattes.

In computer cinematography, the lighting director applies a spectrum of tricks to
control shadows through lighting for various artistic goals [10], for example making
many or all lights respect the shadow map of the “key” light (to simplify cast shadows),
“cheating” the shadow map away from the key light (to position the shadow for better
dramatic composition), or inserting invisible, often simplified, geometry into the scene
(for the sole purpose of creating shadows that would not otherwise appear). A recent
system based on deep frame buffers allows artists to interactively explore the broad space
of effects available from complex CG lights [71]. The method proposed here might
well complement such a system, as it focuses specifically on interactive control of the
abstraction of shadows. Finally, in computer cinematography a variety of image pro-
cessing techniques are commonly used to adjust shadows in the final compositing stage,
for example blurring the shadow matte to create softer shadows. Our framework also
supports such effects, but in such a way that they can respond to geometric properties of
the scene. For example, we support blurring less near occluders to simulate a narrowing
penumbra.

Researchers have described various methods for controlling lighting parameters by
directly manipulating the resulting shadows. For example, the method of Poulin and
Fournier [76] allowed a designer to transform shadow volumes in wireframe view, while
that of Pellacini et. al [70] let the artist drag shadows directly in an interactively rendered
image. A number of researchers have developed techniques for optimization of lighting
parameters in order to achieve various design goals (including shadows), e.g. [50, 83,
37, 52]. Together, these systems provide an array of intuitive controls for positioning and
shaping shadows, but are not directly concerned with stylization or abstraction. While
not considering stylization, the previous work of [25] has also considered post-render
processing of the visibility buffer, as in our approach. This is done mostly for increased
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Hard Shadow 1. Visibility 2. Distance 3. Blur 4. Threshold 5. Light

Figure 3.3: Overview. The accurate shadow (left) is filtered to produce a stylized shadow
as follows: (1) using the visibility computation resulting from a conventional shadow
algorithm, (2) a signed distance transform to the shadow boundary is found – red and
blue stripes denoting negative and positive isovalues; (3) a blur filter is applied, followed
by (4) a transfer function, such as a simple threshold, yielding a shadow matte which is
used in (5) lighting the scene.

performance (visibility buffers are rendered at low resolution, and then resampled), but
this work also demonstrates that the resampling step can be used to soften shadows.

3.3 Algorithm Description

For a scene with l directional lights, the standard method for computing the direct,
shadowed illumination of a point x is:

L(x→~ω) = ∑
l

ρ(~ωl → x→~ω)Sl(x)L(~ωl → x), (3.1)

such that the exitant radiance L(x → ~ω) from x towards ~ωo is computed from the re-
flectance ρ, incident radiance L(~ωl), and a shadowing function Sl : x → [0,1]. This scale
factor denotes the proportion of lighting received from the l-th light, and in real-time
applications is commonly the binary visibility V (x↔ ~ωl) of the light relative to the point
x. V (·) is commonly called the shadow matte.

We propose an alternative formulation of Sl(x) for providing stylistic control over
the appearance of shadows, by defining an operator on Vl(x). Our algorithm applies the
control parameters in five steps for each light l (shown in Figure 3.3):

1. Render the visibility buffer Vl(x) corresponding to the l-th light.

2. Compute a signed Lp-averaged distance transform D(Vl)

3. Filter D with a Gaussian G, producing G∗D(Vl)
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4. Apply a transfer function f , yielding Sl(x) = f (G∗D(Vl)).

5. Light the scene with Sl(x) according to Eq.3.1

3.3.1 Control Parameters

Inflation. We first consider the inflation parameter i. By increasing the value of this
parameter, we approximate inflating the original mesh by inflating the shadow repre-
sented in the matte, or rather, creating an offset curve at distance i from the original
shadow. We compute a distance transform D applied to V , such that D(V (x)) is equal
to the distance (according to a metric we define shortly) from x to the original shadow
contour. This contour is intuitively the boundary between shadowed and unshadowed
regions as indicated by V . Therefore the isocontour D(V (x)) = i is equivalent to an
inflation at distance i of the hard shadow, which we can represent by applying a threshold
transfer function fi(D) = thresholdi(D). Note that once computed, this representation
allows interactive modification of i, as we only require recomputing f from D(V ), rather
than recomputing D(V ) itself. To allow for deflation, as well as inflation, we consider D

as a signed transform by negating D(V (x)) for all points x such that V (x) = 0 (points that
are shadowed in the original shadow matte).

Were we to use the standard Euclidean L2 metric, however, offset curves would display
cusps and other sharp artifacts due to the discontinuous nature of the distance field in the
area of the medial axis. We would prefer a distance transform that is smooth, and thus
we adapt an existing method proposed in the literature for inflation of meshes.

Previous work produced a surface representation of layered concentric shells, suitable
for producing inflated or deflated representations [72]. Unlike the naïve approach of
displacement along the normal (corresponding to the L2 metric) shells generated with
this method are guaranteed to be free from cusps and other visually unpleasant artifacts.
The method is based on the Lp-averaged distance metric defined over R3 relative to a
surface. The parameter p allows for a trade-off between smoothness (with small values
of p) and approximation to the Euclidean distance metric, which it approaches as p goes
to infinity. While [72] addressed surfaces in R3, we limit our use of this metric to curves
defined in R2, producing:

Dp(V (x)) =
(Z

C

1
|x− y|p

dy
)−1/p

/(Z
C

dy
)−1/p

(3.2)
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in which C is the shadow contour in V , and where the denominator is a normalizing
term for the integral. In practice, we have found that p = 8 provides a practical trade-off
between smoothness and accuracy, and is used for the results in this paper. Unlike L2, this
metric produces a distance transform D that is free from discontinuities and medial axis
effects. Furthermore, the average transform exhibits better temporal coherence than the
the Euclidean transform, since it is not as sensitive to changes in the Voronoi structure of
the sample points. In Figure 3.4 we show a comparison of the isocurves for the Euclidean
L2 transform and the L8-averaged transform. Figure 3.5 then demonstrates the effect of
varying the inflation parameter. Note that as the shadow is inflated, it maintains a smooth,
visually appealing shape.

Brightness. We will use the brightness term, b, to represent the effect of ambient
lighting in the shadowed region. Implicitly, if there exists some light reaching the area
fully in shadow, it has reached it through indirect means. Brightness represents the
“darkest" a shadow can be, or in our framework the minimum of the transfer function
f and therefore the lowest visibility. Note that, without loss of generality, we do not
assign a parameter for the maximum value of f , which is always 1; an object outside of
the shadow is fully visible to the light. To attenuate the lighting at that object, one would
either inflate the shadow, or correspondingly decrease the power of the light.

We can use the brightness parameter to combine multiple lights, which generalizes
to multiple regions of the same shadow, such as a highly stylized umbra and penumbra.
This effect can be achieved using a low brightness shadow for the umbra, and an inflated
or softened shadow with higher brightness. When visibilities are computed separately,
and used to modulate lighting that is accumulated in the final rendering, this produces
effects reminiscent of shadows (see Figure 3.6 as compared to works in the right column
of Figure 3.2).

Softness. After applying the inflation and brightness parameters, we are still left with
hard shadows, possibly inflated or deflated from the original. The softness parameter is
used to add continuous variation in intensity to the shadow rendering.

In physically-based rendering, the softness of a shadow is proportional to the area of
the light source; rather than viewing V (x) as a binary-valued function in which a light is
either visible or occluded relative to a point, visibility instead varies continuously across
the penumbra region. We can consider then, two separate shadow contours: one deflated
from what would be the location of the hard shadow, delineating the umbra from the
penumbra, one inflated, delineating the outermost boundary of the penumbra.
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Euclidean Distance, Screen Space

Euclidean Distance, World Space

L8-Averaged Distance, World Space

Figure 3.4: Distance Transforms. Distance transform of the original hard shadow matte
(red region) of the Octopus scene (shown in Figure 3.9). The black line represents the
inflated shadow contour. The Euclidean metric in screen space displays discontinuities
in the soft shadow contours, and does not account for perspective foreshortening or the
orientation of the ground plane. While the Euclidean metric in world space corrects the
latter, unpleasant discontinuity artifact is clearly noticeable. The L8-averaged metric in
world-space corrects both problems.
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Hard Shadow Inflation
i = 20, s = 5

Deflation Inflation and High Softness
i =−10, s = 5 i = 20, s = 50

Figure 3.5: Inflation. From the original shadow matte, we can produce alternate shadows
of various inflations, either using a constant value of i, or varying i according to the
approximate occluder distance.

Figure 3.6: Umbra and Penumbra

b

0

1

ii-s/2 i+s/2

Figure 3.7: Transfer Function
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Using our distance transform representation, we can extract these contours directly,
and because of our use of the smooth L-averaged metric, the shadow intensity will vary
smoothly between the two contours. Therefore, we can define softness as the width of
the transition from f (D) = b to fully visible f (D) = 1.

Given these parameters, we can now specify our complete transfer function. We
assume a monotonic falloff from the center of the shadow outwards, and prefer that
the function be at least C1 continuous to avoid visual discontinuities. We choose the
following, where smoothstep is a C2 Hermite polynomial as commonly defined in shader
languages (see Figure 3.7 for an illustration).

f (D) = (1−b)−1 smoothstep(D, i− s/2, i+ s/2)+b. (3.3)

Abstraction. We define that the original hard shadows are least abstract, and the
tendency towards a perfect circle to be greater abstraction. Therefore, we will define the
abstraction parameter α as a limit on the curvature detail of the visibility isocurves. As
the abstraction parameter increases, the isocurves lose sharp detail and become rounder.

We implement abstraction by convolving the distance function with a Gaussian kernel
of standard deviation α. Under appropriate conditions (away from the medial axis) this
has the effect of applying a low-pass filter to the isophote (contour normal) curvature, in
which nearly all of the high-frequency curvature detail has been attenuated.

Figure 3.9 shows the result of filtering the L8-averaged isocurves seen previously in
Figure 3.4, causing the previously sharply-curving shadows to become smoother and
more rounded and leading to a “blobby” or cartoon appearance. However, note that they
still maintain their hard transition from light to dark and do not appear blurred, thus
mimicking the shadows frequently seen in traditional cartoons.

3.3.2 Higher-order Rendering Terms

As described so far the algorithm proceeds entirely in screen space without consid-
ering any world-space geometric information for visible points x. However, the use
of additional rendering terms provide more intuitive shadow behavior, although it is
conceivable that another implementation might strictly use image-space information for
stylistic effect. The three additional terms our system uses per pixel are the world-space
position, normal, and approximate distance to occluder. As a practical matter, these can
be computed at rasterization time and stored, and thus add trivial overhead.
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Hard Shadow Moderate Softness
s = 20

High Softness and Abstraction Softness Varying With Distance
α = 50, s = 50 α = 10, s = 20d2

Figure 3.8: Softness. We can approximate the effect of a soft area light by changing the
softness parameter. The bottom-left figure uses geometric information to harden shadows
near shadow casters as discussed in Section 3.3.2

World-space Distance Metric. In our computation of the L8-averaged distance trans-
form D(V ), we interpret distances in world space, rather than screen space, by using the
stored 3D position of each pixel. This allows for important effects such as proper fore-
shortening of shadows away from the camera. This effect is clearly noted in Figure 3.4.
Additionally, this prevents the shadowing from areas nearby in screen-space, yet distant
in world-space, from bleeding across each other. As can be seen in the illustrations,
especially Figures 3.8 and 3.9, an unshadowed foreground object may cross a shadowed
background without artifact on either object.

Normal Discontinuities. To prevent artifacts resulting from sampling across disconti-
nuities, we apply an angular threshold based on the normal when computing the distance
transform and blur. If the angle between the normal of x and any point y is greater than
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Hard Shadow Moderate Abstraction
α = 10, i = 10

High Abstraction Abstraction and Softness
α = 70, i = 10 α = 20, s = 20

Figure 3.9: Abstraction. By applying a Gaussian filter to the distance transform, we
are able to reduce the high detail in the contours, allowing the later thresholding step to
produce rounder, more abstract shadows. Compare these to the results achieved using the
analogous mesh filters in Figure 1.13.

45◦, we ignore y for the purpose of computing the distance metric or blur. This has some
intuitive, if not more rigorous, basis as lighting is a function of normal, and so different
normals will lead to different illumination. Importantly, it works well in practice, and we
have used this for all illustrations.

Non-constant Stylization Parameters: In physically realistic rendering, we note that
certain properties of shadows vary relative to scene geometry, such as an increase in
softness and brightness of a shadow at greater distances from the occluder. Therefore, we
allow our stylization parameters to vary as functions of such geometric information.

Our method would easily allow for functions of arbitrary parameters, though we focus
our implementation on functions of the approximate distance of a point x to its occluder,
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which we denote d(x). To motive our desire to allow the shadow parameters to vary with
d(x), we observe that to mimic realistic shadowing, softness should increase with d(x),
as the projected area of the occluder decreases relative to the projected area of the light.
Brightness should also increase with d(x), as more ambient illumination reaches x. This
combined effect is often referred to as “hardening" of the shadow near occluders, and is
an important perceptual cue. We demonstrate its use in Figures 3.8 and 3.11. We have
found that quadratic functions of d(x) allow suitable control; more complex functions
could be used as needed.

The determination of accurate distances from points to occluders is not a simple
problem; however, we have found that for the purpose of setting shadowing parameters,
only rough approximations are required to achieve a wide variety of useful stylistic
effects. While the algorithm to compute d(x) is orthogonal to our method as a whole,
for the figures shown here we use a simple distance between the shaded point and a
coarse occluder geometry represented by a small number (1 to 2) of points or lines that is
computed in the shader on rasterization. We stress that other implementations could use
more accurate distances, such as those computed with raytracing.

3.3.3 Monte-Carlo Filtering

Both the averaged distance transform (Step 2) and the Gaussian blur (Step 3) require
integration over a potentially large domain of the shadow matte. In order to implement
these efficiently, we perform the algorithm in a GPU fragment shader using a probabilistic
Monte Carlo approach. Note that while rendering efficiency is a secondary concern to
stylistic control, it is nevertheless useful in rapidly configuring parameters in order to
develop an artistic style. We use a slightly different approach in each step.

Distance Transform. The L-averaged distance is defined on the distance from a point
x to a contour C; however, using a uniform spatial sampling over the entire shadow matte
V , the probability of finding a pixel y ∈ C is low. Furthermore, the distance transform
must be defined a significant distance from the shadow boundary, in order to allow for
shadows with high inflation or softness, requiring sampling over a large region. Clearly,
a uniform sampling of V would be inefficient.

To address this problem, we selectively sample only over pixels on shadow boundaries.
Currently, we implement this by transferring the visibility buffer V from the GPU back
to the CPU, detecting the edges on the CPU, and sending back to the GPU a list of
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10 Samples, 60 FPS 24 Samples, 30 FPS

50 Samples, 18 FPS 120 Samples, 8 FPS

Figure 3.10: Performance vs. Quality. As we take fewer samples, we can see that the
quality of the image relative to the reference (measured as root-mean squared error per
pixel) decreases; however, the frame rate increases significantly as well.

coordinates of pixels in C. When rendering a pixel x ∈ D(V ), the GPU shader performs
Monte Carlo integration by sampling a random set of pixels y ∈ C, and using them to
compute the L8-averaged distance to x.

Gaussian Blur. The Gaussian blur may also need to sample over a large portion of
the image; fortunately, however, its effect is limited by the falloff of the Gaussian filter
kernel. We combine Monte Carlo integration with a windowed approach: each pixel x

will randomly sample a disk of pixels of radius 3α around x, where α is the abstraction
parameter and filter standard deviation. We have found that both importance sampling the
Gaussian kernel, and using a quasi-random Halton distribution [77], instead of a uniform
distribution has a noticeable effect on reducing sampling noise. Additionally, while
combined 1-D filters cannot be used to reduce the number of operations, as the function
contains discontinuities in world-space and therefore the kernel cannot be separated, we
can perform two 2-d convolutions of

√
1/2 the width to achieve the same result as a
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larger kernel, with significantly fewer computations. Because of these optimizations, the
Gaussian blur causes only minor overhead.

Sampling. By using Monte Carlo integration, our approach allows for a continuous
time-quality trade-off; while the performance is good even at high quality, fewer samples
can be used for slightly less accurate results when previewing shadows. Further, we
only need to resample the distance transform (the slowest-converging and therefore most
time-intensive portion of our algorithm) when the camera or light changes. Inflation,
brightness and softness can be modified without refiltering, allowing for fast (> 100
fps for many scenes) modification. Abstraction requires only a recomputation of the
rapidly-converging Gaussian blur, and which can be updated in real-time (> 50 fps).
Additionally, we can automatically reduce the number of samples while moving camera
or light to allow for rapid preview.

We provide performance figures for different sample counts in Figure 3.10, from an
implementation of our algorithm running on a 3Ghz Intel Core CPU, and a GeForce 8800
GPU. This is taken from the “worst-case” situation for our algorithm: moving the light or
camera with high softness and no abstraction, which would otherwise remove the noise
introduced by the distance transform.

3.4 Discussion

We have presented a system for flexible shadowing that allows a wide array of stylized
effects. As seen in Figure 3.11, the style of the shadows may be adapted according to
the control of the artist, and may be used to produce widely different styles of rendering.
The most significant shortcoming of our work is the algorithm for computing the L-
averaged distance transform, which is currently the slowest part of our algorithm. Note
that, interestingly, the CPU-GPU communication is not the bottleneck; rather, it is the
large number of samples required for low-variance distance computation. This suggests
that one solution is to use biased methods that trades accuracy for reduction in noise.

We note that many of the choices we presented for our system could be generalized
in alternate implementations. For example, we made the assumption that the shadow
softness always exhibits a monotonic fall-off from the center, but this need not always be
the case. The isocurve renderings in this paper were created by substituting an appropriate
stepped transfer function; other artistic effects could be created similarly. Additionally,
control parameters could be made functions of the surface material properties, or of
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the viewing angle to approximate specular reflectance. However, we believe that this
implementation provides intuitive control for a majority of applications.

Our implementation contains certain limitations that would need to be addressed for
use in a production environment. First, per-object controls over shadow parameters
would be required. Moreover, even with support for multiple objects, static parameters
for an entire scene might not allow for flexible artistic control; parameters that achieve
the desired result for a given combination of light direction and camera angle may be
inappropriate for others. Therefore, we would suggest keyframing of the stylization
parameters as a reasonable solution, effectively making the parameters a function of
time. Practical implementations might also control the parameters as functions of other
variables, such as light and camera direction, or as non-linear functions. Finally, although
we consider the parameters discussed as the most intuitive, one could consider adding
additional parameters, such as anisotropic elongation of the shadow away from the light
or additional possibilities for non-photorealistic rendering of the shadows (e.g., outlining,
hatching, or stippling).

Another disadvantage of the current work is the lack of coherent support for shadows
that are already soft, resulting from area light sources. While the simplest adaptation
might be to sample the light and apply our stylization transfer function for each sample
independently, this would not be computationally efficient. Instead, we believe that it
is possible to express the result of the stylization computation in terms of the area-light
shadow intensities themselves, as well as their gradients. We discuss other potential
future work in Chapter 6
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Hard Neptune Shadow Hard Filigree Shadow

α = 13+4d−8d2, i =−2d2, s = 12−4d2 α = 20, i = 4, s = 1

α = 5, i =−4, s = 10 α = 7, i =−4, s = 5

α = 20+10d, i = 5+10d, s = 50 α = 20, i = 10, s = 25

Figure 3.11: Various control parameters. The first row shows the hard, unabstracted
shadow. The second row shows abstracted but hard shadows. Note despite abstraction,
critical detail (such as the trident) is preserved. In the third row the shadow is shrunk
and softened while the character of the shape is preserved. In the final row the shadow is
blurred and lightened to remove detail, while maintaining a sense of the light position.
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Chapter 4

Subtractive Shadow Filters
for Flexible Illumination

The subtractive shadow filter presented in this chapter is a method for progressive shadow
level-of-detail, analagous to the image compression and geometric simplification meth-
ods demonstrated in Chapter 1 (in particular Figures 1.9 and 1.14). Recall that these
methods rely on a principle of the Fourier theory presented in the same chapter, the
sampling theorem, which states that low-frequency signals can be represented with fewer
samples than their high-frequency counterparts. The utility of these methods derives
from the fact that, in these particular applications, low-frequency information has the
predominant impact on perception, such that removal of some high-frequency detail is
often unnoticeable or insignificant. Given that the the rendering process can be viewed as
a sample-based reconstruction of the light transport equation, as we saw in Chapter 2, it is
reasonable to consider using reduced samplings to reconstruct low-frequency rendering
terms. In this chapter, we will employ such a method so as to improve the performance
of real-time rendering with cast shadows.

The rendering filter framework suggests that one should consider the relevant ren-
dering terms to be used in a given reconstruction, identify those of varying high- and
low-frequency content, and sample them independently. Limiting our discussion to the
reconstruction of the one-bounce direct illumination f0Le1V0 = L0, we see directly that
final illumination L0 incident to the camera plane contains significant high frequencies
(Figure 4.1d), and so is unsuitable for reconstruction using reduced sampling rates. Fol-
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lowing the filtering principle of decomposition into frequency bands, we instead compute:

L0 = f0Le1 − f0Le1(1−V0), (4.1)

where f0Le1 is the local illumination (i.e. the unoccluded direct illumination, shown
in Figure 4.1a) and the novel term f0Le1(1−V0) is the extraneous light present in the
local illumination (b) from which it is subtracted to produce the shadowed result. This
formulation is equivalent to the original, but allows the local illumination term and the
subtractive shadow term to be reconstructed and filtered independently in a manner that
allows the most efficient manner of computation for each.

As discussed previously, extensive methods exist for prefiltering f0Le1 , allowing a
rendering of complete unoccluded direct illumination to be performed very quickly. This
term, therefore, will be computed in our framework using such methods. Turning our
attention to the subtractive shadow, we see that the term displays a dominance of low-
frequency content; we will show that this may be computed by sampling at a lower rate
(requiring fewer computations) and performing a resampling operation. We also offer a
discussion of why the additive lighting representation of L0 cannot be likewise subjected
to efficient filtering methods.

This technique preserves that portion of the scene with the greatest visual importance
– the high-frequency direct illumination – and allows shadows to be presented with lower
fidelity in exchange for improvements in speed. This provides for flexible control over
level-of-detail in shadow computation, with the capability of reducing both of lighting
and camera samples while maintaining a reasonable approximation of the original. With
the subtractive shadow filter, we are able to interactively manipulate and render arbi-
trary BRDFs and environment maps applied to complex, dynamic scenes with shadows,
achieving in real time effects that previously required offline preprocessing.

4.1 Background

As we have discussed in Sections 2.3 and 2.4, while ray-traced rendering methods can
compute the global illumination of a scene, and so inherently determine which regions
are in shadow, most interactive rendering is performed using rasterization methods that
instead utilize local illumination calculations. These methods do not inherently consider
occlusion, the rendering term V (·) that varies over all points in the scene, so additional
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(a) Local Illumination Term (b) Subtractive Shadow Term

(c) Subtractive Shadows (16fps) (d) Additive Shadows (4fps)

Figure 4.1: Color and Shadow Buffers. Even with low lighting detail (25 lights),
subtractive shadows preserve high accuracy in the direct illumination along with soft
shadowing. By contrast, additive shadowing produces an inaccurate speckled effect on
the dragon due to undersampling, while the shadows are unpleasantly hard. In addition,
by decreasing the shadow sampling detail to 1/16, subtractive shadowing preserves real-
time frame rates for this high resolution (1280x800) rendering.

techniques have been developed to simulate shadowing. The standard approach renders
the scene illuminated by each light in turn, while limiting the effect to pixels visible from
that light, which are identified as such by a visibility determination method (such as the
well-known shadow volume [21] and shadow mapping [101] algorithms). The results
from each light are accumulated to produce the final image, and so we refer to this as
“additive” shadowing. We explore, however, the effect of doing the opposite: computing
the complete, unoccluded local illumination of the scene, then, for each light, subtracting
from the scene the energy occluded by cast shadows.

Our technique is intended to address complex illumination from natural lighting en-
vironments and realistic reflectance models, applied in an interactive setting that allows
animation and editing. While illumination from small numbers of discrete point lights
can be computed individually, real-world illumination and reflectance are defined by
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continuous functions over the entire visible hemisphere, for which per-light methods are
ineffective. To accurately render such lighting environments (commonly represented as
tabulated spherical functions, or environment maps) researchers have developed several
sets of techniques, of which we have provided an overview in Section 2.4. Environment

sampling reduces the continuous function to a set of important directional lights; while
the result is simple to render, it cannot account for the complex continuous distribution of
incoming light – especially noticeable for non-diffuse materials. Prefiltered illumination

methods allow the complete local lighting to be computed in constant time, yet they are
ignorant of non-local geometry, and so are unable to represent cast shadows. Precom-

puted radiance transfer methods do consider geometry and visibility, but they do so only
at the cost of significant offline precomputation, and so are unable to support dynamic
geometry or materials.

Instead, we present a technique designed to support lighting and shadowing from
realistic environment maps without significant preprocessing. It does so by leveraging
the strengths of prefiltered illumination methods for direct lighting, with environment
sampling for “subtractive” shadowing (Figure 4.2). It is based on the observation that the
high-frequency direct illumination of the scene is of primary visual importance, and that
the low-frequency shadowing, while providing essential visual cues, is secondary. By
separating the two, our technique preserves direct illumination in full detail, yet allows
the rendering system to perform a trade-off between shadow quality and speed – if a
higher frame rate is needed, an interactive system can lower the level of detail present in
the shadows until the target is reached. This is inspired by existing work on image com-
pression and geometric simplification (see for example Figures 1.9 and 1.14), in which
a particular level-of-detail (LOD) can be selected that approximates the original, yet is
more efficient to store or faster to render – incurring rendering error for improvement in
speed or size. Analogously, in many cases sacrificing accuracy of shadow computation in
exchange for improved rendering speed is an acceptable trade-off, so long as the visual
fidelity of the direct illumination is maintained. The technique of subtractive shadows
does just that, as we will demonstrate.

4.2 Algorithm Description

We assume the availability of algorithms for prefiltered illumination, shadow determi-
nation, and environment map sampling (we will discuss this further when presenting
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(a) Sampled, Diffuse (c) Sampled, Glossy (e) Sampled, Shiny

(b) Prefiltered, Diffuse (d) Prefiltered, Glossy (f) Prefiltered, Shiny

Figure 4.2: Comparisons of Sampled and Prefiltered Illumination. When using a
sampled approximation, rendering speed is dependent on the number of lights, therefore
fewer is preferable. With 100 lights, additive diffuse illumination (a) compares well to its
prefiltered analogue (b); as specularity is increased (c) the illumination shows slight loss
of continuous detail compared to prefiltering (d). For very shiny surfaces (e), illumination
is very poorly represented, while the prefiltered illumination is highly plausible (f). Note
as well that the shadows are more plausible after filtering, as well.

examples in Section 4.3). Our technique is as follows, and is illustrated graphically in
Figures 4.1 and 4.3.

1. Sample environment map to create an approximation E

2. For each (shadow-casting) light L ∈ E:

(a) Render radiance cache, if used for prefiltered illumination

(b) Determine shadows of scene with respect to L

(c) For each shadowed pixel, compute contribution of L

(d) Composite into shadow buffer S, possibly lower resolution than color buffer

3. Render prefiltered, unshadowed direct illumination into color buffer C

4. Filter S to produce resampled S′, equal in size to C

5. Subtract S′ from C, producing final, shadowed, output
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The benefit of this procedure is that it allows for two time-quality tradeoffs, parameters
that we refer to as the illumination detail and the sampling detail. A renderer can
dynamically reduce both of the levels of detail as needed to reach a target frame rate.

Illumination Detail. The bottleneck in this algorithm is the loop over shadow-casting
lights L in Step 2. However, regardless of the size of L, the direct illumination C computed
in Step 3 is maintained correctly due to the use of fast local illumination algorithms,
such as prefiltered environment maps ([78], [41]). These display higher quality than that
achievable by sampling (for example, for highly peaked BRDFs) as they represent contin-
uous illumination from the environment, which sampling cannot. Therefore, we decouple
shadow-casting lights from the illumination used to compute reflectance, allowing us to
use fewer shadow-casting lights as necessary to improve frame rate. The resulting error is
limited to shadow “hardening," which is then ameliorated by resampling via a rendering
filter (see next section). Using fewer lights decreases both vertex and fill overhead for
either class of shadow algorithms (shadow volumes or shadow maps). We refer to the
number of lights in L as the illumination detail.

Step 1: Sample Environment Steps 2b-d: Render Shadow Buffer Step 4: Resample Shadow Buffer

Step 2a: Radiance Cache Step 3: Render Color Buffer Step 5: Subtract Shadows from Color

Figure 4.3: Subtractive Shadows Overview. An illustration of the various buffers used
in the subtractive shadows technique. Multiple arrows indicate that multiple passes are
required. The creation of the radiance cache is optional, and can be replaced with another
fast local illumination algorithm.
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Sampling Detail. Another flexible level-of-detail can be achieved in Step 4, which
is key to providing plausibility for reduced-illumination detail shadows. Observe that
shadows (especially the soft shadows that result from continuous lighting environments)
are low-frequency phenomena, compared to the potentially very high-frequency direct
illumination (consider perfect specularity, for example). We therefore can reduce fill
overhead with minor loss of quality by reducing the shadows’ sampling detail: reducing
the resolution of the shadow buffer S computed in Step 2. The fill cost required by S can
be the dominant component of the total fill requirements of the application (especially
for shadow volumes, which may rasterize large portions of the screen for each light); we
allow this overhead to be decreased in exchange for minor quality degradation. S is then
filtered and resampled in Step 4 to match the size of C. As a rendering filter, this is a
low-pass filter acting on L(l → x)V (x↔ l), for all visible points x and all lights l

In addition to improving fill rate, this filtering also provides a better quality shadow by
performing an effective (although not physically correct) approximation of soft shadows
through blurring S, allowing fewer shadow-casting lights to be used for comparable
quality. Also, as the low-frequency shadowing term is distinct from the high-frequency
direct illumination, we are able to filter S only once, after all lights have been composited,
and to do so without the loss of high-frequency detail in the direct illumination that
would result from blurring the final rendered result of additive shadows. We may view
this as an a priori decomposition of lighting into low- and high-frequency components,
followed by appropriate filtering of the separate parts. The analogous technique for
additive shadowing, which does not perform this decomposition, would instead require
the per-light visibility to be blurred separately for each light, which is then modulated
with the unoccluded light to produce the shadowed result.

The resampling must respect normal and depth variation. Our resampling filter uses
the full-resolution positions and normals; for a given output pixel in S′ we identify
corresponding neighboring pixels in the downsampled shadow buffer S and penalize
differences in position and normal, using the formula G(||S′p − Sp||)(S′n · Sn); where p

and n represent position and normal in their corresponding buffers. This simple approach
is similar in concept to the bilateral filter, instead using position and normal as a range
filter, and produces smooth results from low-resolution samples (see Figure 4.3). We
have shown the range of effects achievable by filtered shadows, both physically plausible
and stylized, in a previous work [24], to which we refer for additional analysis.
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4.3 Examples

Implementation details. Our technique is not specific to any particular algorithms for
prefiltered illumination, visibility determination, or environment sampling. However, for
the examples shown here, we chose to use stenciled shadow volumes [40] for visibility,
spherical harmonic irradiance maps [78] for fast local diffuse lighting, prefiltered environ-
ment maps [41] for fast local specular lighting, and structured importance sampling [2]
of the environment map. More generally, for a fixed viewpoint, an arbitrary BRDF with
distant lighting can be tabulated per-frame and cached as a texture, known as a radiance

cache, which can be used as a form of prefiltered illumination [58]. Finally, we also use
the technique of deferred shading [61, 39], which renders geometry once per frame, and
uses image-space rendering passes to composite additional lights. We refer the reader to
those papers for additional detail. All examples are rendered at 1280x800 using 32-bit
floating point buffers, on a 3GHz Intel Core2 CPU with GeForce 8800 GPU. The bunny
model (35K vertices), triceratops (5K vertices) and horse (50K vertices) in Figure 4.4 are
shown lit with the Grace Cathedral, St. Peter’s Basilica, and Eucalyptus grove datasets,
respectively.

Variable shadow-casting lights. As we see in Figure 4.4 (left and middle columns) and
Figure 4.6, decreasing the number of lights (the illumination detail) has a smaller visual
impact for subtractive shadows (the shadows become “harder") than for additive shadows
(direct illumination is also affected). As a result, the subtractive algorithm has a higher
quality at a given frame rate. Further, the decrease in quality is limited to the shadows.
The figures also demonstrate an important conclusion about our method, which is that
it shows the largest improvements in quality for BRDFs with large peaks, such as high
specularity. This is logical, as sampled representations are derived from the environment,
not the BRDF, so we would expect these to perform best on diffuse surfaces, in which
environment variation is most significant.

Resampled shadow buffer. By rendering the shadow buffer S at a lower resolution than
C and resampling, we can achieve a increase in frame rate, as in Figure 4.4 (right column).
Additionally, through filtering we can achieve a better approximation of the shadows in
the reference than additive shadowing, even if not physically correct (see also Figures 4.1
and 4.5). The 4x downsampled (1/16 sampling detail) image is qualitatively comparable
to the reference image, and while no longer accurate, the 32x downsampled (1/1024
sampling detail) image provides plausible soft shadows, with only 1000 pixel samples
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1000 Light Reference Images (1-2 frames/second)

Additive Shadowing
40L 28fps .069rms 100L 20fps .093rms 30L 19fps

Subtractive Shadowing (with full sampling detail except where indicated)
40L 23fps .026rms 100L 18fps .039rms 1/16 samples, 30L 30fps

15L 40fps .043rms 20L 56fps .043rms 1/1024 samples, 30L 30fps

Figure 4.4: Varying Parameters. Additive rendering of the bunny (shininess 40) and
triceratops (shininess 500) show degradation in quality with decreasing lights (note
below the bunny’s eye, and the root-mean-squared errors) relative to the reference.
Subtractive shadows have higher quality and roughly equal speed at equal lighting detail,
and maintain quality even at low level-of-detail; the only artifact is the hardening of
the shadows. Further, decreasing sampling detail (right) reduces the fill cost typically
associated with shadowing, while continuing to render plausible soft shadows.
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Figure 4.5: Dynamic Scene and BRDF; Complex Geometry: We show (left, middle)
stills from a scene with dynamic geometry, camera and reflectance, captured at 30-40
FPS, with 50 lights and 1/16 shadow samples for a 8500 vertex model. We enable
editing of BRDF parameters (shown for glossy Phong and Torrance-Sparrow BRDFs) in
real time with shadowing, while maintaining high quality through the use of subtractive
shadowing with radiance caching for local illumination. The landscape model (66K
vertices, 30 lights) demonstrates preservation of complex lighting by using a prefiltered
diffuse environment (note the blue tint from atmospheric scattering; which would not
be maintained with sampled lighting alone), while retaining important shadowing cues
applied to a highly non-planar shadow caster and receiver.

of S for a 1280x800 rendering. This process reduces or eliminates the fill bottleneck
typically associated with shadowing algorithms, in particular with shadow volumes (note
that frame rate does not change from 4x to 32x, indicating that above 1/16 detail in this
example, fill rate is not a limiting factor). This is especially notable considering that fill
overhead tends to be the bottleneck in many real-time applications (which generally use
smaller models than those presented here).

Dynamic and Complex Scenes. We show in Figure 4.5 (left, middle) several frames
from a scene with a moving camera, non-rigid deformations and complex dynamic re-
flectance functions. Because our method requires a minimal amount of precomputation
per frame (shadow volume determination and radiance caching), no more than is com-
monly performed in many interactive applications, we are able to render such scenes at
real-time rates. This example uses a 1282 radiance cache, which we have found accept-
able for most situations, and renders at 30-40 FPS. The radiance cache is a negligible
overhead; by itself the cache renders at over 500 FPS. In Figure 4.5 (right) we demon-
strate our method on complex shadow-casters and (self-)shadowing receivers; in which
a prefiltered environment is necessary to preserve the subtle blue tint from atmospheric
scattering (sampling instead concentrates around the sun).
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4.4 Discussion

Our technique for rendering shadows under complex lighting readily invites comparison
to the class of precomputed radiance transfer algorithms [85] (PRT), which provide a
similar functionality. These methods precompute a transfer function that maps incoming
to outgoing radiance for known geometry and reflectance. While these generalize directly
to a much wider range of indirect illumination effects, such as interreflection and subsur-
face scattering, their inherent precomputation limits their use in many applications. For
example, our technique was developed in the context of an interactive material editing
system; changes in reflectance and their effect on the (dynamic) scene are necessarily
required to be visualized immediately. We support the dynamic materials and animated
geometry shown in the video stills in Figure 4.5; effects not possible with PRT.

Certain limitations of the implementation that we have chosen to demonstrate the
subtractive shadows concept may restrict its use in a production context. A key example
is the lack of physically-correct soft shadowing. Additionally, our system as imple-
mented focuses specifically on environment map illumination, though local lighting can
be directly integrated into our renderer by additively compositing the local lights along
with the direct environment map illumination in Step 4. However, our goal was to focus
the comparisons between additive and subtractive systems of equivalent implementation
complexity, and so this additional functionality, while clearly important for many ap-
plications, was not implemented in this demonstration system. We anticipate that the
gains of the system we demonstrate would also apply to more real-world systems. Also,
our system shows less significant improvement with diffuse materials; although notable
gains can be achieved in highly non-localized environments, such as the sky in Figure 4.5
(right). While there exist methods to suitably render diffuse scenes and discrete local
lights, a main goal of ours was to demonstrate how to incorporate more complex materials
and natural environment lighting in a shadowing-aware real-time system, without high
precomputation complexity – and therefore limits on the dynamic nature of the scene.

As the results show, the subtractive shadows technique allows for simple yet flexible
variable level of detail for shadow rendering. The technique generalizes to surfaces of ar-
bitrary reflectance, and allows the developer to achieve high-quality natural illumination,
while preserving the ability to render shadows at arbitrary speed with easily adjustable
parameters. Through this technique, we give the lighting designer the same flexibility
that geometric LOD algorithms have provided to modelers for years.
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Subtractive, 25L 15fps Equal-quality Additive, 70L 4fps

Equal-speed Additive, 15L 15fps Reference, 1000L 0.2fps
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Figure 4.6: We compare the result of our subtractive shadows method with 25 lights and
1/4 sampling detail (top-left) to a high-quality reference rendering computed using 1000
lights (bottom-right). For roughly equivalent quality additive shadows (top-right), our
method is significantly faster; while maintaining significantly higher quality compared to
an equivalent speed additive rendering (lower-left). The major artifacts of our method,
compared to the reference, are in the shadowed regions. We consider shadows cast by
all objects in the scene, note for example the shadowed regions of the hair. However, the
more noticeable direct illumination is well-preserved, which is not the case for the 15-
light additive example. As shown in the graphs, subtractive shadows exhibits consistently
superior quality and frame rate across varying levels of lighting detail. The model
consists of approximately 125K vertices, rendered at 1280x800 with the Galileo’s Tomb
lightprobe.
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Chapter 5

Path-density Filters
for Plausible Outlier Rejection

The problem of noise in Monte-Carlo rendering arising from estimator variance is well-
known and well-studied. However, we suggest that certain conditions, which we refer
to as outliers, have a particularly egregious effect on rendering quality. These leads to
significant “spikes" of noise that are perceptually significant due to their high contrast
with their surroundings. Most noise-reduction methods, such as importance sampling
and stratification, attempt to generate samples that are expected a priori to have lower
variance, but do not take into account actual sample values. While these methods are
essential to decrease overall noise, we show that filtering samples a posteriori allows for
greater reduction of spiked noise. In particular, given evaluated sample values, outliers
can be identified and removed. Note that the use of the term “outlier" should not be taken
as synonymous with “incorrect," rather, both here and in statistics in general, these refer
to samples that distort the empirically-observed distribution of energy relative to the true
underlying distribution. We will show that these are thereby characterized by their density
across the set of all nearby paths, as well as their values, and that significant improves in
quality can be achieved by filtering according to density.

5.1 Introduction

When simulating light transport using Monte Carlo methods such as path tracing [48],
finite sampling rates produce the familiar noise artifacts as seen in Figures 5.1a and 5.1b.
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(a & b) Original Renderings

(c & d) Renderings after Outlier Rejection

Figure 5.1: The standard linear reconstruction of these two rendering leads to significant
peaks of noise, a result of outlying samples. We propose a method to identify and remove
these outliers, leading to a significant reduction in perceptual noise. Importantly, just the
noise samples are targeted by the filtering, while other salient features are left unmodified.
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We draw attention to two distinct phenomena of noise: the subtle but globally-distributed
high-frequency noise resulting from variance between correlated estimators, as well has
the highly-localized, distinctive “speckling” resulting from statistical outliers. By remov-
ing these outliers in a principled manner, we significantly decrease the perceptual error,
and subsequently make the task of smoothing inter-pixel variance amenable to existing
filtering methods. Subsequent to outlier rejection and filtering, the same sampling rate
results in significantly more plausible renderings, as shown in the two images on the right.
The notion of plausibility is key: the filtered renderings are biased, but acceptable to the
eye and consistent with the known data, in contrast with the unbiased renderings which
contain unacceptable perceptual defects.

Figure 5.2: All-diffuse version
of Figure 5.1a. Note absence of
peaked noise.

This type of peaked noise is highly scene-
dependent. In Figure 5.2 we show a rendering of a
scene in which the specular surfaces in Figure 5.1a
are made Lambertian. Both have been rendered
with the same number of samples. The specular
surfaces, however, induce a significant increase in
noise. In particular, the small percentage of paths that
now undergo specular reflection towards a light have
significantly higher energy than diffuse reflection
paths, resulting in high variance.

This is not dissimilar to the situation frequently
encountered in direct lighting: the energetic paths
occupy only a small percentage of the total. However,
since the distribution of light sources is known a

priori, this information can be used to reduce variance through the method of importance
sampling. Samples are disproportionately drawn in directions with known energy;
resulting in most samples having similar energy, and thus low variance. Similar high-
variance integrands result from peaks in the BRDF, in addition to those in incident
illumination, as with highly specular reflectance. Multiple importance sampling [97]
can combine multiple such sources of a priori information to reduce noise.

So long as low-likelihood events can be expected (such as the specular peak of a shiny
BRDF) this can be accounted for using multiple importance sampling. The problem arises
when the empirical distribution of energy differs widely from the expected distribution
(i.e. the one from which samples are drawn). In particular, as indirect illumination is not
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known in advance – it is the quantity which we are using path tracing to compute – it is
accordingly more difficult to compensate for variance. In fact, importance sampling can
compound the problem of outliers. When a region with low expected density is sampled,
importance sampling weights such values higher to produce an unbiased estimator. How-
ever, when such samples in fact have high energy, this produces a significantly larger
value. Techniques including defensive importance sampling [43] and others [67] have
been developed in response to this phenomena.

Figure 5.3: Median Filter in
image-space, which fails due to
information loss.

We term such samples as outliers. This effect of
speckling resulting from outliers is a common effect
in rendering that has frequently been commented
on in the related literature. See for example the
discussion of exactly this point in [47] (Figure 9.1,
Pg. 139), and note the similar artifacts in the
closeups in [74] (Pg. 669, for example). We propose
a definition of such outliers that allows them to
be identified and removed, significantly decreasing
noise in the rendered image.

We have seen previously in Chapter 1 examples of
image-space filters designed to remove noise, such
as the median filter (shown used for noise removal
in Figure 1.11) and the bilateral filter (Figure 1.10).
The non-linear median filter in particular has often been recommended for removing the
sort of speckled noise as often seen in Monte Carlo renderings. However, as image-
space filters act solely on reconstructed pixels, significant data have already been lost
by combining samples, and the existing data have been corrupted by outliers. For
example, attempting to apply an image-space median filter to the example in Figure 5.1
results in Figure 5.3. In many regions of the image, enough pixels have been corrupted
by outliers with the result that an accurate approximation of the original cannot be
determined. Bilateral filtering performs worse; the range term preserves the noise, rather
than discarding it. Instead, we will apply a rendering filter approach directly on samples
of the rendering equation, which we show performs significantly better than the image-
space approach.
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5.2 Related Work

In contrast to methods such as importance sampling, other filtering-based methods use
the values of the evaluated samples to reduce noise by using an alternate reconstruction
method for the final image pixels. The common approach to reconstruction of an image
I(x) applies a linear filter W (representing the response function of an image sensor) to
the continuous light transport equation

I(x) = W ∗L = lim
n→∞

1
C

n

∑
i

W (||x− xi||)L(xi), (5.1)

In words, the pixel I(x) is a weighted average of points L(xi) on the image plane, where
the weight W is determined entirely by the distance between x and xi, and is independent
of the radiance L. Being linear in L, any sample can have an unbounded influence on I by
increasing its value; a single unrepresentative sample, when using a finite sampling rate,
can significantly affect the reconstructed pixel value.

The percentage of values that, if modified, can force an arbitrary change in the estimate
is known as the breakdown point [38]. As an estimator, mean has a breakdown point of
0, but is only one example of an estimator for a location parameter; a value that gives
the translation of a statistical distribution (see [95] for an overview). Alternate estimators
have higher breakdown points. The median is an example of a commonly used robust
estimator; it has a breakdown point of 50%, that is, the estimate is resistant to arbitrary
error until half of the data samples are corrupted. However, while the median has a high
breakdown point, it has poor efficiency, measured as the variance of the estimator relative
to the mean estimator for a normal distribution. The practical effect of this is shown
in Figure 5.4a. While the outlier noise is removed, the transitions in smooth regions
are made sharp, and the total level of energy in certain regions, such as the ceiling, is
significantly reduced.

A generalization of both the median and the mean is the α-trimmed mean, which has
been previously proposed as a robust filtering method for reconstruction in rendering [53].
For a value of α ∈ [0, .5), the upper and lower α order statistics of samples are discarded,
and the location parameter estimated as the mean of the remaining samples. Note that
the median is equivalent to the 0.5-trimmed mean. While the breakdown point is reduced
from 50% to α, efficiency is also increased; as shown in Figures 5.4b and 5.4c, the 10%-
trimmed mean significantly reduces variance in transition regions as compared to the
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(a) Median, .093 RMS Error (b) 10% Trimmed Mean, .072 RMS Error

(c) 1% Trimmed Mean .051 RMS Error (d) Reference

Figure 5.4: Alpha-trimmed Means: Previous methods for outlier rejection using alpha-
trimmed means remove noise at the cost of significant decrease in total energy (note
especially the roof and specular highlights compared to the reference) and also in
adding sharpness into previously smooth transitions (see the soft shadows). As a result,
these reconstructions have significant root-mean-squared (RMS) error compared to the
reference (computed with 1024 samples/pixel) that does not improve on the .0519 error
of the noisy original. Our method (Figure 5.1c) removes noise while maintaining .041
RMS error.

mean, while continuing to remove noise. However, the energy levels of the ceiling and
specular highlights are reduced, which continues to differ as compared to the reference
even for a smaller α of 1%, at which point noise from outliers becomes noticeable.

This problem can be characterized as the effect of heteroskedastic data, in which the
variance is non-constant across the image plane. As a result, a single choice of α is
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(a) Original (b) 5% Trimmed Mean (c) Our Method

Figure 5.5: Multi-modal Distributions: In this scene with two lights (yellow and blue,
seen in reflection), the presence of specular objects causes spiked noise due to outliers.
While a trimmed mean will reject these outliers, samples on the blue light are rejected as
well. Our method rejects only the clear outliers, while viewing the blue light samples as
consistent with the data as a whole

insufficient to deal with the entire image. A potential solution is to first estimate α for
each pixel, but this adds an additional level of complication. Other methods, such as the
anisotropic diffusion filter [57] and the non-linear energy-preserving filter [82] attempt to
adapt locally to the amount of noise in each region, and spread the excess energy out to
neighboring pixels.

What these methods do not address, however, is the larger problem is of multimodal
data. Estimators of location parameters are, by their nature, finding a single mode; the
empirical distributions encountered in computer graphics have many modes of energy,
induced by multiple lights (or partial occlusion of a single light), multiple modes of a
BRDF, indirect illumination, and so on. Take for example the scene shown in Figure 5.5.
While a trimmed mean removes the speckled noise, it also causes a significant shift in
color, as rays from the smaller (but more powerful) blue light are rejected as outliers to
the larger yellow light. Our method, to be presented in the next section, can remove the
noise while preserving coloration.
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5.3 Algorithm Description

We reject or reduce the influence of individual samples based on the observed joint

density of each sample in path space. Therefore, this leads us to term this as a path-

density filter. By the joint density, we refer to the density of each sample in the mul-
tidimensional space consisting of both image space coordinates (independent variables)
and color coordinates (dependent variables). Samples with low density are rejected as
outliers.

To motivate this method, Figure 5.6a shows a close up of a noisy image previously
shown, where a single line of samples (corresponding to those along the red line) has
been plotted independently in Figure 5.6b. The samples are plotted as image x-coordinate
vs. radiance (with independent red, green, and blue channels overlaid). One can see clear
outliers in the plot, which correspond to the sharp noise peaks seen in the reconstruction.
Note however, that the density of samples, in addition to the magnitude, are important
for identification of outliers. Compare to samples in the specular highlight, which have
significantly large magnitudes, but also are densely sampled and therefore not outliers.
Our algorithm is as follows:

1. Render samples

2. Store samples in space-partitioning tree

3. For each sample:

(a) Find k-nearest neighbors using tree in joint image/color space

(b) Use to estimate local scale and density

(c) If density less than threshold, reject or down-weight

Density is a quantity defined as mass per unit of volume; in order to define a continuous
density function ρ(x) over a volume from finite point sample, we compute density from
the volume of the hypersphere centered at x containing the k nearest neighbors. This is
analogous to the density estimation used in methods such as photon mapping [46].

Figure 5.6c displays a visualization of the density function of the samples previously
shown. Distinct colors represent isolines of equal density. Note that the outliers are
located in the low-density region; rejection of all points with low densities removes the
outliers and their associated noise (while preserving the higher-density features such as
the specular peak). This produces the rendering originally shown in Figure 5.1a.

For our method we trace paths through the scene using existing methods, and rather
than composite them immediately into an output image, we store them for later use in
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(a) Original Noisy Image

(b) Plot of sample x-location vs. intensity

(c) Joint Density

Figure 5.6: Visualization of Joint Density. We show a slice of the noisy input image (a,
indicated by red line) where samples have been plotted on a graph of their x-component
versus intensity (b, note that red, green and blue color components are plotted separately).
The existence of outliers can be seen clearly, and are characterized by their low density
in the joint space relative to other samples, rather than by their values. By computing
density explicitly (c, colors indicate lines of equal density) we can identify and remove
these samples from the reconstructed image (Figure 5.1c).
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Figure 5.7: Mean Density Per Pixel The two images visualize the density for our test
scenes by displaying the mean density of samples at each pixel, color-mapped such that
blue is lowest density and red is highest. Note that areas such as the roof in the left image
(which is lit entirely by indirect illumination) and shadow penumbrae in both images have
low density compared to their surroundings.

density estimation. Samples are collected into a space-partitioning tree to allow for fast
neighbor computation. Then, for each sample x we use the tree to find the k-nearest
neighbors, where k is a user-specified parameter. The neighbors are used to take an
estimate of local scale, or dispersion, σ. In particular, σ is equal to the mean absolute
distance from x to the k-nearest neighbors. Density is estimated as G(σ), the standard
normal Gaussian of the scale parameter.

The density G(σ) maps σ, which may be of arbitrary magnitude, to the range (0,1/
√

2π].
As the sampling rate increases, the neighbors of x increasingly converge to x itself, and the
density approaches 1/

√
2π. This acts as a measure of the individual sample, as opposed

to measuring the variance of an individual pixel, and adapts to both heteroskedastic
and multi-modal distributions. We use this measure to reject and reduce the influence
of outliers; specifically, we choose to reduce the influence of all samples more than
2 standard deviations away, and reject samples 3 standard deviations away. The soft
threshold reduces high-frequency artifacts that would otherwise be introduced when a
particular density is culled. After reweighting, samples are composited into the output
image as usual. We visualize the resulting densities for our test scenes in Figure 5.7.

Choosing Neighborhood Size. The choice of the parameter k acts as a smoothing
parameter. Larger values of k require samples to have stronger corroboration by its
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(a) Low Confidence Threshold, k = 10

(b) Moderate Confidence Threshold, k = 50

(c) High Confidence Threshold, k = 200

Figure 5.8: Choosing neighborhood size. We show the Eucalyptus Grove scene using
varying neighborhood sizes. As k is increased, the confidence required to retain a
sample also increases. With fewer low-confidence samples in the reconstruction, noise is
removed from the image. Note the how in the area under the feet of the bunny, high-
frequency noise is removed between (a) and (b) while preserving the similarly-high
frequencies given by the floor tile. Similarly, noise on the left of the triceratops head
is removed when between (b) and (c).
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(a) Using RGB distance (b) Using CIELAB distance

Figure 5.9: Comparison of Distance Metrics. When using a Euclidean distance metric
in RGB color space, the colors of the grid cells are insufficiently distinguished from
black. These border cells are viewed as outliers and rejected, causing the black grid lines
to expand. Using CIELAB distance, the colors on the other side of the line are viewed as
the nearest neighbors, despite being farther away, and the artifacts are removed.

neighbors before being accepted, leading to a removal of samples with low confidence.
We demonstrate this in Figure 5.8.

Distance Metric. Before searching for neighbors, we must establish a notion of dis-
tance. For our purposes, distances between two points is defined as the sum of Euclidean
distance between their image space coordinates, and their color coordinates in CIELAB
space. The image-space distance is weighted to correspond to the width of the sensor
response W . Color distance weight is a user parameter; we have fixed it to 20. We find
that the use of CIELAB space, with its greater discriminative characteristics between
dissimilar colors than that of RGB, is important for successful results. In Figure 5.9, an
example is shown using both CIELAB distance and RGB distance. In the image using
RGB, significant artifacts occur at edges, as the metric poorly distinguishes colors across
edges. No such artifacts occur in the CIELAB image.

Approximate Nearest Neighbors. Because the k-nearest neighbors are used only as an
approximation of the local neighborhood, it is not required to find the neighbors exactly.
Instead, we can cut computation time almost in half through the use of an approximation
algorithm [5]. The algorithm maintains the bound that for any error tolerance ε > 0,
the k neighbor returned will have a distance no greater than 1 + ε times the true k-th
neighbor. This is implemented when traversing the space-partitioning tree; branches can
be culled when it is determined that no element in the branch exceeds this error tolerance.
Resultingly, an approximate kNN will always slightly underestimate density, a result of
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larger scale in each neighborhood caused by the increased distances. With 10 M samples
and k = 200, for example, approximate kNN causes a 0.026 RMS error relative to filtering
with accurate kNN, which is reasonably low. Furthermore, most of this error is in noise
pixels and is visually imperceptible, however, it leads to a speedup of about 85%.

5.4 Discussion

We have presented here a rendering filter that allows for plausible renderings across a
wide range of sampling rates. Importantly, in many ways this method decouples the
designer of the scene for responsibility over consideration of scene variance. Objects
with complex, glossy reflectance can be used in a scene without penalty of introduced
noise in other objects. Instead, the resulting noise is withheld from the scene until such
a sampling rate has been achieved to allow the rendering of such phenomena without
noise. Importantly, basic lighting features such as direct illumination can be computed
relatively quickly, while the rendering filter isolates the low-noise direct illumination
from corruption from high-noise indirect illumination. It is intended that this will allow
for the use of progressive level-of-detail in realistic renderings, which itself will hopefully
lead to greater adaptation of physically-based light transport methods and ray tracing to
supplant the heuristic methods most commonly in place today.
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Chapter 6

Conclusion and Future Work

As indicated in the title of this thesis, the main goals of the rendering filters that have
been presented are twofold: control over detail, with the intent of enabling time/quality
tradeoffs; and creation of effects, mostly from an artistic or creative purpose. While we
believe that the presented filters in Part II are powerful tools that advance these goals, it
is hoped more generally that the overall framework of the rendering filter in Part I will
be employed towards the greater furtherance of such ends. In this Chapter, we discuss a
number of directions that this future work could take.

6.1 Future Work for Controlling Detail

High-Dimensional Smoothing. The key contributions of the subtractive shadowing
filters in Chapter 4 and the path-density filters in Chapter 5 is the tradeoff between time
and quality, in which a plausible approximation can be generated in a fixed amount of
time. These methods are useful in such cases where meeting the limited time budget
is more critical than the highest possible quality. This is most critical in the real-time
rendering context of Chapter 4, in which time is a hard constraint, one for which the
system is considered unacceptable if the constraint is not met. However, meeting the soft

constraint of a particular time-frame can also be a matter of significant cost savings or
increased time-to-market for a large-scale photorealistic rendering, such as an animated
film.

We would like to achieve a more flexible time-quality tradeoff than currently supported
for plausible photorealistic rendering. One of the more promising directions for this
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future work is to generalize our work on path-density filtering for outlier rejection into a
more unified approach to filtering and reconstruction in high-dimensional spaces. As we
mentioned in Chapter 5, the expression of Monte Carlo variance can broadly be divided
into two phenomena: the localized, peaked noise due to significantly outlying samples,
and the globally-distributed high-frequency noise due to pixel-to-pixel variation. While
our method primarily addresses the former, it is hopeful that future extensions could make
strides towards addressing the latter. One promising class of methods that bears a strong
similarity to our work is that of the mean-shift filter [20], originally presented for image
filtering. In the mean-shift framework, pixels are treated as high-dimensional points in
a feature-space, just as in our method. Each point is adjusted towards the nearest mode
of density, by employing an iterative gradient ascent. The authors show how this method
can perform significantly better than bilateral filtering in many cases; indeed, it can be
considered a generalization of the one-pass bilateral filter to an arbitrary number of update
passes. As an image-space filter, however, the mean-shift encounters the same problems
that we discussed as being inherent to such filters in Chapter 5; the most prominent
limitation being that of information loss due to reconstruction, and the resulting inability
to support multi-modal distributions. We have made some preliminary explorations of
using mean-shift filters directly on rendering samples; these results indicate that the
mean-shift procedure may allow for better reduction of noise compared to other methods,
however the major limitation is the significant time and space complexity involved with
storing and processing hundreds of millions of samples. We next provide a discussion of
how this may be addressed.

Efficient Density Representations. The current outlier-rejection method represents
density by storing all previous samples in a spatial-partitioning tree, and locating the
k-nearest neighbors for each evaluation of density. While the time complexity is made
manageable (logarithmic relative to stored samples) by the use of spatial partitioning, the
space complexity seems unnecessarily high, and likely will be a limiting factor for use in
rendering animations, which could require on the order of billions of samples. The use
of very-high dimensional sample vectors further contributes to the space complexity. It
is likely that more sophisticated methods of representation could more efficiently model
the joint density. For example, the use of expectation-maximization (EM) for fitting a
Gaussian Mixture Model (GMM) could potentially be applicable here. In such a model,
the random variables are assumed to be generated according to a linear combination
of multivariate Gaussian distributions; as the number of samples increases, we expect
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that the empirical distribution will progressively approach the Gaussian. Given a GMM
formulation of density, we are required only to store the mean and variance of each
distribution; the EM algorithm is a particular iterative method for finding a particular
choice of GMM for the input data. For further reference on this topic, and other topics in
machine learning, we refer the reader to the textbook by Bishop [12].

6.2 Future Work for Creating Effects

Area lighting and indirect illumination. Our work on stylization of shadows is a first
step towards more general control over artistic rendering parameters. Importantly, we
may see the binary visibility buffers as a subset of the range of possible inputs to such a
stylization algorithm. The most natural generalization, as we have mentioned previously,
would be to support a continuous visibility buffer such as results from an area light
source. In this case, rather than assuming a binary value, each pixel assumes a value
between zero and one, reflecting the partial visibility of that pixel to the light. The
first complication this causes to the existing algorithm is the requirement of an alternate
distance metric; averaged distance to the shadow contour is no longer well-defined in such
a context (consider the case where the entire shadow is penumbra). Potentially, this could
require an integration over the entire visibility buffer, which would lead to increased time
complexity. Even more general, however, would be the expansion of stylization to global
illumination. A good example of this is recent work by Obert et al. [66], which allows
the user to interactively “paint” indirect illumination effects.

Additional Control Parameters. A near-unlimited source of future work is the inves-
tigation and definition of additional stylistic control parameters to complement the four
parameters of inflation, softness, brightness and abstraction previously given. We give
the following example. In the description of the abstraction parameter, we defined the
“most abstract” shadow as being equivalent to that of an ellipse. It follows, therefore,
that the abstraction parameter can be viewed as an factor controlling the interpolation
between the endpoints of the shadow of the original object and the shadow of a smoothed
spheroid at the same location. To generalize this notion, we could add additional control
parameters that configure this target shape to be one other than a spheroid: an angularity

parameter could blend between the spheroid and a cube, allowing for sharper, yet still
abstract shadows (for example, the outer penumbra in the top-left of Figure 3.2). For
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greater user-guided control, a target shadow could be explicitly given, either in total, or
by constraining user-specified regions of the shadow as projected onto the surface.

Figure 6.1: A Shortcoming of
Lp-averaged Distance. Note the
disconnected shadow region in the
lower-left quadrant.

Alternate Distance Metrics. The Euclidean-like
metrics of Lp-averaged distance are consider only
straight-line distances through space, and as a result
some behavior – particularly control over topology
– can become unintuitive and difficult to control.
In the Examples in Figure 3.5 with the Octopus
model, a negative inflation value tends to “pinch
off” the long, thin shadows cast by the tentacles.
An example of this can be seen in Figure 6.1,
in the lower-left quadrant, in which a portion of
shadow forms a separate connected component to
the main shadow. One proposal, therefore, would
be to measure the distance of a shadowed point by
a averaged graph distance. The shadowed pixels are the vertices of the graph, and two
adjacent shadowed pixels are said to share an edge. By running an all-pairs shortest path
algorithm, we determine the average distance of each vertex to all others. This could
possibly lead to more intuitive behavior in this and other cases.

Additional and More Accurate Rendering Terms. We have discussed and shown
examples of how our system can benefit from using additional rendering terms, such
as approximate distance to shadow-caster/occluders, in recreating artistic effects. An
important direction of future work is the investigation of which additional terms provide a
benefit, and how those terms would be best used. For example, the use of surface normals
could allow alternately both greater recreation of realism, for shadowing that naturally
varies according to the surface’s orientation towards the light, as well as abstraction,
such as is used for toon-shading, which quantizes the surface normal for compositional
purposes. Perhaps more important, however, would be the use of more accurate depth and
visibility information as achieved through ray-tracing, as opposed to the rasterization-
based shadows currently employed. This could allow more natural behavior as shadows
are modified and animated. For example, in Figure 6.2, the region of the image near the
red sphere appears to be distant from the shadow, as seen in the left image. However,
the right image indicates otherwise; our algorithm would incorrectly compute an inflated
shadow given a visibility buffer from the left image. This limitation is due to the limited
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Figure 6.2: Limitations of Rasterization-based Stylized Shadows. The figures show
an example of a scene in which shadow stylization could be better assisted using ray
tracing, or alternative sources of light transport information. In the left image, the red
sphere is apparently distant to any shadow boundaries. In the right image, however, we
see that the sphere is indeed quite near, and that a small inflation would render the area
beneath the sphere in shadow. This underscores that our current approach is limited by
the information currently available to it.

information inherent in a rasterization system, where rendering terms are computed only
for those pixels visible to the eye. Ray tracing could potentially be used in the situation
to compute more accurate visibility, independent of the current camera position.

6.3 Final Thoughts

In this thesis, we have presented both a general framework and a specific selection
of methods that we hope will prove useful to the challenge of rendering in computer
graphics. The key feature behind these is the recognition of rendering as a process funda-
mentally similar to existing filtering processes, and that a transfer of existing expertise to
this novel problem will allow for better solutions to novel problems. It is hoped that these
examples of general principles point the way towards the future use of the rendering filter
principle in controlling the efficiency and stylization of rendering.
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