
EFFICIENT AND COMPREHENSIBLE VISUALIZATION OF

COMPLEX 3-D SCENES

MICHAEL S. BURNS

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

ADVISOR: ADAM FINKELSTEIN

JANUARY 2011



c© Copyright by Michael S. Burns, 2011. All rights reserved.



Abstract

The advancement of computer technology has brought about greater ability to model and render

complex 3-D scenes. Highly complex structures in these scenes give rise to large amounts of

information that can be hidden using conventional rendering and visibility techniques because

of occlusion. In order to expose structural information in a complex model, non-photorealistic

visibility techniques must be used.

This thesis presents non-deformative techniques for creating structurally rich visualizations

of complex 3-D scenes. Techniques for reducing occlusion globally are combined with an im-

portance specification system to expose and emphasize objects and regions of interest. These

occlusion reduction methods are also applied locally according to an occlusion function defined

over a cutaway structure. Localized occlusion reduction can be combined with augmentations

to the polygonal and volumetric rendering pipeline to create cutaway illustrations that expose

and emphasize objects and regions of interest. The presented techniques are made with realtime

rendering in mind, and are shown to operate at interactive framerates for dynamic models and

scenes. Sample result images are presented for medical and architectural visualization scenarios.

The main contributions of this thesis are a novel method for creating sparse line representations

of isosurfaces in volumes, a contextual cutaway structure and associated occlusion function, an

efficient and flexible image-based cutaway surface computation algorithm, and several cutaway

surface function modifications to support perspective projection correction, edge compression,

locally defined angles, and directional constraints.
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Chapter 1

Introduction

Over the past three decades, the field of computer graphics has evolved considerably. Limitations

in computing resources forced early researchers to use their algorithms on simple geometric

models. At the time, these crude images could only show the budding promise of computer-based

renderings to be as informational and evocative as photography and human artistry. Today, this

promise is being realized, as computer graphics are used to entertain, by creating special effects

in movies and full-length animated features, and to inform, through medical and architectural

illustrations. The widespread use of computer graphics has come about by a maturity in computer

graphics rendering techniques and an advancement of computer processing power.

Along with an increase in computing power comes the ability and desire to more accurately

model and represent the world around us, by representing objects and materials with greater

fidelity and including more objects together in a scene. The developments of high fidelity 3-D

scanners, powerful and accessible 3-D modeling tools, and high resolution medical imaging

devices have led to increased surface complexity and volumetric resolution, as well as increased

structural complexity. The benefits of increased surface complexity and volumetric resolution

can readily be realized as computing power increases and more efficient rendering algorithms are

used. On the other hand, the benefits of increased structural complexity are not fully realizable

using basic rendering techniques, held back by the problem of occlusion. In order to expose
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the structural information present in structurally complex scenes, special visualization techniques

must be used.

These specialized visualization techniques often eschew the goal of photorealism in favor

of a goal of information communication. The specific methods used are widely varied but the

desired result is often different from a photorealistic rendering of a scene. Instead, the joint use

of photorealistic and non-photorealistic rendering techniques can result in images that are more

effective at conveying structural information than a photograph of a real scene could convey.

Even so, the real value of using computer-driven visualization techniques stems from the ability

to produce animations, especially those that can be driven by a user.

The commoditization of computer hardware has brought interactive graphical systems to every

person who owns a computer or video game system. Interactivity, as the result of increased com-

puting power and rendering efficiency, has exposed new potential in computer graphics, allowing

users to instantly create images that are customized to specific input data and viewing parameters.

At present, we have interactive systems to explore 3-D models of buildings, to simulate combat

scenarios from a first-person perspective, and to clinically evaluate patient medical data from CT,

MRI and ultrasound scanners, just to name a few. Many of these interactive systems currently

use photorealistic rendering techniques, or approximations thereof, and could benefit from using

specialized visualization techniques to facilitate exploration of structurally complex scenes.

Artists have long created illustrations to depict structurally complex scenes and expose inter-

nal structure, including early anatomical drawings by Leonardo DaVinci [Choulant, 1920] and

modern day technical and scientific illustrations [Hodges, 2003; Giesecke et al., 2008], such as

that shown in Figure 1.1. This thesis presents a suite of computer-aided techniques for generating

similarly expressive, informational visualizations of structurally complex scenes. While the tech-

niques are not aimed at exactly recreating one particular artistic style, they do take inspiration from

these artists’ efforts to express complex structure in architecture, industrial design, and medicine.

Furthermore, the techniques described are supported by efficient computational techniques to

facilitate interactive exploration and rendering of reasonably sized input models.
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Figure 1.1: Artist-drawn cutaway illustration of a cruise ship. Structures on the ship’s interior are
exposed by removing occluding material from the ship’s hull. The hull is only removed in areas
near the exposed structures, preserving view of the rest of the hull when possible. The illustration
was created in Adobe Illustrator and Photoshop, with a reported illustration time of 960 hours.

Images used with permission, Copyright Kevin Hulsey Illustration, Inc.

The techniques in this thesis leverage an array of existing techniques developed by previous

research in the field of smart visibility [Viola and Gröller, 2005] and focus+context rendering

[Hauser, 2005]. While some such techniques create multiple images to examine a single dataset

[König et al., 1999; Rezk-Salama and Kolb, 2006], these techniques focus on creating a single

expressive image. Furthermore, while substantial work has been done in approaches that deform

a scene, such as creating peel-away [McGuffin et al., 2003; Correa et al., 2006] or exploded

[Bruckner and Gröller, 2006; Li et al., 2008] images, the techniques presented in this thesis focus

on occlusion reduction without deformation. By avoiding deformation, features are rendered in
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an image in their original geometric configuration, preserving object size, relative distances, and

other positional relationships.

The remainder of this introduction further explores the problem of complexity and occlusion

(Section 1.1), examines previous work on complex scene visualization (Section 1.2), outlines

goals for visualizations (Section 1.3), and introduces new techniques to address these goals (Sec-

tion 1.4). The remainder of this thesis explores methods of reducing occlusion globally (Chap-

ter 2), incorporating importance specification of regions for selective exposure (Chapter 3), and

providing exposure locally (Chapter 4). It also describes realtime rendering techniques for the

aforementioned methods (Chapter 5) and considerations for interactive applications (Chapter 6).

Finally we examine some application results in medical imagery and architectural visualization

(Chapter 7).

1.1 Structural scene complexity and occlusion

Structural information about a scene concerns the positions of objects relative to others and

the structures formed by objects. This information can include positional descriptions such as,

”Object A is next to Object B,” and, ”Object B is below Object C,” or nesting descriptions such as

”Object D is enclosed by Object E.” This type of information is often useful for gaining a semantic

understanding of the scene, allowing one to infer the purpose or intended function of objects, as

well as their role in any action in the scene.

As the number of objects increases, so does the potential structural information, as each object

can be related to every other. In order to communicate a positional or nesting relationship between

two objects in a rendering, these objects must be at least partially visible. However, a single 2-D

rendering of a 3-D scene can typically only display a fraction of these structural relationships,

because the 2-D projection of the 3-D scene introduces visual occlusion. In these situations, the

only way to control which structural relationships are visible is to prevent occlusion by positioning

the camera.
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Unfortunately, having more objects in a scene also introduces more potential occluders. Fol-

lowing this trend, finding a suitable camera position from which to observe positional relationships

can become increasingly difficult. Furthermore, for a group of opaque objects, there may be

no suitable camera position at all from which to observe nesting relationships. Thus, occlusion

becomes more of a problem as structural scene complexity increases. This thesis addresses this

problem by introducing techniques to reduce occlusion, enabling the perception of these positional

and nesting relationships in structurally complex scenes.

1.2 Previous work

The need to visualize complex 3-D scenes has fueled visualization research in smart visibility [Vi-

ola and Gröller, 2005] and focus+context visualization [Hauser, 2005]. Existing techniques range

from user-driven tools that assist artists in creating expressive illustrations, to nearly automatic

tools that create images on-demand.

Deformative techniques expose occluded features by changing the shape of occluding mate-

rials or geometry. Tools such as VolumeShop [Bruckner and Gröller, 2005] allow user-specified

manipulation and deformation of 3-D volumes. More automatic tools can generate exploded

diagrams of volumetric datasets [Bruckner and Gröller, 2006] and polygonal scenes [Li et al.,

2008]. Such exploded diagrams are efficient are showing many components of a scene, but may

hide or omit information about structural relationships in doing so.

Other deformative techniques can create peel-away illustrations [Correa et al., 2006; McGuffin

et al., 2003], showing the occluding layers around a featured area. These techniques are best for

visualizing nested structures, easily conveying such structural relationships as layers are peeled

away. They are most appropriate for deforming feasibly pliable occluding material, such as body

tissue, and less appropriate for visualizing rigid structures such as mechanical components.

Non-deformative techniques expose occluded features by omitting portions of materials or

geometry in renderings. A depth buffer can control image processing that replaces occluding

surfaces with semi-transparent representations [Feiner and Seligmann, 1992]. A similar technique
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has been used with medical imagery to expose vessels embedded in the body [Straka et al., 2004].

Other work driven by surgical planning uses smart visibility to create ghosted views, suppressing

occluding material locally and globally [Krüger et al., 2005]. User-specification of a focus area

and material importance can be used to guide the visualization, as shown in the ghosted images

generated by the ClearView system [Krüger et al., 2006]. Other systems incorporate automatic

ghosting and fading of outer layers to expose nested structures, such as those in medical imagery

[Bruckner et al., 2006].

Rather than smoothly fading out material and creating ghost-like images, some systems sharply

cut away occluding material in the view direction, resembling hand-drawn cutaway illustrations

[Giesecke et al., 2008; Hodges, 2003]. One simple method considers the intersection of two half

spaces or an inflated convex hull of feature objects to define a cutaway volume [Diepstraten et al.,

2003]. More advanced cutaway shapes can be created by considering user-drawn cutting outlines

along occluding surfaces [Coffin and Hollerer, 2006; Liang et al., 2005]. An effective cutaway

shape can be generated automatically by extruding the depth footprint of a feature object in the

direction of the camera [Viola et al., 2005]. Cutaway illustrations that more closely resemble

traditional hand-drawn illustrations can be created by carefully processing and clipping occluding

scene geometry according to a set of artist-inspired rules [Li et al., 2007].

The techniques described in this thesis create images that most closely resemble those of the

non-deformative cutaway techniques, with specific visual and algorithmic aspects designed to

meet several visualization goals.

1.3 Goals for visualization

In order to create efficient and comprehensible visualizations of structurally complex 3-D scenes,

the following three goals should be considered. The first is to create specialized renderings that

expose scene content and structural information, which can be used to infer object function. The

second is to automatically create these renderings without significant user skill, work, or prepro-

cessing, while still allowing user control over simple parameters. The final goal is to generate
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images at interactive frame rates, allowing for visualization of dynamic scenes in interactive

applications.

Informational visualization The first goal is to create images that selectively communicate

more information about scene content and structure than images generated using conventional

rendering techniques. One or more objects of interest may be the focus of the visualization, in

which case it is important they be visible in a rendered image. Additionally, positional and nesting

relationships among these objects and other objects in the scene provide context that can be used

to show global position as well as functional information.

In order to express positional and nesting relationships between objects, images must be able

to show distances between objects. Thus, objects and the spaces between them should not be

entirely occluded by other objects. However, the problem of occlusion should be addressed while

retaining some notion of depth ordering, which is important for perceiving 3-D position.

Not all structural relationships can be made visible in a given image. In order to control

which relationships are expressed, objects can be assigned an importance value. Objects of high

importance become the focus of the visualization, and structural relationships involving them are

more likely to be exposed. On the other hand, objects of low importance serve mainly to provide

context and are likely to be de-emphasized and possibly suppressed from rendering.

Simple interface The second goal arises from the intent that these techniques be accessible

to users exploring 3-D scenes or datasets. In order to foster usefulness and accessibility, the

techniques do not depend on extensive pre-processing of the scene, nor require that the user

have high artistic or technical ability. Instead the techniques depend on a small number of easily

controllable and simple parameters that can be used to drive the visualization. Such inputs can

include the selection of objects to be the focus of the visualization, as well as sliders to control the

extent of object emphasis and exposure. By avoiding pre-processing of the scene or viewpoint,

these techniques also afford arbitrary camera movement and operation on animated or dynamic

scenes, for maximum flexibility.
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Interactive performance The third goal comes about because these techniques are meant to be

used in an interactive setting. Visualizations are often more effective when a user is given realtime

feedback over parameter changes, so that he may adjust them quickly and efficiently according

to his desires. Furthermore, visualization systems that respond to feedback quickly correspond to

our natural model of physically investigating real objects. As such, the visualization techniques

should have implementations with efficient computation methods that can perform at interactive

frame rates.

1.4 Contributions and overview of visualization strategies

Each of the existing visualization solutions mentioned in Section 1.2 addresses some aspects of

the aforementioned goals. They are all capable of creating rich visualizations by addressing the

problem of occlusion and exposing objects of interest, though do so with varying degrees of

quality and visual appeal. The nearly automatic techniques are naturally easier to use than more

manual techniques that require substantial or skilled user input. Some techniques use efficient

computation and rendering techniques to allow interactive visualizations, but the more compu-

tationally involved techniques with high visual appeal can be prohibitively slow for dynamic

animated scenes with changing viewpoint. This thesis presents a suite of visualization techniques

which together intend to address all three of these goals by creating visually appealing images that

expose objects of interest with minimal user-effort at interactive framerates for dynamic polygonal

or volumetric scenes.

The techniques described herein can be broadly broken down into three parts: reducing occlu-

sion, incorporating importance, and localizing exposure.

Occlusion can be reduced in an image by rendering objects with sparse rendering methods.

When applied globally, these methods can help visualize nesting relationships and positional

relationships for all objects in a scene, as described in Chapter 2. Included in this chapter is a

novel method for creating sparse line drawings from volumetric data.
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Objects can be emphasized or minimized through selective application of occlusion reduction

methods by considering a notion of object importance, as described in Chapter 3. Emphasis can

be made through choice of color, shading, or rendering style, while objects can be exposed using

sparse rendering techniques on occluding objects.

Sparse rendering methods can be applied locally, and in a view dependent fashion, to ex-

pose objects while maintaining normal rendering methods in peripheral regions for context, as

described in Chapter 4. Included in this chapter are novel definitions of a contextual cutaway

structure and an associated occlusion function.

Such localized occlusion reduction methods can be used with polygonal and volumetric ren-

dering systems at interactive framerates, as described in Chapter 5. Included in this chapter are

a novel image-based cutaway surface computation algorithm, new modifications to the polygonal

rendering pipeline for rendering cutaway images, and cutaway surface function modifications to

support perspective projection correction and temporal coherence.

These techniques can be incorporated into interactive scene exploration applications, as de-

scribed in Chapter 6. Included in this chapter are additional cutaway surface function modifica-

tions to support locally defined angles and directional constraints.

Finally, the application of these techniques to visualization of medical imaging data and archi-

tectural models is explored in Chapter 7.
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Chapter 2

Viewing Nested Structures: Globally

Reducing Occlusion

Nested structures are commonly found in 3-D scenes but are often difficult to visualize due to

the dominant effect of occlusion, with outer shells occluding interior objects. In architectural

scenes, the walls that make up the outer structure can entirely occlude the structure of rooms on

the interior, while interior walls and floors that form this structure occlude the contents of rooms

they define. Omission of these walls and floors from rendering is not an effective option as it

leaves interior objects (e.g. furniture) floating in space, seemingly unstructured and cluttered.

A similar problem occurs in anatomical scenes where outer skin occludes underlying muscles,

which in turn occlude inner vessels and bones. While any one of these tissues can be the focus

of the visualization, view of the other components helps establish context and provides a more

complete image of the body.

Conveying nesting relationships can be crucial to conveying scene structure, but it can be dif-

ficult to depict even the presence of interior objects using basic photorealistic rendering methods.

Animations that progressively remove outer layers can be used to show the contents of nested

containers, but equally expressive effects can be achieved with single images by globally reduc-

ing occlusion. The following sections show how occlusion can be progressively reduced using
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simple translucency (Section 2.1), edge highlights (Section 2.2), and line drawings (Section 2.3),

according to a desired occlusion reduction factor. Section 2.4 details a novel method for creating

sparse line drawings from volumetric data.

2.1 Translucency

Rendering occluding surfaces with translucency is a straightforward way to mitigate occlusion

effects by exposing underlying objects through a translucent occluder, as shown in Figure 2.1.

When rendering with translucency, a surface is assigned an opacity value between 0 and 1. This

opacity value is used to blend the surface material color with the existing color in the destination

image. As the opacity value decreases, the occluding surface appears more faint, while objects

behind the surface are seen more clearly.

Such variable opacity enables variable occlusion reduction, as specified by an occlusion re-

duction factor, R. This continuously-valued variable is defined such that R = 1 corresponds to full

occlusion reduction and R = 0 corresponds to no occlusion reduction. In the case of occlusion

reduction by translucency, an object will be completely invisible with R= 1 and completely visible

(rendered without translucency) with R = 0. As R increases from zero, objects become more

translucent and occlude less of the scene behind them.

Implementation Translucent rendering is straightforward to implement by decreasing the opac-

ity of an object’s material, αm, by the desired reduction factor. Applied uniformly to an object,

the opacity becomes

α = αm−αm ∗R (2.1)

When rendering surfaces with translucency, depth testing cannot be used, since translucent

surfaces in the scene must not prevent underlying surfaces from being rendered. Furthermore,

surfaces must be rendered consistently from front to back or back to front, depending on the

blending mode used. This layered rendering is simple to do for volumetric rendering by doing
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(a) Opaque rendering (b) Translucent rendering

Figure 2.1: Occlusion reduction using transluncency. (a) With opaque rendering, only the exterior
surface is visible. (b) With translucent rendering, internal structures such as the ear canals, sinuses,
esophagus, and lungs are visible through the outer skin surface.
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either screen-aligned ray-casting or slice-based rendering, changing the slicing direction based

on the camera position. It is slightly more difficult for polygonal surfaces, because individual

triangles must be sorted by their projected depth before rendering.

Visualization effect The effect of translucent rendering is shown in Figure 2.1. When used

with a small number of occluding surfaces, translucent rendering allows effective visualization of

occluded objects. However, with multiple layers of translucent surfaces, it can become increas-

ingly difficult to differentiate underlying surfaces. This well known problem [Interrante et al.,

1996; Hauser et al., 2001] occurs because translucent surfaces reduce the effective expressive

colorspace of underlying surfaces by tinting colors from underlying surfaces with the color from

the overlaid surface. As R is increased, objects behind the surface are tinted less, retaining more of

their original color, while the occluding surface appears more faint. It is important then to choose

a value of R that maintains a balance between how strong a translucent surface appears and how

much it limits the colorspace of underlying surfaces.

2.2 Edge highlights

Edge highlights attempt to improve upon simple uniform translucency by automatically altering

a surface opacity for a given point based on the orientation of the surface relative to the camera,

as shown in Figure 2.2. The idea is that areas of a surface nearly parallel to the camera do little

to show the shape of the surface and cause unnecessary tinting of underlying surfaces. Areas of a

surface oriented some angle away from the camera are what define bumps, ridges, and silhouettes

that help depict an object’s shape. Edge highlights work by rendering portions of a surface nearly

perpendicular to the camera nearly opaque, with areas nearly parallel to the camera rendered very

translucent.

Implementation Edge highlights can be rendered with a strength R by computing the opacity α

for a surface at a point p as follows, where n̂(p) is the surface normal at p, v̂(p) is the normalized
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Figure 2.2: Occlusion reduction using edge highlights. The outer skin (yellow) is rendered with
edge highlights. Skin surface features are distinguishable in the periphery of the image while
broad areas of skin parallel to the camera in the center of the image are suppressed, allowing clear
view of the inner bone and vasculature.

view vector from p, and k is a fixed exponential parameter.

α(p) = αm−αm ∗R
(

1− (1− n̂(p) · v̂(p))k
)

(2.2)

The value of k controls how quickly the opacity decays away from the edges of the surface,

and how narrow the highlights appear. A reasonable value of k is between 1 and 4.

The rendering of edge highlights can be carried out in a shader for either volumetric or

polygonal rendering. Since edge highlights are basically a non-uniform application of simple

translucency, similar rendering requirements apply—depth testing cannot be performed and prim-

itives must be rendered in a consistent front to back or back to front order.

14



Visual effect The effect of edge highlights is shown in Figure 2.2. In the generic case of a

sphere rendered with edge highlights, for high values of R, the surface will be translucent near

the center with opacity concentrated at the edges. For low values of R, the entire surface will

be nearly opaque, just as with the simple translucency method (Section 2.1). In fact, a surface

rendered with edge highlights will always have the same minimum opacity as generated by the

basic translucency method for a given value of R. Thus edge highlights can be thought of as an

extension of the basic translucency method with more opaque surface definition near the edges.

Edge highlights work best for curved surfaces where the highlights are concentrated near

contours and silhouettes. Surfaces with large flat areas will become uniformly opaque in flat

areas as they become perpendicular to the image plane. Fortunately these same areas become

uniformly translucent as they become parallel to the image plane, reducing their occlusion power.

Edge highlights also work best for surfaces with relatively low surface detail, which generate

fewer opaque edge highlights and allow more translucency, preventing occlusion of underlying

objects.

2.3 Line extraction and rendering

Line drawings are typically used to present sparse, stylized renderings of surfaces but can also be

used to represent surfaces in situations when occlusion should be minimized, such as Figure 2.3. A

computer-generated line drawing representation typically aims to show important surface features

that help define a surface. These lines may be dynamically computed from a surface, such as

contours, ridges [Interrante et al., 1995], suggestive contours [DeCarlo et al., 2003], and apparent

ridges [Judd et al., 2007], or may be manually defined as part of the modeling process. By

rendering lines derived from a surface without rendering the surface itself, a viewer can see a

large amount of 3-D surface structure with a relatively small number of rendered pixels.

Implementation For viewing nested surfaces, lines should be rendered without their associated

surfaces so that lines from underlying surfaces can also be seen. The line rendering can be

15



Figure 2.3: Occlusion reduction using line rendering. The bones (black) are visible through the
outer skin (tan) because skin lines have a low occlusion footprint. However, too many lines
overlapping can cause visual clutter and occlusion, as seen in the ankle areas.

accomplished using standard techniques, once lines are extracted from the polygonal surfaces

or volumetric data sets.

Extracting lines from surfaces is a widely studied field, and as a result many different line types

have been defined. For a given mathematical definition of lines, there are several ways to extract

them from surfaces. Line extraction often involves calculating some function over the surface and

defining lines near zero crossings of the function.

For polygonal surfaces, one may evaluate the function per face and extract edges of the mesh

between neighboring faces that evaluate to values of alternate sign [Appel, 1967]. This algorithm

typically works well for polygonal surfaces with large faces and sharp edges. For well-tesselated

smooth surfaces, one may evaluate the functions at each vertex and interpolate along polygon

edges to extract new lines that estimate the zero-set [Hertzmann and Zorin, 2000].
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Figure 2.4: Stylized line rendering of occluded surfaces. Lines from interior back-facing surfaces
are rendered in grey, aiding distinction from lines from exterior surfaces (black) and helping
reduce overall visual clutter.

For volumetric data sets, one can render lines in a variety of ways [Bremer and Hughes, 1998;

Nagy and Klein, 2004; Schein and Elber, 2004], including work that extracts smooth lines along

zero crossings by adapting smooth polygon extraction methods [DeCarlo et al., 2003] to volumes.

Section 2.4 offers a summary of this technique, with a more thorough presentation appearing in

Burns et al., 2005.

Visual effect The effect of drawing lines without any surfaces is shown in figure Figure 2.3. The

lines themselves are often rendered in solid, opaque black when used in NPR settings but can be

rendered in a variety of styles or colors [Kalnins et al., 2003]. Such variety can help aid in visual

distinction between surfaces from multiple objects, or provide cues about line-generating surface

properties. For example, a lightened or dotted style can represent lines coming from rear-facing

surfaces, where lines would be occluded by at least one surface (Figure 2.4). This differentiation

can help aid distinction between the structures of front-facing and back-facing surfaces of the

same object. Lines can also be styled based on their depth or the number of surfaces by which

they would be normally occluded [Fischer et al., 2005]. Rendering lines with halos [Appel et al.,
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1979], where lines crossing under other lines are broken at their junction, can also be used to help

communicate depth ordering.

A rendered surface can be augmented with lines when occlusion reduction is not necessary,

and completely replaced by lines when occlusion reduction is necessary. However, when too many

lines are drawn over each other, they can occlude themselves, creating visual clutter and hindering

comprehensibility. Fortunately, given variable occlusion reduction, lines themselves can be faded

as the need for occlusion reduction increases. Thus with R = 0 a surface should be rendered with

lines at full opacity. For R > 0, the surface should be omitted and lines should be rendered with

opacity α = 1−R. Thus, when R = 1 nothing is rendered, allowing maximal occlusion reduction.

2.4 Line drawings from volumes

This section describes a system that extracts and renders linear features that lie on isosurfaces

within a volume. The benefits of rendering or emphasizing linear features such as ridges and

valleys or silhouettes in traditional volume renderings have been demonstrated by a number

of researchers [Interrante et al., 1995; Ebert and Rheingans, 2000; Lum and Ma, 2002; Nagy

et al., 2002; Lu et al., 2003; Svakhine and Ebert, 2003]. Rendering lines alone creates a non-

photorealistic line drawing that can communicate surface shape. In general, non-photorealistic

techniques have been used to create expressive images from volume data [Interrante and Grosch,

1998; Treavett and Chen, 2000; Csébfalvi et al., 2001; Dong et al., 2003; Kindlmann et al.,

2003]. Previous methods for creating line drawings [Bremer and Hughes, 1998; Nagy and Klein,

2004; Schein and Elber, 2004] differ from the following method by supporting fewer line types,

requiring preprocessing, or operating in image-space only.

The system uses a randomized, temporally coherent seed-and-traverse algorithm inspired by

one originally developed for silhouette extraction from meshes [Markosian et al., 1997]. It exploits

not only the sparseness of surfaces within the volume, but also the sparseness of lines on a

surface, reducing the amount of data that must be examined while rendering a frame to a one-

dimensional subspace of the volume. This reduction allows for efficient computation, realizing
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(a) Visible contours (b) Hidden contours (c) Suggestive contours (d) Cutting planes

Figure 2.5: Linear geometric features extracted from volumes. Contours can be classified as (a)
visible or (b) hidden, depending on whether or not they are occluded. (c) Suggestive contours
and (d) intersections with cutting planes show additional surface detail and provide additional
opportunities for styling.

even greater efficiency than accelerated isosurface extraction algorithms, which must traverse at

least a significant portion of voxels along a surface [Livnat et al., 1996; Cignoni et al., 1997;

Parker et al., 1999; van Kreveld et al., 2004].

Several types of lines are supported (Figure 2.5), including occluding contours (i.e., interior

and exterior silhouettes), suggestive contours [DeCarlo et al., 2003], and intersections with cutting

planes. Selecting which lines and features to draw allows a flexible trade-off between rendering

quality and interactivity. The system achieves interactive rates on commodity hardware for data

sets of roughly 5123 samples, while placing few demands on the graphics card (which could be

utilized to provide further stylization or to simultaneously display an extracted mesh).

2.4.1 Fast line extraction

This section describes how to extract sparse linear features from volumetric datasets. Although

the discussion focuses on occluding contours (interior and exterior silhouettes), the techniques are

general. Their applications to different line types are described in Section 2.4.2.1.

The main algorithmic challenge is achieving extraction of lines in time proportional to the

size of the extracted features (i.e., output sensitivity). While it is possible to design pathological

datasets of size n×n×n that produce isosurfaces of size O(n3) with silhouettes also of size O(n3)
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Figure 2.6: Experimental verification of O(n) contour size for several n3 versions of the aneurysm
dataset (Figure 2.10a). The total number of voxels grows cubically with dimension n by definition.
Shallower slopes on the remaining lines show that the number of voxels on an isosurface grows
quadratically with n and the number of voxels on contours grows linearly with n.

(for example a Peano curve in 3-D), these shapes are not characteristic of typical datasets. In

practice, isosurfaces describing a particular bandlimited shape represented by a volume of size

n3 will have size O(n2). Furthermore, the contours of those isosurfaces will have size O(n).

Markosian et al. [1997] effectively argue for the latter statement by showing that silhouettes of

a shape have size proportional to the square root of the number of faces representing that shape.

Their argument might also be adapted to address the first claim (about the size of the isosurface),

although it would be complicated by the nature of the surface extracted by the marching cubes

algorithm. Nonetheless, these claims are borne out by experiments, shown in Figure 2.6.

2.4.1.1 Contours in volumes

The input data φ(i, j,k) is a 3-D matrix of real-numbered data values, positioned at the nodes of

a regularly spaced lattice. The following considers the task of rendering contours on isosurfaces

of φ.

An isosurface F can be defined as the zero-set of the function

f (i, j,k) = φ(i, j,k)− τ, (2.3)
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where τ is a threshold within the range of the data values. The equation f = 0 implicitly defines a

2-D surface in 3-D space.

Contours on a continuous surface are those locations where the surface normal is perpendicular

to the view. That is, they are locations at which n̂ · v̂ = 0, where v̂ is the surface normal and v̂ is the

normalized view vector (i.e., a unit vector from a point on the surface to the camera). For volume

rendering, one could use this definition directly by first extracting an isosurface at some threshold

τ, computing the surface normal as n̂ =−∇φ, and extracting the contour. Alternatively, one could

consider the set of contours on all possible isosurfaces of φ, which is itself a 2-D surface defined

as the zero set C of the function

c(i, j,k) =−∇φ(i, j,k) · v̂(i, j,k). (2.4)

The task of finding contours at a specific threshold τ then reduces to finding the intersection of the

2-D surfaces F and C. Generically, this intersection takes the form of a set of 1-D loops in 3-D

space.

In order to extract a contour, voxels containing zeros of both the f and c implicit functions are

located. Once a relevant voxel is found, its contour segments are extracted using a variant of the

Marching Lines algorithm [Thirion and Gourdon, 1996]. This algorithm was originally presented

as an adaptation of the well-known Marching Cubes technique [Lorensen and Cline, 1987] to

extracting crest lines on surfaces, but can be generalized to extract the intersection of isosurfaces

of any two implicit functions.

Briefly, the algorithm finds intersections of the two implicit functions on the faces of the cube,

using linear interpolation based on the values at the eight corners (Figures 2.7a and 2.7b). It then

finds any intersections between these two sets of lines on each face. The result is a set of points

on the faces of the cube, which when connected yield segments of the contour (Figures 2.7c and

2.7d). Note that this method is completely general, in that it can extract the curves formed by the

intersection of any two implicit functions on the volume. This property allows extraction of other

families of lines in addition to contours, as described in Section 2.4.2.1.

21



(a) (b)

(c) (d)

Figure 2.7: Extracting silhouettes as the intersection of two surfaces in voxels. (a) Isosurface F
in red traverses three neighboring voxels. (b) Contour surface C is blue. (c) F and C intersect in a
curve, which can be traced through the volume (d).

2.4.1.2 Walking contours

The simplest method of finding contours would be to examine all cells in a volume, looking for

cubes containing zeros of the implicit functions and extracting line segments in each. However,

this approach is impractical for interactive visualization of large datasets due to its lack of output

sensitivity. Instead, an accelerated technique that traces lines through the volume can be used to

avoid examination of the majority of cells.

Since the intersection of two non-planar, unbounded 2-D surfaces is a closed 1-D loop in the

general case, it is reasonable to extract the loop by following it through the volume. Given a
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starting seed cell, a 1-D segment of the contour is extracted with Marching Lines. Extraction

continues in a cell adjacent to a face containing one of the intersection points (Figure 2.7). This

process is repeated around the loop until it returns to the starting seed cell. Walking through

voxels that contain more than one line segment is performed in an arbitrary but consistent manner,

to ensure that complete loops are formed.

Given this algorithm, and supposing knowledge of at least one valid seed cell for every loop

in the volume, it is possible to extract all contours in O(m) time, where m is the total length of all

loops. Thus, this algorithm is output sensitive, which is convenient since output tends to be sparse

for non-pathological cases. In the typical case, m is O(n) in an n3 volume, as argued above.

2.4.1.3 Exploiting spatio-temporal coherency

The next problem is that of finding seed cells from which to start the contour loop extraction.

While contours are view dependent and move along the surface as the viewpoint changes, they

usually intersect contours of that surface from nearby viewpoints. To exploit this spatio-temporal

coherency, the search for contour seed points for a new frame begins by first examining cells

that contained contours in the previously drawn frame, a method previously used for finding

contours [Markosian et al., 1997] and suggestive contours [DeCarlo et al., 2004] on surfaces.

Since there are O(m) cells containing contours from the previous frame, this search only adds

O(m) time to the extraction algorithm, leaving the overall running time as O(m).

To evaluate the performance of this strategy, an experiment in which the number of contour

segments found in an animation involving continuous change in viewpoint and isosurface thresh-

old was measured. The red curve at the top of Figure 2.8 shows the number of contour segments

extracted by the brute-force algorithm (i.e., “ground truth”) at each frame in the sequence. The

third curve, drawn in blue, shows the result of using contours from the previous frame as seeds.

The two remaining curves involve a random seeding approach, which is discussed in the next

section. In all cases, the first frame is initialized with the brute-force algorithm. The results show

the temporally-coherent algorithm extracting most of the contours in all frames, with an average
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Figure 2.8: Efficiency of extracting contours using different seeding strategies, for an animation
with changing viewpoint and isosurface threshold of the aneurysm dataset (Figure 2.10a). A
purely random approach finds only a small portion of lines. Using seeds from voxels containing
lines in the previous frame finds substantially more lines. The combination of these approaches
the effectiveness of the brute force approach, at less than 10% of the computation cost.

of 85% and a minimum of 70%. Although this performance is not perfect, observations show it is

not objectionable in practice. First, short segments are more likely to be missed than long ones, so

it is unlikely that the most perceptually significant loops will be omitted. In addition, the missing

line segments are more likely to occur during periods of quick motion, so they are less likely to be

perceived. Finally, when the user stops changing the viewpoint and threshold, the random probing

discussed in the next subsection causes the missing segments to be located and drawn, with high

probability, within a few frames.

2.4.1.4 Gradient descent for contour location

Contours appear and disappear through changes in view and isovalue. Therefore, in addition to

the previous-frame seeding discussed above, new seeds are searched for using an iterative gradient

descent method. This locates valid seed cells either near old contours or at random in the volume.

Similar stochastic processes have been used for isosurface extraction [Parker et al., 1999; Liu
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et al., 2002] to facilitate interactive response times. While not all available features are rendered

in an initial frame, subsequent frames find more features and help establish a complete image. As

shown in the magenta (lower-most) curve of Figure 2.8, random sampling and gradient descent can

be used alone to find a large percentage of new contours. Leveraging information from previous

frames complements this process, finding most linear features.

Given a stating point p in the volume, the gradient g = ∇φ(p) and the vector

vwalk =
τ−φ(p)
|g|

g
|g|

(2.5)

are calculated. The vector vwalk is thus a linear approximation of the vector from p to the closest

zero of f . The algorithm proceeds to the point q = p+vwalk and repeats this calculation at q using

the gradient of the n̂ · v̂ implicit function. This cell is then tested to see if it is a valid seed for a

new contour.

This process is repeated by alternately walking along gradients of f and c and testing for

contour seeds. Experiments with a wide variety of data sets show that this process typically either

finds the surface or fails (by leaving the volume or getting stuck in a local minimum) within four

to five iterations. Thus the search can be terminated after five iterations if no seed point is found.

To find new contours, this gradient descent is performed starting either at contour-containing

cells from the previous frame or at random cells in the volume. Random probing alone requires

potentially a large number of probes to locate most of the contour segments (Figure 2.9).

2.4.2 Comprehensible rendering

To render volume data in a comprehensible manner, any of a number of different families of lines

can be extracted using the method described in Section 2.4.1. Extracted segments can be rendered

as OpenGL polylines.
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Figure 2.9: Efficiency of randomized probing, together with temporal coherence, for the skull
isolevel of the head dataset (Figure 2.10b). The viewpoint and threshold are static. Because
contours found on the previous frame are retained, the total number of contour segments found
increases over time. We show results for different numbers of random probes, as a multiple of n
(where n3 is the number of voxels).

2.4.2.1 Families of lines

Contours As described in Section 2.4.1, the contour of a surface is found by extracting inter-

sections of the isosurface φ− τ = 0 and the contour surface n̂ · v̂ = 0. The normals are computed

as n̂ = −∇φ, and are evaluated as needed using a finite differences approximation over a local

neighborhood. An alternative would be to precompute normals at program startup, which would

increase run-time performance, though with a substantial four-fold increase in memory usage.

Contours arising from interior surfaces can be detected by looking for contours with negative

radial curvature [Koenderink, 1984] and specially styled. These interior contours are found by

considering extracted contours and computing

s(i, j,k) = ∇(n̂(i, j,k) · v̂(i, j,k)) · v̂(i, j,k). (2.6)

A contour segment is labeled as interior when s < 0, since s has the same sign as radial curvature.

As with the normal, the gradient is computed numerically on demand.
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Suggestive contours Suggestive contours [DeCarlo et al., 2003] can be included to complement

contours in line drawings, producing more effective renderings of shape. Suggestive contours are

defined as those surface locations where the radial curvature is zero and the directional derivative

towards the camera is positive. Thus, suggestive contours are extracted as the zero set of s,

s(i, j,k) = ∇
(
n̂(i, j,k) · v̂(i, j,k)

)
· v̂(i, j,k) = 0, (2.7)

while checking that the derivative of s towards the viewer is positive. In practice, the derivative

is compared to a small positive threshold (Ds > ε) to filter out spurious zero crossings caused by

noise [DeCarlo et al., 2004]. Furthermore, finding suggestive contours on backfaces requires the

sign of the derivative test to be negated (Ds < −ε) in order to keep the analogous lines to those

found on frontfaces.

Cutting planes The intersections of isosurfaces with cutting planes can generate additional

linear features to communicate surface shape. These intersections can be found by locating

intersections of the isosurface φ− τ = 0 and the zero-set of the plane equation h,

h(i, j,k) = Ai+B j+Ck−D = 0. (2.8)

2.4.2.2 Stylization

The system provides the user with full control over which kinds of lines are drawn, and in which

style. In particular, the user can control the width and color of rendered lines based on the type of

line and the originating isovalue. As an additional option, to provide fast depth cueing without the

full cost of visibility, one can render lines with a white halo, as suggested by [Appel et al., 1979].

This visualization cue is most useful under camera rotation and can be performed with virtually

no loss of performance over standard rendering.
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(a) Aneurysm CT (256×256×256) (b) Head CT (512×512×209)

Figure 2.10: Line renderings from volumetric CT scans of an aneurysm and human head. (a) The
complex aneurysm contains many thin overlapping features, which are all visible by overlapping
lines. (b) The isosurface of the skin and bone are shown separately. In order to prevent interior
objects from cluttering the rendering, a visibility test is performed to only render lines on visible
surfaces. A cutting plane is then used to suppress skin line rendering to expose the skull.

2.5 Improvements on global occlusion reduction

The aforementioned occlusion reduction methods help convey structural information in complex

scenes by allowing more objects to be shown in a single image compared to normal rendering

techniques. However, as mentioned previously and evident in Figures 2.1b and 2.3, the appli-

cation of occlusion reduction to many overlapping components can create visual clutter, making

individual objects difficult to discern. Chapter 3 shows how these occlusion reduction methods

can be applied selectively to occluding objects in a scene to expose objects of interest rendered

with normal occlusion. Chapter 4 shows how this selective application can be localized further

according to a view-dependent cutaway structure.
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Chapter 3

Controlling Emphasis and Exposure:

Incorporating Importance

The techniques in Chapter 2 were described in the context of globally reducing occlusion, where

all objects are treated equally in terms of occlusion reduction and visualization focus. Visualiza-

tion goals are often specific to certain objects in a scene, in which case it is useful to be able to

treat certain objects differently from others. These focus objects should be the centerpieces of

renderings, being shown along with the remaining scene objects that serve as context.

Focus objects can be visually emphasized by modifying their rendering style to draw the

viewer’s attention and to differentiate the objects from their contextual neighbors. They can also

be exposed by applying occlusion-reduction techniques to context objects so that focus objects

are as visible as possible in rendered images. The application of emphasis and exposure is con-

trolled by the notion of importance, a generalization of focus and context. The following section

discusses the concept of importance in multi-object visualizations, followed by a discussion of

specifying importance for 3-D scenes in Section 3.2. Emphasis and exposure techniques based on

importance values are discussed in Section 3.3.
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(a) (b)

Figure 3.1: Artist-drawn illustrations expressing importance through exposure. (a) A car wheel
is shown, with a focus on the mechanical brake and suspension components. The wheel and
tire serve only as context for the illustration, and are rendered entirely in a line drawing style
to minimize occlusion of important mechanical components. (b) The interior electronics of this
DSLR camera are shown in the context of the camera body. The front of the lens barrel is allowed
to occlude the interior electronics. This occlusion suggests it has a higher importance than the
electronics, which in turn have a higher importance than the remainder of the camera body.

Images used with permission, Copyright Kevin Hulsey Illustration, Inc.

3.1 Defining importance

Importance refers to an object’s relevance to the broad visualization goal. At its core, visualization

is about communicating information through images. When a visualization is constructed to show

specific information about an object in a complex scene, this object should be the focus of the

visualization and should be considered highly important. An important object may be treated

differently from other objects in the scene, in order to draw viewer attention, or to express extra

information that would not be possible to express in all objects at once.

Different visualization goals can call for different types of importance. Sometimes, a small set

of objects are much more important than all other objects, which are then equally unimportant.

Other times, all objects in a scene have a varying degree of importance, and should be visualized
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accordingly. Moreover, the most appropriate notion of importance may be some combination of

the two. These scenarios are discussed in Sections 3.1.1 through 3.1.3.

3.1.1 Binary importance: objects of interest

Effective visualizations aim to show information about a set of one or more objects of interest.

These objects may exist in a 3-D scene containing other objects, which become objects of sec-

ondary interest. The objects of interest become the focus of the visualization, while objects of

secondary interest exist to provide spacial and functional context. This type of visualization is

sometimes called “focus+context” visualization [Hauser, 2005].

Such two-tiered visualizations suggest a binary notion of importance, where objects of interest

are of high importance and all other objects are of low importance. A focused visualization may

treat objects of interest specially, making them maximally emphasized and exposed. Accordingly,

objects of secondary interest can be de-emphasized and partially omitted in a given rendering.

For example, in the illustration shown in Figure 3.1a, the mechanical components of the wheel,

including the brakes, shocks, springs, and suspension link, are the focus of the visualization–

objects of interest with high importance. The tire and rim, which surround and would occlude the

mechanical components in conventional depictions, are only intended to provide context. Because

they are of low importance to the visualization, they are drawn using a very sparse line-drawing

representation, to avoid occluding the interior mechanical parts.

With many objects of interest, especially in close proximity to each other, emphasis and

exposure techniques become less effective because there are fewer opportunities to de-emphasize

and reduce occlusion. Thus this scheme works best for visualizations of a small number of objects

of interest, such as a particular isosurface in a volumetric rendering or small group of objects in a

complex polygonal scene.
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3.1.2 Continuous importance

For a more complex visualization with potentially many objects of interest, a continuous range

of importance values can be used. Objects can be assigned an importance value anywhere in

the range from the lowest value, 0.0, to the highest value, 1.0. A continuous range allows for

objects of moderate importance: objects that should be visible but less so than those of highest

importance, and more so than those of lowest importance. The result is a flexible prioritization

of objects in a visualization. Objects should be emphasized and exposed according to their

importance, such that the most important objects are the most emphasized and most exposed.

For example, the illustration in Figure 3.1b shows the interior electronics of the DSLR camera

in the context of the camera body, with much of the occluding portion of the camera body

being rendered using a sparse translucent representation. This occlusion reduction suggests that

the electronics are of higher importance than the portion of the camera body suppressed from

rendering. However, the front of the lens system is shown completely opaque, and is allowed

to occlude the electronics, suggesting that the front of the lens is of higher importance than

the electronics. The flexibility of continuously defined importance allows such a multi-level

importance relationship, and would be necessary to create automated visualizations in the style of

this camera illustration.

Continuous importance is more effective than binary importance with many objects in close

proximity to each other, and when these objects can be reasonably prioritized. In these situations

the continuous importance provides a variable control over which objects should be made visible,

and to what extent. Continuously defined importance also works best with emphasis and exposure

techniques that have one or more continuously varying parameters to which importance can be

mapped. An emphasis or exposure technique of a binary nature may not be able to fully capture

the benefit of a continuous importance definition.
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3.1.3 Objects of interest with continuous importance

Emphasis and exposure techniques without parameters to which importance can be continuously

mapped lend themselves to the binary importance model. While binary importance allows for

visualization of objects of interest, it does not allow any variable control over treatment of objects

of secondary interest, forcing these objects to all be treated in the same way. In order to reap the

benefits of continuous importance with binary emphasis and exposure techniques, one can create

a hybrid importance model.

The binary emphasis/exposure techniques can be applied to the entire scene, exposing objects

of primary interest, while an additional set of continuous-capable emphasis/exposure techniques

is applied to remaining objects, which can have a separately defined continuous importance.

Thus the focus objects can be maximally exposed or emphasized while context objects can be

prioritized, being exposed or emphasized according to their relative importances.

The hybrid importance model is shown in practice in Figure 7.1, where an Ultrasound plane

is assigned the high binary importance and the volumetric CT scan is assigned the low binary

importance. In the volumetric scan, various tissues are prioritized by their importance based

on a continuous scale. The Ultrasound plane is then the primary focus of the visualization,

while classified tissue is viewed in the periphery, with more prominence given to tissue of high

importance.

This hybrid model is most useful when objects of primary importance are logically distinct

from all other objects, and these objects of secondary importance are in close proximity to each

other but have their own relative importances by which they can be prioritized. Using a single

binary importance model would prevent individual objects of moderate importance from being

seen, as they could be occluded by nearby objects of lower importance. Using a single continuous

importance model would do little to show distinction between the objects of primary importance

and the rest of the scene. Both of these problems can be addressed by the hybrid model, more

examples of which are shown in Section 7.1.
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3.2 Specifying importance

Importance is specified per scene entity, to ensure that each polygon or voxel being rendered can

be appropriately handled. While there is no required range of importance values, the convenient

standard is to use a real-valued parameter between 0.0 and 1.0, with higher values corresponding

to higher importance. When a single model of importance is used (binary or continuous), only

one set of importance values need be considered. When the hybrid model is used, two sets of

importance values may be used and considered in parallel: a binary value to specify the primary

objects of importance, and a continuous value to specify importance for the rest of the scene.

Alternately, the hybrid model can be encoded into a single importance value with the range

[0.0,1.0] corresponding to the continuous component and low binary importance, with any values

greater than 1.0 denoting a high binary importance.

For polygonal scenes, the scene graph can be used to partition the scene into sets, each of

which can be assigned an importance value. For volumetric data, a 1-D or 2-D transfer function

can define colors and opacities for groups of voxels to designate “objects” in the scene. This

transfer function definition can be expanded to include importance, as described in [Burns et al.,

2007]. In either case, the importance value of a polygon or voxel should be defined and made

available to rendering algorithms before rendering begins.

3.3 Applying importance

Specifying object-level importance is only the first step in creating an importance-driven visual-

ization. Application of importance values in rendering is what allows images to be tailored to

different visualization goals. One can visualize particular objects in a scene by using importance

values to control emphasis and exposure techniques. The converse is also true—emphasis and

exposure can be used to convey the importance of each object to the viewer.
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3.3.1 Emphasis

Controlling emphasis with importance has two benefits: it can attract a viewer’s attention to

important objects and convey the relative importances of different parts of a scene. Painterly

renderings have been created from 2-D images using importance data to control emphasis through

brush stroke size, stroke frequency, line density, and color saturation [Hertzmann, 1998; DeCarlo

and Santella, 2002; Santella and DeCarlo, 2002]. Non-photorealistic 3-D rendering techniques

have used similar mechanisms to express importance and attract a viewer’s gaze [Barla et al.,

2006; Cole et al., 2006]. Among the options for conveying emphasis in 3-D visualizations are

variation in color, shading, or rendering style, based on a polygon or voxel’s importance value.

3.3.1.1 Color

The use of color for emphasis is widely used in photography and hand-drawn illustration. One

possibility is the use of different hues of color, such as the cool-to-warm color ramp, to denote

various importance levels. Another option often found in artistic applications is the use of color

saturation. A color c can be desaturated by a constant factor Ec by linearly interpolating between

c and the greyscale (intensity) of c, ci. A color de-emphasized by importance can be calculated

by linearly interpolating between the base desaturated color, cdesaturated , and the original color c.

cdesaturated = ci ∗Ec + c∗ (1−Ec) (3.1)

cmuted = c∗ I + cdesaturated ∗ (1− I) (3.2)

The resulting desaturation proportionately affects unimportant objects, leaving the most important

objects normally saturated. The strength of the effect is controlled by the parameter Ec, with a

value of 1 causing the least important objects to be completely desaturated, and a value of 0 caus-

ing no desaturation anywhere. Important objects are effectively emphasized by de-emphasizing

objects of lesser importance.
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(a) Normal shading

(b) No shading (c) Shading according to importance

Figure 3.2: Rendering with emphasis and exposure derived from importance. (a) shows a normally
shaded rendering while (b) shows a completely unshaded rendering. Shading by importance
combines elements from both of these images, such that the skin (yellow) is unshaded, bone
(white) is partially shaded, and vasculature (red, blue) is normally shaded. In addition, the skin is
rendered with edge highlights (Section 2.2) to expose the underlying materials.

3.3.1.2 Shading

Shading is used to help convey surface orientation and detail in renderings. Like emphasis using

color, emphasis can be made using shading by de-emphasizing objects with low importance by

suppressing shading color contributions. A partially shaded color can be calculated as a linear

interpolation of a shaded color cshaded and the base color c based on a constant factor Es. A color

de-emphasized by shading can be calculated as a linear interpolation of the partially shaded color

and the normally shaded color based on importance.

cpartial = c∗Es + cshaded ∗ (1−Es) (3.3)

csuppressed = cshaded ∗ I + cpartial ∗ (1− I) (3.4)

36



The strength of the effect is controlled by the parameter Es, with a value of 1 causing the least

important objects to be completely unshaded, and a value of 0 causing all objects to be fully

shaded. This technique is used extensively in Section 7.1, and is shown in Figure 3.2.

3.3.1.3 Rendering styles

Emphasis (and de-emphasis) can also be accomplished using special rendering styles. Importance

can be used to select individual non-photorealistic surface shading models to emphasize and

differentiate between materials of different priorities [Bruckner and Gröller, 2007].

Binary importance can be used to selectively enable rendering styles that naturally emphasize

important objects. For example, rendering contours or silhouettes around an object can make

it stand out from the rest of the scene. Mapping line rendering to binary importance would

effectively outline objects of primary importance in a visualization. Alternatively, if line rendering

is performed everywhere in a scene, one can omit surface shading and color in areas of low

importance to reduce the appearance of unimportant materials to line drawings. This effect would

be very similar to that used by the artist illustrating the engine in Figure 4.2b.

Continuous importance can also be mapped to individual parameters of rendering styles to

selectively emphasize objects. For example, continuous importance could be mapped to the

stylized focus parameter in the work of Cole et al. [2006] to control line density and texture,

and color saturation and contrast, to direct gaze to important objects. Continuous importance

could also be used to control how much high frequency detail is shown in objects rendered

with Exaggerated Shading [Rusinkiewicz et al., 2006], given enhanced detail to objects of high

importance and suppressing detail in objects of low importance.

3.3.2 Exposure

Any objects can be difficult to visualize when occluded, so objects of interest to a visualization

should be exposed. Selectively rendering only the most important objects in a scene would

be simple, omitting all objects of low or no importance, but such omission would discard the
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Figure 3.3: Selective occlusion reduction using translucency based on importance. The bone
isosurface (white) is given the high importance value (1) and rendered with R = 0. The skin
and airway isosurface (red) would ordinarily occlude the bone surface but is assigned the low
importance value (0) and rendered with high R. As a result, occlusion reduction of the skin via
translucent rendering allows the skin to remain seen while exposing the bone underneath.

contextual information provided by these “unimportant” objects. To preserve the contextual

information provided by objects of secondary importance, one can selectively apply the occlusion

reduction strategies introduced in Chapter 2 to these objects, reducing the occlusion penalty of

their inclusion in a scene and facilitating the exposure of important objects.

Each of the described occlusion reduction strategies can be controlled by importance, though

some differ in their applicability to binary and continuous importance definitions.

3.3.2.1 Binary importance

The simplest application of importance to exposure occurs when binary importance is consid-

ered. In this scenario, one can simply render objects of high importance normally, and apply

an occlusion reduction strategy with a high strength (R ≈ 1) to objects of low importance. With

translucent rendering (Section 2.1), objects of low importance are rendered with a low opacity
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value, as shown in Figure 3.3. With edge highlights (Section 2.2), objects of low importance are

rendered with edge highlights enabled, and possibly with a high fall-off parameter, as shown in

Figure 3.2. With lines (Section 2.3), objects of low importance are rendered with lines in place of

their surfaces, as shown in Figure 3.1a.

3.3.2.2 Continuous importance

The use of continuous importance allows more flexibility in the prioritization of objects when used

by occlusion reduction methods. Importance can be mapped to the reduction strength, R, such

that high importance corresponds to low occlusion reduction and low importance corresponds to

high occlusion reduction. One simple mapping with such an inverse relationship is R = (1− I).

With translucent rendering, objects of lowest importance are drawn faintly and objects of higher

importance are drawn with more strength (and with more ability to occlude). With edge highlights,

a similar effect occurs while objects of lower importance retain their edges, as seen in Figure 3.2.

With lines, surface rendering is suppressed for objects of all but the highest importance, with lines

fading as importance decreases.

3.3.2.3 Varying exposure

Continuous importance is one way to variably apply occlusion reduction, but because importance

is independent of scene position, occlusion reduction based solely on importance is applied glob-

ally to a scene. Global application of occlusion reduction is satisfactory for some applications,

such as entire anatomical systems (e.g. skeletal system, nervous system) inside the context of an

entire human body. Because the object of interest, the anatomical system, spans nearly the entire

model, it is necessary to reduce the occlusion power of unimportant materials nearly everywhere

in the model to provide view of the object of interest. In other applications, when the objects of

interest have small footprints compared to the overall model, such as in Figure 1.1, it may be more

desirable to localize occlusion reduction, and thereby exposure, around the object of interest. This

localization allows the bulk of the scene to be rendered with a conventional appearance, preserving
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context. The following chapter describes one such method of localizing exposure based on binary

or continuous importance.
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Chapter 4

Preserving Context: Localizing

Exposure with Cutaways

The methods introduced in Chapter 2 for reducing occlusion have thus far been applied uniformly

to entire objects based on their importance, as described in Chapter 3. This uniform application

allows important objects to be exposed by reducing the occlusion footprint of less important

objects regardless of their position in the scene and in 3-D space. The end result is a visualization

where objects of interest are shown surrounded by a sparse representation of the rest of the scene.

For complex scenes with a large number of objects, the high overlap of sparse representations

of context objects can be difficult to parse (Figure 4.1b). To aid in the overall view of the scene,

occlusion effects can be preserved in areas of the image where occlusion reduction is not necessary

for exposure of objects of interest (Figure 4.1c). This localization of exposure creates images that

resemble technical illustrations known as sections or cutaways, such as those shown in Figures 1.1

and 4.2.

Previous research in localized exposure has yielded several visual styles applied in a variety

of ways. The earliest examples used depth buffers and image processing to replace occluding

surfaces with semi-transparent representations [Feiner and Seligmann, 1992]. More advanced

techniques incorporate the specification of cutaway geometry, such as intersecting half-spaces
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(a) Normal rendering

(b) Global application of occlusion reduction

(c) Localized application of occlusion reduction

Figure 4.1: Global and localized application of exposure techniques. (a) The hull of this ship
occludes interior objects using normal rendering. (b) Two cannons are exposed by globally
applying occlusion reduction to the rest of the scene. The resulting image is almost unrecognizable
from the normal rendering, with overlapping lines creating visual clutter. (c) By localizing
exposure techniques around the cannons, most of the ship retains a normal appearance.
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(a) (b)

Figure 4.2: Artist-drawn illustrations using localized exposure techniques. (a) A car wheel is
shown, with a focus on the mechanical brake and suspension components. Like Figure 3.1a, the
wheel and tire serve as context for the illustration. Here, exposure is localized to preserve normal
rendering in areas of the wheel that do not occlude the mechanical components. (b) An engine is
shown cut away to reveal its interior. In addition to localizing exposure to show exterior structure
of the side of the engine, emphasis of the interior components is performed by using a simpler
rendering style outside the region of interest.

Images used with permission, Copyright Kevin Hulsey Illustration, Inc.

or an inflated convex hull [Diepstraten et al., 2003]. Some techniques, such as VolumeShop

[Bruckner and Gröller, 2005] and ClearView [Krüger et al., 2006], are essentially powerful illus-

tration tools, relying on user specification of a 2-D or 3-D focus area to be exposed by cutaway

or ghosting. Other manual techniques focus on mimicking real cutting tools, such as those used

by a surgeon [Liang et al., 2005]. More automatic techniques use importance information from

the scene to automatically suppress or fade occluding materials [Krüger et al., 2005; Straka et al.,

2004; Bruckner et al., 2006] or create cutaway illustrations [Viola et al., 2005; Viola et al., 2006].

The techniques presented in this chapter are closest in approach and image appearance to

those of Viola et al. and Li et al. [Li et al., 2007]. The presented techniques create a cutaway

surface similar to that of Viola et al. but with more control over cutaway shape and a more flexible

cutaway structure, while enjoying faster performance and higher fidelity due to an improved

computation algorithm. The resulting images are similar in spirit to those of Li et al. but are made
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with techniques that do not require preprocessing, working with rapidly changing viewpoint and

dynamic animated scenes.

The remainder of this chapter examines how cutaway illustrations can be created by defining

cutaway structures that define levels of occlusion for contextual objects (Section 4.1) and using

these occlusion levels to selectively reduce occlusion and ensure exposure of objects of interest

(Section 4.2). Included in this chapter are novel definitions of a contextual cutaway structure and

an associated occlusion function.

4.1 Measuring occlusion

At the core of the cutaway illustration is the region of interest to be exposed. In practice, this

region contains or is defined by the geometries of objects of interest to the visualization. For the

purpose of this discussion, the region of interest can be considered an arbitrary 3-D region of

space.

A minimal definition of occlusion space will contain the volume of space between the region of

interest and the camera position. From the point of view of the camera, this volume is closer than

the region of interest and within the 2-D projection of the silhouette of the region of interest. Any

material rendered in this volume is guaranteed to occlude the region of interest to some degree.

By excluding only materials from this volume from rendering, the region of interest is guar-

anteed to be exposed, as shown in Figure 4.3a. While this exclusion accomplishes the primary

goal of exposure, it does so with limited comprehensibility, since it can be difficult to determine

the depth of the region of interest relative to depths of the remaining materials. This difficulty

occurs because the boundary of the occluding volume is aligned with the viewing rays, causing

occluding materials close to the camera to be cut at the same screen-space positions as occluding

materials further from the camera. Consequently, materials in the periphery of the region of

interest nearest the camera occlude all intermediate layers of material between the camera and the

region of interest. The visual absence of intervening layers of material in turn causes the difficulty

in depth distinction between the region of interest and objects nearest the camera.
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(b) Expanded occluding volume

Figure 4.3: Diagram of minimal and expanded occluding volumes. (a) When only the
minimal occluding material is removed, objects of interest are made visible, but invisible depth
discontinuities make them appear in front of their enclosing box. (b) By shaping the wall of the
occluding volume outward an angle θ from the view vector, the depth change is made clear, and a
cutaway illustration is created.
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In order to prevent intermediate layers from occluding each other at the boundary of the

occluding volume, the volume must be changed so its boundary is not incident to the viewing rays.

By expanding the volume as it approaches the camera, as shown in Figure 4.3b, the boundary of

the occluding volume becomes visible to the camera, showing intermediate layers of material that

provide valuable context around the region of interest. The boundary of this occluding volume is

known as the cutaway surface, as it is the surface at which materials are cut away.

4.1.1 Cutaway surface

The shape of the expanded occlusion volume is equivalent to the volume of the union of all possi-

ble cones of angle θ with tips anchored on the surface of the region of interest and aligned along

the viewing rays. The cutaway surface defined by this volume is thus dependent on the current

viewing direction and the angle θ, which becomes the minimum angle between the boundary of

the occluding volume and the viewing rays. When θ = 0◦, the occluding volume degenerates into

the minimal occluding volume shown in Figure 4.3a. As θ increases up to a maximal 90◦, more

material is included in the occluding volume and the boundary of the occluding volume becomes

less perpendicular (and more visible) to the camera. Increasing θ can aide in the visualization of

occluding layers, at the expense of removing more contextual material.

In additional to the geometric description above, it is possible to define the cutaway surface in

terms of a cutaway surface function C defined over a rendered image plane under an orthographic

projection. This definition begins with a rendered depth image I of the rear-hull of the region of

interest, which covers some subset R of pixels in I. For each pixel q in R, the function considers

a cone anchored at depth z(q) along the z-axis and making a slope m to the xy image plane. For

a cone defined with angle θ, this slope is m = tan−1 θ. The depth of this cone at a pixel p in I is

calculated as the slope m multiplied with the distance between q and p and subtracted from the

depth of the cone’s origin at q. The conical surface function c, which gives the depth at p of the

cone defined at q with angle θ, is defined as follows:

c(p,q) = z(q)−m‖q− p‖ (4.1)
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Since the cutaway surface volume is geometrically defined as the union of volumes of all such

possible cones arising from R, the cutaway surface in an image plane is equivalent to the rear-hull

of this union of cones. Thus the depth of the cutaway surface at a pixel p can be calculated as the

maximum depth at p of all cones emanating from pixels q in R. The cutaway surface function C

is then defined as follows:

C(p) = max
q∈R

c(p,q) = max
q∈R

(z(q)−m‖q− p‖) (4.2)

where R is the subset of pixels in I covered by the region of interest, z(q) is the rendered depth of

the rear-hull of the region of interest at pixel q, and m = tan−1 θ.

4.1.2 Simple cutaway structure

The cutaway surface can be used to define a structure in which occlusion reduction techniques

can be applied to generate cutaway illustrations. The simplest version includes a single cutaway

surface, which naturally establishes two complementary regions, one on either side of the surface,

that span all of 3-D space.

4.1.2.1 Base region

The region behind the cutaway surface can be rendered with conventional rendering techniques

as it can never occlude the region of interest. Because this region provides a contextual base for

the region of interest, it is called the base region. Because occlusion reduction does not occur in

the base region, and occlusion reduction of the region of interest should not occur, the region of

interest is included in the definition of the base region.

4.1.2.2 Clear region

The complement of the base region is the clear region, which lies in front of the region of interest

and the cutaway surface, containing the camera and the expanded occluding volume. This region
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should be cleared of occluding material to allow maximal view of the region of interest and to

expose any intermediate layers along the edge of the expanded occluding volume.

4.1.2.3 Occlusion function

An occlusion function, Ω, can be defined within a cutaway structure to denote the degree to which

a point in space occludes the region of interest, and to influence how materials are rendered to ex-

pose the region of interest. The simple cutaway structure includes only two regions to supplement

the region of interest, and thus encourages a binary definition of occlusion. A straightforward

definition of occlusion within the simple cutaway structure is Ω = 1 inside the clear region and

Ω = 0 inside the base region. Because the occlusion function is uniform within each of the clear

and base regions, occlusion reduction based on this function will be applied uniformly.

To create a simple cutaway rendering, it suffices to reduce occlusion in the clear region to

expose the region of interest while preserving normal rendering of the base region. Thus occlusion

reduction methods (such as those described in Chapter 2) can be applied for a point in space

according to the value of the occlusion function, where a value of 1 causes full occlusion reduction

and a value of 0 means no reduction.

4.1.2.4 Simple cutaway characteristics

The simple cutaway structure when used with simple occlusion reduction exhibits the following

valuable characteristics:

• The surface is view dependent so portions of secondary objects that occlude the region of

interest can be detected, and discarded.

• Portions of secondary objects can be discarded in varying amounts depending on their z-

distance from the region of interest, allowing viewing of nested structures.
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• The amount of material discarded can be controlled by the angle θ of the cutaway as

desired, providing a balance between the amount of material removed and the ability to

locate objects within nested structures.

• The shape of the cutaway hugs the silhouettes of the region of interest, reducing the amount

of material that has to be removed in order to expose the region.

• Multiple regions of interest can define a single cutaway surface, with the cutaway surface

exposing all objects of interest together.

In visualizations of scenes with a binary definition of importance, the binary importance matches

up nicely with the binary treatment of occlusion reduction, providing a simple set of visualization

options and allowing the creation of basic cutaway illustrations. However, in scenes with more

than a binary definition of importance, a more complex cutaway structure can be created to provide

more visualization options and different levels of treatment for materials of various levels of

importance.

4.1.3 Contextual cutaway structure

When materials can be classified with more than a binary notion of importance, the cutaway

structure can be expanded with additional regions to facilitate different treatments for different

levels of importance. This section describes two such additional regions, a transition region

between the clear and base regions, and an overlay region within the clear region.

4.1.3.1 Transition region

In the simple cutaway structure, all materials outside the region of interest are treated equally,

being trimmed away according to the single defining cutaway angle, θ. This angle can be varied

from image to image, to trim away more or less material as desired. However, in situations where

a continuous definition of importance exists, materials outside the region of interest may have

multiple values of importance. In this case, it may be useful to reduce the occlusion of materials
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Figure 4.4: Diagram of cutaway surface interpolation. Note the camera is looking down from
above in this cross section view. (a) Intermediate cutaway surfaces can be defined by interpolating
depths between two cutaway surfaces. An interpolation factor of 0.2 defines a third cutaway
surface near the outer surface. (b) Blue, grey, and orange material are removed according to the
inner, middle, and outer surfaces, respectively. The object of interest (red) is completely exposed
in the center while portions of blue and grey objects are exposed in the periphery. Results based
on this interpolation in 3-D are shown in Figure 7.1.

based on their relative importance, as in Section 3.3.2. Such variable occlusion reduction could

allow relatively important materials outside the regions of interest to be made visible even if they

are completely occluded by materials of lesser importance in the base region.

One option for this variable occlusion reduction is to trim away materials at multiple angles,

with materials of low importance being trimmed away more than materials of high importance.

This variable trimming can be accomplished by expanding the boundary between the clear and

base regions to span the volume of space between two cutaway surfaces with different character-

istic angles. The cutaway surfaces with the widest and narrowest angles of those to be used to

trim materials define the boundary of this transition region. Since an infinite number of angles

exist between these bounding angles, there are an infinite number of potential cutaway surfaces in

this region. A brute force solution that calculates the exact position of each cutaway surface to be

used for trimming could be prohibitively expensive. Instead, a comparable effect can be achieved

by calculating positions of only the two bounding cutaway surfaces and interpolating the values

for surfaces in between. A 2-D simplification of this technique is illustrated in Figure 4.4.
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Because the 2-D cutaway surfaces are linear, two surfaces with angles θ1 and θ2 can be

represented as lines with slopes m1 and m2. Lines with slopes between m1 and m2 can be found

by a linear interpolation of the heights y1 and y2 of the two surfaces along the x-axis. The slope of

a given line will depend on the interpolation factor between the heights y1 and y2. For example,

with an interpolation amount of 0.5, which is the equivalent of averaging the heights y1 and y2,

the slope will be exactly the average of m1 and m2. By varying the interpolation amount between

0 and 1, any surface with slope between m1 and m2 can be determined. This property extends to

3-D, in an orthographic project, with the xy plane replacing the x-axis and heights measured along

z replacing heights measured along y.

By varying the interpolation amount between the depths of two cutaway surfaces with angles

θ1 and θ2, the depths of intermediate cutaway surfaces with angles between θ1 and θ2 can be

calculated. Conversely, for a given point in the transition region, the interpolation factor between

the two cutaway surfaces can be determined. This interpolation factor can be used to define a

continuous occlusion function within the transition region, as described in Section 4.1.3.3, which

can in turn be used to apply varying levels of occlusion reduction to materials of varying levels of

importance.

4.1.3.2 Overlay region

Further differentiation in rendering treatments can be made in the area immediately in front of the

region of interest, in the overlay region. This region sits in front of the base and transition regions

and behind the clear region. It is bounded by the cutaway surface with angle θ1 and the same

cutaway surface uniformly offset a constant distance d towards the camera.

It allows materials of highest importance that may not be part of the region of interest to be

treated specially, for example being allowed to partially occlude the region of interest. The thick-

ness of the region should be adjusted according to the density of important structures preserved

in the overlay region and the goals of the visualization. As d increases, so does the thickness of

the region, along with the potential for material in this region to occlude important features in the
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region of interest. As such, small values of d provide the best trade-off between showing material

in the overlay region and exposing material in the region of interest.

4.1.3.3 Occlusion function

With the addition of the transition and overlay regions, the binary occlusion function described in

Section 4.1.2.3 can be expanded to cover these regions with continuous values. The values Ω = 0

and Ω = 1 are preserved for the base and clear regions, respectively, with Ω smoothly varying in

between.

A value t represents the value of Ω at the transition-overlay boundary. When both a transition

and overlay region are present, t is arbitrarily declared 0.5. In the absence of a transition region, t

should be 0. In the absence of an overlay region, t should be 1.

Within the transition region, the values increase linearly from Ω = 0 to Ω = t according to the

interpolation factor between m1 and m2, as described in Section 4.1.3.1. Within the overlay region,

Ω varies linearly from t to 1, according to the distance along the viewing ray from the start of the

overlay region and the thickness d. The specific mechanism for utilizing the occlusion function to

reduce occlusion in the contextual cutaway structure is described in the following section.

4.2 Revealing objects of interest

Given the measure of occlusion provided by the occlusion functions described in Section 4.1,

objects in the region of interest can be exposed by applying occlusion reduction techniques from

Chapter 2 to materials outside the region of interest according to occlusion values where they are

rendered. The resulting images can all be considered cutaway illustrations, as they show material

being cut away to expose the region of interest. Aside from the occlusion function, there are

several important components that can be varied to control the effect of these cutaway illustrations.

These variations include the specific mechanism by which occlusion values influence occlusion

reduction, and the geometric definition of the region of interest.
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4.2.1 Applying occlusion values

Values of the occlusion function can be interpreted as the amount of occlusion reduction needed

at a given point to expose the region of interest via a cutaway. For example, occlusion reduction

should be performed most in the very interior of the cutaway, in the clear region, where the highest

occlusion values are. In the periphery, the base region, the occlusion value is zero and no occlusion

reduction is necessary.

Occlusion reduction techniques can be performed with a strength R, as described in Chapter 2,

where R = 1 implies maximal occlusion reduction and R = 0 implies no reduction. In order to

take into account the cutaway structure in occlusion reduction, R should be derived from both

the value of the importance function I (as described in Chapter 3) and the value of the occlusion

function Ω.

In general the function should generate high values of R for the combination of high Ω

(occlusion) and low I (importance), preventing materials of low importance from occluding the

region of interest. Of course the function should also generate low values of R for the combination

of low Ω and high I, leaving materials of high importance visible in certain areas of the cutaway

structure. The exact mapping of Ω and I to R can have a significant effect on the visualization

and should be determined based on the visualization goals. This mapping is further analyzed and

shown in results in Chapter 7.

4.2.2 Region of interest

The primary goal of cutaway illustrations is to expose objects of interest that might normally

be occluded. This goal can be achieved by exposing a well-defined region of 3-D space that

encompasses the objects of interest, referred to as the region of interest. The heart of the cutaway

illustration, the shape and extent of the region of interest has a strong influence over the effective-

ness of exposing the objects of interest. Given a set of objects of interest, there are several options

for constructing the region of interest that contains them.
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4.2.2.1 Object geometry

A simple but effective definition of a region of interest is the region of space occupied by the

objects of interest. Its simplicity arises from the fact that the object geometries are readily avail-

able, and can be directly used to seed algorithms that calculate the cutaway surface. Effectiveness

is ensured because any exposure of the region of interest guarantees exposure of the objects of

interest.

This definition is the minimal definition for the region of interest, and results in the minimal

amount of material being removed in order to expose the objects of interest, compared to other

definitions of the region of interest with the same cutaway parameters. This property is seen as

the shape of the exposed region closely follows the shape of the objects being exposed, since the

wall of the cutaway extends from the silhouettes of the objects of interest. As a result, only the

objects of interest are exposed, while nearby objects or materials may remain occluded or be cut

away.

4.2.2.2 Proxy geometry

For visualization of multiple objects of interest in close proximity, the region of interest can

be expanded from the minimal definition to include space around and between the objects of

interest. This expansion can be carried out by computing a proxy geometry from the objects of

interest and using the proxy geometry as the basis of the cutaway shape. This proxy geometry

is only rendered as depth to seed the cutaway surface algorithms but is not rendered in the final

image. The proxy geometry may be computed using several different methods, depending on the

visualization scenario.

Convex hull The convex hull of a set of objects of interest may be used as the region of interest

in order to expose all the objects together while creating a smoother cutaway shape. Because the

convex hull of objects is geometrically smoother and has fewer features than the geometries of the

individual objects, a cutaway surface based on the convex hull will be smoother and have fewer
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sharp features than a cutaway based on the geometries of the objects of interest alone, resulting in

fewer abrupt changes under animation and view change. However if objects of interest are too far

apart, the convex hull can be quite large, resulting in a large amount of material removed in order

to expose the region of interest. Thus the convex hull should only be used for objects of interest

in relatively close proximity, with few other objects or materials in between them.

Specialized geometry In certain visualization scenarios it is possible to compute a proxy ge-

ometry more appropriate to the visualization goal. For example, in architectural visualization one

may wish to view the contents of an entire room. In this case, it is beneficial to determine the

entire volume of the room and use the resulting geometry as the region of interest. By using the

entire span of the room as the region of interest, all objects in the room become visible, and the

entire room can be seen in the context of the building. This approach is explored in practice in

Section 7.2.
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Chapter 5

Implementing Realtime Cutaways:

Rendering Techniques

The mechanisms described in Chapter 4 can be used to create cutaway renderings in real-time

through the combination of efficient algorithms for computing cutaway surfaces with conventional

real-time rendering techniques (e.g. OpenGL, DirectX). Such real-time renderings allow for

interactive visualization applications for exploring structurally complex 3-D scenes, as shown

in Chapter 7. This chapter details several cutaway surface computation algorithms that can be

applied to interactive applications. It also describes extra considerations and modifications nec-

essary to generate full-featured cutaway illustrations using polygonal rasterization or volumetric

rendering. Included in this chapter are a novel image-based cutaway surface computation algo-

rithm, new modifications to the polygonal rendering pipeline for rendering cutaway images, and

cutaway surface function modifications to support perspective projection correction and temporal

coherence.
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5.1 Cutaway surface computation

The cutaway surface described in Section 4.1.1 is the basis for the cutaway structures around

which cutaway illustrations can be generated. This surface is shaped to expose a region of interest

to the camera by carving out materials in front of the region of interest at some angle from the

viewing direction. A single cutaway surface never overlaps itself from the point of view of the

camera, and as such can be represented as a depth function parameterized by the viewing rays in

the scene. In a conventional rendering pipeline, the surface can be represented by a depth image

or depth buffer aligned with the rendered image.

In theory the depth image can be created through geometric construction of the cutaway surface

and subsequent rendering of the geometric surface into a depth buffer, or directly through evalua-

tion of the cutaway surface function C (equation (4.2)) at every pixel in a depth image. Previous

work that generates similarly shaped cutaways [Viola et al., 2004] takes the latter approach,

foregoing geometric construction of the surface. This direct approach allows the generation of

a suitable depth image for use in cutaway rendering while skipping the potentially complex and

costly steps of constructing the geometric surface defined in Section 4.1.1.

5.1.1 Cutaway function

Previous work [Viola et al., 2004] used a chamfer distance transform approximation [Borgefors,

1986] to create a depth image of a basic cutaway surface. The implementation requires rendering

the back hulls of the region of interest into a depth buffer, reading this buffer to the CPU to be

processed by the chamfer approximation algorithm, then writing the buffer back to video memory.

The chamfer distance transform on a binary image B approximates a Euclidean 2-D distance

transform, which determines the minimum distance d at each pixel p to an active (white) pixel q

in B:

d(p) = min
q∈B
‖q− p‖ (5.1)
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Note that minimizing this function is equivalent to maximizing the following function, where dmax

is a maximum value for d, and d(p) = dmax when p is an active pixel in B:

d(p) = max
q∈B

(dmax−‖q− p‖)

By using a floating point input image I initialized with variable depth values z(p) instead of dmax,

and scaling the chamfer kernel by m, the chamfer algorithm maximizes the following function:

d(p) = max
q∈I

(z(p)−m‖q− p‖) (5.2)

Because the depth values in the resulting image decrease linearly with slope m from their

anchor points, the surface defined by the image resembles the rear hull of cones with angle θ =

tanm anchored along the z-axis and positioned over each pixel at the depth z(p). This shape is also

precisely the shape of the cutaway surface described in Section 4.1.1. Accordingly, this function

matches the definition of the conical surface function c, equation (4.1), and the cutaway surface

function C, equation (4.2).

5.1.2 Computation algorithms

The first step of computing an image-based cutaway surface is to define the region of interest.

To ensure that the forward-facing cutaway surface reflects the shape of the entire volume of the

region of interest, the rear-hull of the region is used to compute an initial seed depth image. The

rear-hull can be computed by rendering the geometry of the region of interest into a depth buffer

with depth testing set the opposite of normal, favoring far values. In OpenGL this operation can

be done using the greater-than test.

Once a depth image has been seeded with the region of interest, each seed pixel can be

considered a definition for separate occluding volumes, giving rise to one occluding volume per

pixel. Considering each pixel as a point, the occluding volume for each pixel is a cone anchored

at the pixel’s center with angle θ, aligned along the view vector. An occluding volume for the

entire region can be constructed by taking the union of cones defined at each pixel. The cutaway

surface for this volume is then the rear-hull of the union of cone surfaces. At a given pixel p, the
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depth of the rear-hull is the maximum of the conical surface depth function c(p,q) for each pixel

q in the seed image. This value is computed by the cutaway surface function C (equation (4.2)).

There are several ways to compute C over a seeded depth image, the brute force approach, the

Chamfer approximation, and a GPU-friendly algorithm based on Jump Flooding [Rong and Tan,

2006].

5.1.2.1 Brute force

The basic brute-force approach offers an exact solution by evaluating c(p,q) at each pixel p for

every pixel q in the seed image to find the maximum (furthest) depth. For an n-by-n image this

approach requires O(n4) operations, making it prohibitively slow for real-time application with

usable image resolutions.

5.1.2.2 Chamfer approximation

A very fast alternative to the brute-force approach is to calculate the Chamfer approximation

[Borgefors, 1986] of the 2-D distance transform of the seed depth image. The algorithm operates

in two passes on the image, the first from the top left, left to right, top to bottom, and the second

in reverse order. At each pixel p a small k-by-k kernel K of fixed distances is used to find the

minimum distance from p to the already-processed pixels covered by K. By operating sequentially

on each pixel, distances are propagated downward in the first pass, forming half of the cutaway

surface, and propagated upward in the second pass, completing the other half of the cutaway

surface. By scaling the distances in K, the slope of the cutaway surface can be increased or

decreased, to match the desired θ. Commonly used values for k are 3, 5, and 7.

The Chamfer algorithm has the advantage of running in O(n2) time for an n-by-n image, but

also introduces visual artifacts as a result of the approximation. These starburst artifacts can

be seen in Figure 5.1, where the approximation generates triangular features to approximate the

smooth cutaway surface. Because the starburst shapes are aligned with the image and not the
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objects, they are especially visible under changing camera angle. The approximation improves

with larger kernels, but at the cost of increased computation time.

Another disadvantage of the Chamfer algorithm is its serial data dependency. Since distances

are propagated from one pixel to neighboring pixels, a given pixel can’t be processed until all

dependent neighboring values in K are processed. This dependency limits the ability of the

Chamfer algorithm to operate efficiently in the massively-parallel GPU environment. As a result,

implementations are generally carried out on the CPU, forcing a transfer of the depth buffer

from the video memory to the CPU main memory for Chamfer processing, and then back to the

video memory for cutaway rendering. These memory transfers can further decrease performance,

depending on the memory bandwidth available.

5.1.2.3 Jump flooding

Jump flooding, as presented by Rong and Tan [Rong and Tan, 2006], is a GPU-based version of

a parallelizable algorithm for calculating exact 2-D distance transforms by minimizing Euclidean

distance (equation (5.1)). This algorithm operates in O(n2 logn) time, by performing logn passes

over an n-by-n image. By replacing the 2-D distance function with the conical surface depth

function (equation (4.1)) in the jump flooding algorithm, the algorithm can be used to calculate the

cutaway surface function. As this algorithm can operate on the GPU, performance is significantly

faster than that of the Chamfer approximation, while producing a surface free of approximation

artifacts.

Computation begins by rendering the region of interest into a buffer, like the previous al-

gorithms, augmenting stored depth with screen-space coordinates at each pixel. The ”greater

than” depth function is used so fragments furthest from the camera, comprising the rear hulls, are

stored. For an n-by-n image, the algorithm executes logn iterations over the buffer, with a single

per-iteration offset parameter k = n/2i for iteration i.

For each iteration and pixel p, the stored depth and coordinates at p, which are the maximum

previously found depth and its coordinate location, is compared to c(p,q) evaluated for the 8
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(a) Chamfer approximation with 3-by-3 kernel

(b) Chamfer approximation with 5-by-5 kernel

(c) Ground truth calculation

Figure 5.1: Cutaway illustrations and matching cutaway depth images for several calculation
methods. The Chamfer approximation with a 3-by-3 kernel in (a) has starburst artifacts that
manifest in the cutaway as planar areas. With a 5-by-5 kernel, the approximation in (b) is less
jagged, at the cost of increased computation time. A more precise evaluation of the cutaway
function in (c) appears completely smooth.
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Figure 5.2: An illustration of cutaway surface computation with the jump flooding algorithm.
To calculate the surface shown in Figure 5.1c, at a resolution of 512-by-512, 9 iterations are
necessary. A depth image of the rear hull of the green box (n = 0) is iteratively processed with
successively decreasing step sizes, until the resulting surface is smooth and free of jagged artifacts
(n = 9).
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candidate points q ∈ {(px +{k,0,−k}, py +{k,0,−k})− p}. If a greater depth is found, the new

maximum and its coordinate location are stored at p for the next iteration. At the completion of

logn iterations, the depth at p is the maximum value C(p,q) for all q over the image. Evaluating

C(p,q) exactly each time avoids approximation artifacts and allows definition of the cutaway

function per pixel, affording local control, as described in Chapter 6.

5.2 Rendering cutaways

As described in Section 4.2, cutaway illustrations revealing a region of interest can be generated

by applying occlusion reduction techniques to a scene according to the cutaway surface for the

region of interest. By computing the cutaway surface as a depth image aligned with the image

plane, as done in Section 5.1, the depth of the cutaway surface can be readily determined for each

rendered fragment by performing a lookup into a depth buffer containing the cutaway depth image.

Given the depth of the fragment and the depths of one or more cutaway surfaces (depending on the

cutaway structure), the occlusion function can be evaluated to determine the appropriate occlusion

reduction strength.

5.2.1 Region of interest

The cutaway surface is computed from the rear hulls of the regions of interest because only

surfaces on the rear hulls contribute to the shape of the cutaway, since surfaces on the front hulls

are completely contained by the conical surface emanating from the rear hulls. The regions of

interest, existing just in front of these cutaway surfaces, are part of the base region since they are

rendered without any occlusion reduction techniques. Their front hulls must then be incorporated

into the cutaway surface. Incorporating the regions of interest into the base region ensures an

appropriate definition for the overlay region, which should exist in front of the region of interest

and the transition region.

The regions of interest can be incorporated into depth images of cutaway surfaces by rendering

their geometries into the depth images using a conventional less-than depth test, favoring surfaces
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near the camera. This augmentation of the cutaway surfaces should be performed in a separate

pass after the cutaway surfaces are calculated and before they are used in rendering the scene.

5.2.2 Simple cutaway structure

In the simple cutaway structure, there are only two regions, base and clear, separated by a single

cutaway surface. The occlusion function is based on which region a fragment is in, and can be

reduced to whether or not a fragment’s depth is greater or less than the depth of the boundary

cutaway surface. This classification can be made while rendering by comparing the fragment’s

depth pz to the depth of the cutaway surface C(p) stored in a texture at the same screen-space

position. The occlusion function is then:

Ω(p) =

 0 if pz ≥C(p)

1 if pz <C(p)
(5.3)

This function can be implemented efficiently in a GPU fragment shader using the step function

[Rost, 2006]:

Ω(p) = 1− step(C(p), pz) (5.4)

Once the occlusion value is computed, the occlusion reduction strength R can be computed using

the importance I of the fragment, generally determined by which object in the scene or which

volumetric material is generating the fragment.

The example images presented here for the simple cutaway structure use a binary importance

definition, where the important objects establish the region of interest and all other materials are

of equally low importance. In this case, R = Ω for all materials outside the region of interest,

generating a cutaway illustration where objects in the clear region are fully reduced.

5.2.3 Contextual cutaway structure

In the contextual cutaway structure, the two additional regions, transition and overlay, bring

the number of boundary surfaces to three. Fortunately, the overlay-clear boundary can be de-
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rived from the transition-overlay cutaway surface by addition of the overlay depth d. The base-

transition is a separate cutaway surface defined by a different angle and must be calculated

independently of the transition-overlay surface. Thus the contextual cutaway structure requires

two depth images of cutaway surfaces, defined by cutaway depth functions C1, for the transition-

overlay boundary, and C2, for the base-transition boundary.

Given these two depth functions, the occlusion function as defined in Section 4.1.3.3 can be

calculated as a two-part linear ramp with 0 at C2, 0.5 at C1, and 1 at C1 +d. Given a linear ramp

function from a to b:

ramp
[a...b]

x =


0 if x < a

x−a
b−a if a≤ x < b

1 if x≥ b

(5.5)

the occlusion function can be calculated as:

Ω(p) =

(
ramp

[C2(p)...C1(p)]
pz + ramp

[C1(p)...C1(p)+d]
pz

)
÷2 (5.6)

As with the simple cutaway structure, the occlusion reduction strength R can be determined using

the importance I of a fragment along with the value of the occlusion function at the fragment’s

position.

The exact mapping of I and Ω to R can be defined to suit specific visualization goals, but

should follow a few universal rules. First, no occlusion reduction should occur in the base region,

so R should be zero when Ω is zero. Secondly, R should increase monotonically with respect to Ω

for a given I, so that occlusion reduction never occurs less in an area with a high occlusion value

than in an area of low occlusion value. This rule follows from the premise that occlusion reduction

should occur most in areas with high occlusion values. Finally, R should decrease monotonically

with respect to I for a given Ω, so that materials of higher importance do not have their occlusion

reduced more than objects of lower importance. This rule follows from the premise that materials

of higher importance should be more visible than objects of lower importance.

Within these rules, it is possible to trim objects according to cutaway surfaces defined for

angles between θ1 and θ2 and to allow some objects to remain visible in front of the region of
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interest. In either case it is possible to make sharp cuts in objects by having a sharp change in

R, or fade objects out gradually by having a smooth change in R. Specific occlusion reduction

functions will be explored in Chapter 7.

5.2.4 Cutaways and polygonal rasterization

Cutaways of rasterized polygonal scenes can be created by applying occlusion reduction according

to the cutaway structure in a fragment shader. While occlusion reduction via translucency or edge

highlights can technically be applied in varying degrees to a polygonal object, the best results

are had when occlusion reduction is applied fully or not at all, as it creates a sharp cut surface

that fits in well with the other solid polygonal surfaces. In the case of occlusion reduction by

translucency, a binary function for R equates to ordinary clipping, where fragments with full

occlusion reduction are completely omitted during rendering. Performing this clipping without

any other consideration accomplishes the goal of exposing the region of interest, but also exposes

a shortcoming of polygonal rasterization—the models are left with visible holes, losing their solid

appearance.

5.2.4.1 Cut surface

Previous work has performed clipping of polygonal scenes with cutaway surfaces and other

arbitrary shapes using stencil buffer algorithms. [Coffin and Hollerer, 2006; Li et al., 2007]

These clipping operations involve rendering the cutting geometry in certain areas of the image to

represent the cut surface. The stencil buffer methods could be adapted to work with a cutaway

depth image standing in for the explicit cutting geometry, but an alternate, simpler approach can

be taken for rendering the cut surfaces of the proposed cutaway surface.

For a scene composed of non-intersecting water-tight models, partial clipping of models al-

ways exposes their interior surfaces. Fragments rendered by these interior surfaces can be detected

as coming from back-facing triangles of the model being clipped. Thus, in order to give the

appearance of rendered cut surfaces, one can shade all fragments from back-facing triangles using
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(a) Clipping only (b) Back-facing fragments

(c) Back-facing fragments shaded and outlined

Figure 5.3: A cutaway rendering of two objects being exposed from within a sealed box.
Conventional clipping alone, shown in (a), exposes the interior of the box as well as the interior
of the box walls, causing the walls to appear hollow. Fragments from back-facing surfaces,
highlighted in (b), can be shaded using normals calculated from the cutaway surface depth image
to represent the cut surface, shown in (c), giving the appearance of solid walls. To fit the line
drawing style, the footprint of the back-facing fragments can be outlined to show ridges formed
by the cut.
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normals calculated from the cutaway surface. The only visible back-facing fragments are those

that appear in place of the cut surface. The result of this technique is illustrated in Figure 5.3.

The cut surfaces help give the appearance of solid objects being carved away along the cutaway

surface and aids in the perception of the cutaway surface shape.

The normal in camera space for a given point on the cutaway surface can be calculated by

un-projecting depths of nearby pixels in the cutaway depth image to find nearby points on the

cutaway surface in camera space. Three or four of these points can establish two non-parallel

vectors along the cutaway surface, which can be crossed to find the normal.

5.2.4.2 Line renderings

Polygonal rasterization is often combined with line extraction and rendering to create non-photorealistic

images that mimic artistic techniques. Rendered lines serve the same purpose as those in artistic

line drawings, to convey surface shape and object detail. It is possible to extract these lines from

the depths of rendered images [Saito and Takahashi, 1990], in which case the cutaway depth

image can be incorporated with the rendered depths of geometry to produce an accurate depth

image of the cutaway scene. However, most line rendering algorithms start with line extraction

from geometry, looking for ridges, creases, and other geometric surface features.

In a cutaway illustration, one such geometric feature that warrants a line is the ridge formed on

an object by the cutting action, delineating the cut surfaces. Creating explicit geometry for the cut

surfaces is theoretically possible by carefully clipping scene geometry against the cutaway surface,

a potentially expensive operation. Alternately, ridges can be found on image-space boundaries of

the cut surfaces rendered in Section 5.2.4.1. Cut surfaces can be outlined by recording fragments

from back-facing triangles in a separate binary channel and processing this image on the GPU to

highlight or mark pixels on the binary image boundaries. Figure 5.3c shows how these outlines

correspond to the ridges formed by the clipping, and aid visual perception of the cut surface

locations.
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This image-space operation can fail to work in situations where the clipped object has little

separation between front and back-facing surfaces and the cutaway surface is very steep relative

to the camera. In order to address this problem, back-facing fragments can be clipped to a cutaway

surface that is slightly narrower, such that at least one back-facing fragment is exposed where a

surface is clipped. This surface is created by a dilation operation on the cutaway depth image

that finds the minimum value in a 1-pixel neighborhood. The resulting dilated cutaway depth

image is used to clip back-facing fragments when detecting cut surface outlines as well as when

determining the occlusion value for consistency.

5.2.5 Cutaways with volumetric rendering

Volumetric rendering is often used for scenes and datasets with non-solid objects because mate-

rials are rendered by volume rather than by surface alone. As such, smokey, gaseous, and other

translucent objects can be rendered by simulating the absorption of light through a scene. Since

volumetric rendering already includes high variability in material translucency, it is straightfor-

ward to introduce the more variable occlusion reduction techniques like variable translucency and

edge highlights into a rendering. Thus, volumetric rendering is more suitable than polygonal

rasterization to handle smooth changes in R.

As is the case with polygonal rasterization, occlusion reduction can be applied in a fragment

shader before the fragment is rendered. For slice-based volumetric rendering, each fragment

must perform a lookup into the cutaway depth image(s) to determine the occlusion value, and

the occlusion reduction factor. For raycasting methods, where each ray corresponds to a single

screen-space pixel, lookup of the cutaway surface depth(s) may be performed once for each ray

(pixel) and can be reused to calculate the occlusion value for each accumulated sample along the

ray. This potential optimization, along with the availability of cutaway depths as GPU textures,

makes GPU raycasting the recommended rendering method for volumetric cutaways.

For occlusion reduction functions with a sharp binary transition in R, sharp cuts will be

generated. Unlike polygonal rasterization, the volumetric shapes will not appear hollow as ma-
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terial is rendered all throughout their interiors. However, the cut surfaces will not be properly

shaded, because the volumetric normal used for shading will not reflect that of the newly cut

surface. Volumetric clipping and shading techniques that combine the volumetric normals with the

clipping geometry normals [Weiskopf et al., 2003] can be used to shade the cut surface according

the normal calculated from the cutaway depth image, giving a more appropriate appearance to

volumetric cut surfaces.

For occlusion reduction functions with smooth changes in R, materials are faded out without a

sharp cut surface. In these cases, no special shading should be performed, as no sharp cut surface

will be present.

5.2.6 Perspective projection correction

It is important to note that the depth image resulting from the cutaway surface depth function

C (equation (4.2)) is generated under the assumption of an orthographic projection. That is,

it exactly matches the geometric definition of the cutaway surface only under an orthographic

projection. Under a perspective projection, post-projection depth values from the rendered region

of interest, which are used as input to C, are distorted by the non-linear perspective transformation.

Fortunately, processing these depth values directly with the algorithms of Section 5.1.2 yields a

viable cutaway surface with similar geometric properties to the original orthographic cutaway

surface.

Since linear surfaces are preserved in the perspective transformation, the surface is still conical

with linear edges but instead of the cone axes being aligned along the z-axis, they are aligned along

the viewing rays, as shown in Figure 5.4. The precise angle of each cone is no longer constant,

since the slope m of a line can change depending on its depth and projected position during the

perspective transform. However, the surface generated still exhibits all of the properties enumer-

ated in Section 4.1.2.4, and can very closely match a cutaway for an orthographic projection by

modification of the slope m in equation (4.2).
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(a) Without perspective projection correction

(b) With perspective projection correction

Figure 5.4: Cutaway illustrations of a house with corresponding cutaway depth images at three
different zoom levels. Without perspective projection correction, the size of the cutaway relative
to the scene changes significantly as the camera zooms in, while the cutaway surface function
changes little. With perspective projection correction, the cutaway surface function adjusts
significantly and the relative size of the cutaway is preserved as the camera zooms.
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Because the slope m to the image plane is applied in screen space, a fixed slope m can cause

cutaways of very different widths (angles) in model space, depending on the depth of the anchor

point p. This effect is shown in Figure 5.4, where the cutaway becomes very wide when zoomed

out and very narrow when zoomed in. The perspective error can be drastically reduced by applying

a scaling factor to the slope, −(PMsz + pz) where PMsz is the z-scaling factor of the projection

matrix, which is defined under OpenGL as PMsz = (znear + z f ar)/(znear− z f ar). This scaling

factor is accurate for the projection of a line passing through the z-axis, and the error of the

approximation is larger for lines anchored at p further away from the screen center. The modified

slope for a perspective projection is then:

m(p) =
−(PMsz + pz)

tanθ
(5.7)

5.2.7 Edge compression

Another limitation of the image-based cutaway surface computation algorithms is that off-screen

objects of interest do not contribute to the on-screen cutaway surface. This lack of contribution

is acceptable for static images as it makes little sense to carve secondary objects to reveal off-

screen objects of interest. However, when objects move on or off screen in interactive or animated

applications, a noticeable discontinuity can occur where objects are suddenly carved away, as

shown in Figure 5.5.

This limitation could be partially addressed with a cutaway buffer much larger than the screen

buffer, so objects outside the rendered screen could still contribute to the cutaway surface. How-

ever, the required size of this buffer would increase dramatically as the cutaway angle for the

off-screen regions of interest increased, since the increased cutaway angle increases the effective

cutaway footprint. Aside from the unbounded increase in memory requirements and processing

time, the utility of a region of interest far off screen having a cutaway effect on the image because

of its wide cutaway angle is dubious at best.

Given local control over the cutaway function, this problem can be cleanly mitigated by

adjusting the effective angles such that pixels near the edge of the screen create a cutaway with
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(a) Without edge compression (b) With edge compression

Figure 5.5: An illustration of edge compression in a cutaway animation. The animation begins
with the red icosahedron being exposed (top). As the camera pans right (second from top), a green
box just enters the screen, also being exposed. Without edge compression, the edge of the green
box creates a large cutaway, creating a visual “pop.” With edge compression, the size of the new
cutaway is limited to a small region at the edge of the screen. As the green box moves on screen
(second from bottom), the cutaway grows to a normal size. Once the green box is completely on
screen (bottom), the cutaway shape appears the same regardless of edge compression.
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a very narrow angle and pixels sufficiently away from the edge of the screen use a normal angle.

Then, as an object moves from off-screen to on-screen, its cutaway footprint increases from zero

at the edge of the screen to its normal size once sufficiently on-screen.

Given screen space coordinates for p in the range (−1,1) and a size r of the screen edge region

in which compression should occur, this control can be had by defining:

θe(p) = θclamp
[0...1]

(
1−|px|

r

)
clamp
[0...1]

(
1−|py|

r

)
(5.8)

The images in Figure 5.5 use r = 0.1, which generally provides a smooth and balanced transition

for objects entering and exiting the screen.

This modification of the cutaway function does not require significant user tuning, but other

modifications of the cutaway function can incorporate user-specified parameters when appropri-

ate. The next chapter explores additional cutaway function modifications that can improve the

quality of rendered images in applications that support interactive exploration.
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Chapter 6

Exploring Complex Scenes: Creating

Interactive Adaptive Cutaways

The benefits of real-time algorithms supporting cutaway illustrations are not fully realized in pre-

rendered images or animations, because they offer little advantage to a viewer over hand-made

cutaway images or animations. However, when incorporated into an interactive application, these

algorithms empower a user to easily create their own dynamic cutaway illustrations, allowing

them to explore complex scenes in real-time. To that end, there are several application features

that are useful for controlling cutaway creation. Included in this chapter are new cutaway surface

function modifications to support locally defined angles and directional constraints.

6.1 Scene exploration and importance designation

Exploration of complex scenes can be accomplished by selecting objects or volumetric regions of

interest and exposing them through cutaways. For a scene with many potential objects of interest,

a user can select each of these objects sequentially as they desire them exposed. Additionally,

objects and volumetric materials in a scene can be assigned real-valued importance values to

control their exposure in a contextual cutaway structure (Section 4.1.3).
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For polygonal scenes, the scene can be segmented at modeling time, such that objects can

be represented in a scene graph or entity list. A user can then explore the scene by selecting

objects in a list to define the current region of interest. This selection widget, which can stand

alongside the render window, can also be used to assign importance values to objects. Then, the

importance value of an object can be associated with its constituent polygons at render time to

influence any occlusion reduction. An application may also support grouping of related objects

into user-defined cutaway groups, each defining a region of interest with its own set of cutaway

parameters, as described in Section 6.2.

For purely volumetric scenes, similar segmentation of the scene must occur. Common volu-

metric segmentation algorithms can be used to create geometric surfaces that can then be used to

define the region of interest. Importance values must be available at render time for a particular

voxel to control occlusion reduction, so a means to define importance per voxel must be estab-

lished. One possibility is to define the importance values via a transfer function, just as color

and opacity are defined [Haidacher, 2007]. The pairing of color and opacity with importance

associates importance values with particular volumetric materials, and can provide the distinction

necessary for an expressive contextual cutaway illustration.

For hybrid scenes, a combination of the above methods can be used for polygonal and volu-

metric elements as appropriate.

6.2 Controlling cutaways

The cutaway algorithms described in Chapter 4 and Chapter 5 have several parameters that are

best exposed to the user, to be tuned to fit a particular visualization goal. These parameters include

the cutaway angles and overlay thickness in the cutaway structures. Because absolute values of

the angles and thickness are often unimportant to a user, these values can be effectively controlled

with sliders or knobs.

For the cutaway angles, a user can quickly experiment with widening or narrowing the cutaway

by adjusting a slider with extents corresponding to 0◦ and 90◦. For the overlay thickness, a simple
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knob that increases or decreases the value can allow the user to control how much occluding

material is preserved in the overlay. Real-time feedback afforded by efficient rendering algorithms

can guide their decision.

While overlay thickness can effectively be applied globally, cutaway angle and shape may be

more effective when applied at the cutaway group level. The jump flooding computation algorithm

described in Section 5.1.2.3 allows definition of the cutaway function per-pixel, which affords

real-time calculation of a cutaway surface with support for locally-defined angles and directional

constraints.

6.2.1 Local angles

By replacing θ in equation (5.8) with a locally defined θ(p), the cutaway surface can be calculated

using locally defined angles. These angles can be defined per cutaway group, and should be

constant within a group. The angle values can be written to a texture when the cutaway depth

image is seeded with the regions of interest, using the assigned angle value for each region. During

cutaway computation, this texture can be referenced by the fragment shader to find the angle at

each pixel when evaluating the cutaway surface function.

Locally defined angles may be used to de-emphasize certain regions of interest by cutting out

less material around them. They may also be used to manually fine tune the cutaway effect for

regions of interest in different parts of the screen, when a global angle may produce undesirable

results. This effect is demonstrated in Figure 6.1.

6.2.2 Directional constraints

In addition to allowing specification of cutaway angle per cutaway group, per-pixel definition

of the cutaway surface function can allow modification of the cutaway shape. Compressing or

truncating the conical shape on which the cutaway surface is based can result in differently shaped

cuts.
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(a) Cutaway with global angle

(b) Cutaway with local angles

Figure 6.1: Cutaway illustrations of a house with global and local angles. (a) A large cutaway
angle applied to objects on both the upper and lower floors causes the floor beneath the objects on
the upper floor to be removed, removing valuable context material. (b) When a smaller cutaway
angle is used for objects on the lower floor more contextual material is preserved while sufficiently
exposing objects on both floors.

Figure 6.2 shows a potential application for this modification, where a floor exhibits an unnec-

essary and distractingly large cut surface from objects positioned on the floor. This artifact can

arise on any large, flat surface that intersects the cutaway interior nearly parallel to the edge of

the cutaway, as the surface is only slightly carved away. It occurs often in views where objects

of interest are situated on top of large objects outside the region of interest, such as a floor. To

prevent this artifact, one can modify the shape of the cutaway to cut just above the surface of the

floor.
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(a) Without directional constraint

(b) With directional constraint

Figure 6.2: Objects of interest in the interior of a house rendered with and without a directional
constraint. (a) Without the directional constraint, the cutaway surface can pass through the floor
plane, causing the bed on the upper floor to lose its supporting floor and causing a visually
distracting hole underneath the couch. (b) With the directional constraint, the floor is only
removed when necessary to expose the object of interest, such as exposing the bed from below.
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This modification requires determining an angle φ(p), the maximum angle of a cutaway that

will avoid clipping a surface with normal n̂. With the (global) normal of the floor direction n̂, and

the normalized view vector v̂(p):

φ(p) =
π

2
− arccos(n̂ · v̂(p)) (6.1)

Note this angle is zero when the camera is at the floor (n̂ · v̂ = 0), and negative when the floor is

viewed from below (n̂ · v̂ < 0).

Based on this angle, a cutaway angle that uniformly minimizes undesirable carving of the floor

can be calculated. The cutaway angle θ can be clamped to φ for camera positions above the floor

(positive φ) and quickly transition from zero to θ once the camera passes below the floor (negative

φ). Thus we have:

θ f (p) = clamp
[0...φ(p)]

θe(p)+θe(p)smoothstep
[0... π

18 ]

(−φ(p)) (6.2)

Application of this angle to the cutaway directly would shrink the cutaway in all screen-space

directions as the floor becomes more perpendicular to the camera. However, the cutaway should

only be shrunk in screen-space directions where it may cut into the floor, by using θ f for directions

of the cutaway opposite the projected screen direction of the floor normal n̂pro j and θe for other

directions. α is established as the coherence between the screen space vector from q to p and the

projected floor normal, and can be used to interpolate between cutaway angles θe and θ f :

α = clamp
[0...1]

(
(q− p)
‖q− p‖

· n̂pro j

)
(6.3)

θd = θ f ∗α+θe ∗ (1−α) (6.4)

Figure 6.2 shows the resulting effect where the cutaway no longer creates large distracting patches

of cut surface and automatically adjusts itself with respect to the floor and camera directions.
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Chapter 7

Cutaway Visualizations: Results and

Analysis

The presented techniques for occlusion reduction and object exposure have been designed to

facilitate the visualization of structurally complex scenes. To show how these techniques can

be used in practice, the following sections detail two visualization problems that can be solved

using cutaway visualization techniques.

7.1 Medical ultrasound and CT scan data

This section describes the motivating application for work on contextual cutaways [Burns et al.,

2007] and presents results showing ultrasound data in the context of a volumetric CT scan.

7.1.1 Overview

Non-invasive needle-based medical procedures are designed to interact with organs and tissues

inside the body without cutting open the skin. These procedures, which can include biopsy and

radio frequency ablation, require that a surgeon navigate the body interior and operate without real

visual feedback, which they would have in a normally invasive procedure. As such, the insertion
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path of the needle must be carefully planned on a patient’s CT scan prior to any procedure, in

order to avoid critical structures. During such a procedure, an ultrasound scanner can assist in

navigating needles to the planned locations, providing a real-time view of the relevant tissues. For

a surgeon who would be otherwise flying blind, a view of the ultrasound scan as well as the CT

data on which the needle path was planned is critical.

Traditionally, these views are presented separately, using conventional display techniques for

each modality. A volumetric CT scan can be shown either in a 3-D volumetric rendering, or

in slices along one of the principal axes of the scan. Medical ultrasound, which is measured in a

plane oriented from the ultrasound transducer into the patient’s body, is often shown as a live video

stream. The separation of these visualizations requires that a user mentally align the ultrasound

with the body and the CT scan in order to correlate any features from the two sources.

Using specialized state-of-the-art technology and visualization methods, it is possible to create

an integrated visualization that combines the view of the ultrasound data with the context of the

CT scan. A magnetic tracking system can be affixed to the ultrasound transducer and the needle(s)

to determine the positions and orientations of the transducer and needle(s) relative to the tracking

base. The CT scan can be aligned with this coordinate system to provide an accurate position of

the ultrasound image and needles relative to the CT volume. A combined visualization can then

embed renderings of the ultrasound plane and needles in the same space as the CT volume.

The inherent problem of embedding an ultrasound plane in a volumetric rendering is showing

enough data from the pre-operative scan without completely occluding the ultrasound image

plane. Ideally, the ultrasound plane should be mostly visible, so that a viewer can see the real-time

measurements from the ultrasound image. Critical anatomical structures, such as blood vessels,

should also be visible to some extent, to show areas that should be avoided by an inserted needle.

Finally, the ultrasound plane should be visually relatable to the patient’s body, to show the location

of other tissues and organs and to reassure the operator that the tracking alignment is correct. The

fused view potentially allows visualization of ablation target volumes and margins and the planned

optimal needle path relative to the transducer and/or needle position.
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7.1.2 Visualization strategy

The emphasis and exposure techniques of Chapter 3 and Chapter 4 can be used to create fused

renderings of ultrasound data in the context of a CT scan. The contextual cutaway structure

(Section 4.1.3) can be used with the ultrasound plane as the region of interest to ensure that it is

exposed. Tissues from the CT scan can be defined by components of a 2-D transfer function and

assigned importance values. The contextual cutaway structure can then ensure that only the most

important tissues are seen in front of the ultrasound plane, in the overlay region. Other important

tissues can be made visible in the transition region while the remaining tissues are relegated to

the base region.

Since the rendering is mainly volumetric, variable translucency can be used as the occlusion

reduction mechanism, so that materials are faded out based on their importance and position in

the cutaway structure. As mentioned in Section 4.2.1, the specific mapping of I and Ω to R will

have a significant effect on the way occlusion is reduced in the cutaway structure. The images

shown in this section use the following mapping:

τ0 = max(2I−1,0) (7.1)

τ1 = I (7.2)

R = ramp
[τ0...τ1]

Ω (7.3)

When I = 1, the ramp function degenerates and R = 0 by definition, causing materials to never

have their occlusion reduced and to be visible in the clear region. Materials of high importance

(1 > I > 0.9) have sharp fades in the overlay region so their cutaway boundaries are easily visible.

Materials of moderately high importance (0.9 > I > 0.5) fade more gradually from the transition

to the overlay regions. Materials of moderate importance (0.1 > I > 0.5) are faded gradually and

wholly within the transition region. Materials of low importance (I < 0.1) are faded near the base

region, barely extending into the transition region. Finally, for materials with I = 0, full occlusion

reduction is performed everywhere except in the base region.
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7.1.3 Results

Figures in this section show fused visualizations of ultrasound planes embedded in volumetric

CT scans. Needle positions, needle paths, and target ablation volumes are omitted for sake of

simplicity but could be incorporated when available using conventional rendering techniques.

The ultrasound exams were recorded with the spatial location and orientation of the transducer

tracked using a magnetic position sensor. The ultrasound sweeps have been manually registered

(spatially aligned) to the tomographic 3-D scans, aided by automatic techniques [Wein et al.,

2005]. To show interventional ultrasound in the context of organ vasculature, an early arterial

phase CTA scan of a liver is used. Injected contrast agent causes the vasculature to show up with

high intensities in the scan, easily distinguishable from surrounding tissue.

Figure 7.1 shows how a fused visualization is constructed using the contextual cutaway struc-

ture. The transfer function defines color values for vessels and kidneys (blue), bone (white), liver

(yellow), skin (tan), and unclassified tissue (red). Descending importance values are assigned

to components in the same order, from vessels and kidneys (0.99) to unclassified tissue (0.01).

As such, skin and unclassified tissue are shown mostly in the base region, never occluding the

ultrasound plane. Liver tissue protrudes into the transition region, free of occlusion by surrounding

skin and unclassified tissue, but also never occluding the ultrasound plane. Because of their high

importance, vessels, kidneys, and bone are shown throughout, extending into the overlay region,

where they may occlude the ultrasound plane. The fused visualization provides the desired view

of the ultrasound plane with the contextual information from the CT scan.

The benefit of using the contextual cutaway structure over the simple cutaway structure is

shown in the progression from Figure 7.1a to Figure 7.1e. The simple cutaway structure consists

of only the base region, where vasculature and liver tissue are occluded by unclassified tissue. The

additional regions of the contextual cutaway structure expose these tissues while still exposing the

majority of the ultrasound plane, making for a richer, more informative visualization.

Emphasis via shading (Section 3.3.1.2) using the assigned importance values has been incorpo-

rated to guide the viewer’s attention to more important tissues such as vessel and bone. Figure 7.2
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(a) Base region only (b) Transition region only

(c) Base and transition regions (d) Overlay region only

(e) Base, transition, and overlay regions

Figure 7.1: Illustration of cutaway regions. (a) The base region shows all tissue cut around
an ultrasound image. (b) The transition region shows liver (yellow) and kidneys, vessels, and
bone (blue/white). (c) Composited with the base, these tissues remain visible, protruding from
unclassified tissue (red) and skin (tan). (d) The overlay region contains only important tissues
that, (e) when composited with the other regions, may occlude the ultrasound image.
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(a) Normal shading (b) Emphasis shading

Figure 7.2: Cutaway images of ultrasound data in a CT scan of a human torso. (a) With normal
shading all surfaces are fully shaded. (b) With emphasis shading unimportant materials are shaded
less, reducing visible surface detail. Emphasis shading causes skin (tan) and unclassified flesh
(red) to be visually de-emphasized relative to materials of higher importance.

shows how shading detail can be suppressed in the unclassified tissue and skin to reduce the

overall complexity of the image. The strength of this effect is controllable, and is shown with

Es = 0.3.

Figure 7.3 shows several images from this data set in an interactive visualization session. A

user can move the ultrasound transducer to inspect different portions of the abdomen, allowing

them to virtually carve away pieces of the body. The user-defined geometric parameters of the

cutaway structure (angles, overlay depth) are freely adjustable during the session, allowing the

user to see more or less contextual material as desired. The user can also rotate and zoom the

camera around the volume, changing the camera position as desired to find a good view of the

ultrasound plane. Together these features form a flexible system that allows for intuitive virtual

exploration of a patient. When combined with a realtime view of a tracked needle and needle path

data, a user would be able to ensure that a needle operation proceeded as planned.

Figure 7.4 shows the result with a non-contrasted CT scan where vasculature is difficult to

differentiate from other tissue. In this case, bone is the only tissue of high importance, and

provides a structural frame of reference for the ultrasound plane. Because vasculature is missing,

this visualization mainly serves to show the position of the ultrasound probe relative to the body.
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(a) Thin overlay region, narrow transition region (b) Thin overlay region, wide transition region

(c) Ultrasound sweep forward (d) Continued sweep forward

Figure 7.3: Cutaway images of ultrasound data in a CT scan of a human torso. A thin overlay
region with a narrow transition region (a) shows small amounts of vessel (blue) in front of and in
the periphery of the ultrasound plane. A wider transition region (b) exposes bone (white) and liver
tissue (yellow). As the ultrasound plane is swept forward (c)-(d) the cutaway structure updates to
show important tissues in the overlay and transition regions.

7.2 Architectural models

This section describes results from work that applies cutaway rendering techniques to polygonal

architectural models [Burns and Finkelstein, 2008].

7.2.1 Overview

Modern architectural design work is generally performed with computers, using 3-D modeling

software to create and refine models that can be rendered to preview a finished building. Architects
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Figure 7.4: A transversal ultrasound image of a patient’s liver is shown aligned in the context of
a (non-contrasted) CT scan. Bone is allowed to obscure the ultrasound plane and as such helps
facilitate spatial perception of the plane.

can go to great lengths to create a detailed model, staging the interior of the building with furniture,

appliances, and other structures that show their vision for how a space could be populated and

used. As a building increases in size and a modeler puts more effort into populating its interior, the

model can become highly complex structurally, with layers of walls, ceilings, and interior objects

potentially occluding each other. Such occlusion can make it challenging to create effective

renderings showing a building’s interior.

One common approach to depicting interior spaces is to place the camera inside the building,

recreating the perspective of a building occupant. Such perspectives can be created for static

images by manual placement of a camera, or for animations by modeling a camera path in a

standard 3-D rendering application. Yet another option is to allow a user to navigate a scene using

controls similar to those found in video games. These approaches can all provide interior views

with conventional rendering techniques, but require care in placing the camera in order to view

a particular area. Additionally, the limited point-of-view of the camera on the interior makes it

difficult to determine locations of interior spaces and positions of objects relative to the whole
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building. Because of occlusion by walls and floors, this approach also does not allow view of

more than a single room.

One option for viewing interiors from exterior camera positions is to use clipping planes to

suppress rendering of portions of the building that normally occlude an interior region of interest.

For example, it is common when modeling a building’s interior to place a clipping plane just below

the ceiling of the floor being modeled, so that the contents of that floor are exposed from above.

When done manually, this action can become cumbersome as clipping planes must be enabled

and disabled when switching from floor to floor, and multiple clipping planes for a multi-level

building must be maintained as the model changes. Automatic methods exist to detect floors and

provide exploded renderings [Niederauer et al., 2003] but may not work for non-conventional

building layouts with multiple adjacent but offset floor levels. Furthermore, these horizontal

clipping planes do not solve the issue of occlusion by walls and limit the viewpoint of a floor

to one that is looking down from far above. Walls can be addressed by using additional vertical

clipping planes, which unfortunately add to the complex and difficult maintenance of a multitude

of clipping planes.

An effective visualization of a set of rooms or objects inside the building should ensure that

these objects of interest are exposed to the viewer from several camera positions. It is also useful

for objects of interest to be locatable in the building, meaning some exterior building structure

is shown to relate the objects of interest to the building as a whole. Furthermore, visualization

techniques should be capable of handling dynamic models, such as those with animated compo-

nents, and should respond quickly to changes in building structure brought about by interactive

modeling actions, or to changes in camera location brought about by user control. The remainder

of this section shows how the cutaway visualization techniques previously described can address

these points.
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House Galleon Building
Triangles (K) 76 301 530
Lines (K) 45 92 286
Chamfer (fps) 10 10 10
Jump Flood (fps) 60 60 60
Model (fps) 46 17 11
With Cutaway (fps) 41 16 10

Table 7.1: Model sizes and frame rates for the house, galleon, and building models shown in
Figures 7.8, 7.7, and 7.6, respectively. Chamfer denotes the frame rate for approximating the
cutaway surface using a 5×5 chamfer kernel. The frame rate using the full-featured jump flooding
algorithm is significantly faster. Overall performance numbers show that rendering the full model
is generally the bottleneck; calculation of the cutaway surface and additional rendering effects
impose a relatively small overhead.

7.2.2 Visualization strategy

A scene graph denoting interior objects and room geometries can be used as a selection mecha-

nism to define a region of interest. This region of interest can be exposed through a contextual cut-

away structure with a user-specified overlay region depth. The transition region can be collapsed

(omitted) because secondary objects are not ranked by importance. A non-photorealistic rendering

style that includes lines is chosen to more closely resemble hand-drawn architectural renderings.

Given the rendering of lines, occlusion reduction is performed by the surface suppression and line

fading mechanism described in Section 2.3. Because objects are not prioritized by importance,

R can be derived from Ω alone, with R = Ω. Thus objects will be rendered with their surfaces

and lines at full opacity in the base region, and without their surfaces and lines fading out in the

overlay region.

7.2.3 Results

Figures in this section show how the aforementioned cutaway techniques can expose interior

details of structurally complex architecture models. The models were obtained from the Google

3-D Warehouse, and cleaned up to ensure consistent face orientation, which is necessary for proper

cut surface shading (Section 5.2.4.1). The models contained segmented interior structures defined

by the scene graph, allowing selection of one or more of objects of interest through a list interface.

90



Figure 7.5: Cutaway illustrations of an office building. From left to right, top to bottom, a desk
and chairs in a boardroom, a central raised office room, a group of free-standing desks, and a
group of cubicles are exposed. By using a wide cutaway angle, cuts are made nearly vertically
through upper floors, facilitating visual location of the objects of interest. A directional constraint
prevents the floor from being cut away underneath the objects of interest.

Performance was measured using an NVIDIA GeForce 8800 GTS 512 with a framebuffer size of

640×480 and a cutaway buffer size of 512×512 (Table 7.1).

Figure 7.5 shows a series of illustrations of an office building with interior structures on several

floors being revealed. Each image reveals a user-specified group of tables, desks, or cubicles that

would ordinarily be occluded by the building structure. A wide cutaway angle is used, adjusted so

that cuts are made nearly vertical through the overhanging floors. With such a wide cutaway angle,

the cutaway shape would normally extend below the floor, causing the objects to float in mid-air.

A directional constraint (Section 6.2.2) in the up direction prevents this artifact from occurring.
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(a) Single room exposed (b) Multiple rooms exposed

(c) Wider cutaway angle

Figure 7.6: Cutaway illustrations using an invisible region of interest. (a) A simple invisible box
denotes a boardroom in an office building as the region of interest. Objects contained in the box
are considered part of the region of interest and are exposed accordingly. (b) A box representing a
break room (yellow) is added. (c) A different camera position and a wider cutaway angle expose
the upper floors.
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(a) Normal rendering (b) Furnace exposed

(c) Furnace and cannons exposed

Figure 7.7: Cutaway illustrations of a galleon. (a) Normal rendering techniques show only the
exterior of the ship. (b) A furnace spanning three decks is exposed with a cutaway. A wide angle
is used to expose the interior deck structure spanned by the furnace. (c) The region of interest is
expanded to include cannons on a middle deck. A narrower angle is used around the cannons to
preserve structures on the upper deck.
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Figure 7.8: Still frames from an animation of a radio controlled car driving through a house. A
smoothly varying cutaway keeps the car visible as it drives through the house and the camera
rotates about the scene. Faded lines in the overlay region show the partial shapes of cut away
structures near the cutaway surface boundary. Efficient computation of the cutaway surface
function allows the animation to run in real-time on modest commodity hardware.
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The images show the exterior of the lower floors, and the trimmed interiors of the upper floors,

facilitating easy recognition of the specific floor on which objects of interest are placed.

As described in Section 4.2.2.2, proxy geometry that does not appear in a rendered image

can be used to define the region of interest. Figure 7.6 shows how such proxy geometry can

be used to show the location and contents of two boardrooms. The proxy geometry is a simple

box in each room that spans almost the extent of each room and includes the contents (table,

chairs) that should be exposed. Figure 7.6a shows a single room exposed with a narrow cutaway

angle, allowing one to peer into the contents of this room from the outside of the building while

maintaining normal view of most of the building exterior. Figure 7.6b adds an additional room

to the region of interest, exposing the contents of both rooms simultaneously. Figure 7.6c shifts

the camera location and zooms in to show more detail. Note that the contents of the left-side

room are not cut by the cutaway extending from the right-side room, since the contents of both

rooms are part of the region of interest. A wider cutaway angle is also used to show the contents

of two overhanging floors. While the surfaces of most of the cubicles in the floor overhead are

suppressed, the remaining lines in the overlay region allude to their existence.

Figure 7.7 shows how a model of a galleon can be explored using the cutaway exposure

techniques. The conventional exterior view hides a significant amount of detail on the ship’s

interior. Cutaways in the subsequent images show a furnace spanning multiple decks and a row of

cannons below the top deck. Because the cutaway shape closely follows that of the furnace and

the group of cannons, only the area around their footprint is disturbed. The remainder of the ship

(sails, supporting masts, rear rooms) are visible as normal. A directional constraint again ensures

that the supporting deck below the furnace remains visible despite a relatively wide cutaway angle.

A narrower angle is applied to the cannons to limit the material removed from the upper deck. The

two groups of objects are exposed by a single cutaway surface that respects their distinct angle

parameters.

The exposure methods used readily support dynamic scenes with changing geometry because

cutaway surfaces are calculated on the fly every frame. Figure 7.8 shows how a radio controlled

car driving through a house can be exposed using a dynamic cutaway. The region of interest
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contains the kitchen counter and the RC car. When the car is outside the house, the house structure

is only cut to expose the counter. When the car moves inside, the house structure is additionally

cut to show the moving car. As the car approaches the counter, the cutaway shape arising from

the car smoothly merges with that of the counter. This merging occurs because both objects of

interest are contributing to the cutaway surface, and the merged cutaway surface shape reflects the

shape of both the counter and the car. When the car moves sufficiently away from the counter, the

cutaway surfaces separate as expected. The car is never cut by the cutaway action initiated by the

counter, since they are both part of the region of interest. Because no geometry pre-processing

is necessary, this animation can run in real-time with little overhead over standard polygonal

rendering.
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Chapter 8

Conclusion

The images presented in Chapter 7, created using the emphasis and exposure techniques presented

throughout this thesis, help address the challenge outlined in the introduction of conveying struc-

tural information in complex scenes. By emphasizing and exposing a region of interest, a focus

for visualization is conveyed and displayed in the context of the rest of the scene. This exposure

allows prominent view of the focus area, which may have been difficult using conventional

rendering techniques, and also illustrates structural relationships between the focus area and the

rest of the scene. These structural relationships are important to a viewer in gaining a semantic

understanding of the scene and inferring the role of focus objects to any action in the scene.

The techniques presented in this thesis fulfill the three goals for visualization set out in Sec-

tion 1.3: creating informational visualizations with a simple interface and providing interactive

performance. While previously developed techniques have addressed these goals, the presented

techniques expand upon and overcome several limitations found in previous techniques. In doing

so the presented techniques create richer high-fidelity images, requiring little user skill or setup,

at interactive framerates for dynamic scenes.

Informational visualization The techniques presented create information-rich visualizations of

interior scene structure that would otherwise be absent from renderings created with conventional
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visibility techniques. Cutaway illustrations of the ultrasound plane in CT data and the interior

objects of architectural models show how these objects of interest can be exposed in situations

in which they would normally be occluded. The resulting images show structural information

about the focus objects, relating them to their surrounding context and the scene as a whole.

Secondary objects of interest, such as the vessels in the medical visualization, are exposed from

their surrounding materials and emphasized according to their importance by way of the contex-

tual cutaway structure. In addition to improving upon renderings using conventional visibility

techniques, the contextual cutaway structure allows more information to be shown than by the

conventional simple cutaway structure.

Simple interface The techniques are flexible enough to create a wide range of visualizations

but are automated enough to operate with a simple point and click interface. The only processing

of the input data necessary is to define groups of geometry to serve as objects of interest, and to

assign importance values to objects to control their priority in the visualization. The former is

often accomplished by means of a scene graph created during scene modeling, or by automated

volumetric segmentation techniques. The latter can be accomplished using a simple GUI as

described in Section 6.1. The remaining parameters, such as cutaway angles, overlay thickness,

and emphasis strength, can also easily be controlled by a few sliders in a GUI.

Interactive performance Because performance and interactive feedback was a driving factor in

the development of the presented techniques, they use efficient computation algorithms that oper-

ate at interactive framerates. When computing cutaway surfaces using the jump flood algorithm,

very high frame rates can be achieved with a remotely modern GPU. Performance tests (Table 7.1)

show that the cutaway action adds little performance overhead to the polygonal rendering pipeline.

Because a volumetric raycaster can cache cutaway surface depth values, the performance impact

on the volumetric rendering pipeline is similarly small. As a further improvement over previous

techniques, this interactive performance extends to changing viewpoint and dynamic animated

scenes.
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Future work

While the presented techniques are expressive and reasonably efficient in creating images that

serve the stated purpose, they are by no means the final words in this field. From the new cutaway

techniques presented, there remains room for improvement in the computation of the cutaway

surface, investigation of various cutaway shapes, and the consideration of entity shape geometry

in applying occlusion reduction in cutaways. From a broader perspective, there are opportunities

for research in additional applications of the jump flooding algorithm and the incorporation of

additional emphasis techniques to complex scenes.

Cutaway surface computation Image based cutaway surface computation offers efficient com-

putation with high fidelity but has several weaknesses typical of image-based algorithms. Among

these issues is the inability of off-screen objects to contribute to the cutaway shape, necessitating

the edge compression method to avoid temporal artifacts as objects move on-screen. Future work

may be able to find a more elegant and effective way to handle this problem. Additionally, because

calculation of the cutaway shape occurs at a fixed resolution, regions of interest with very thin

geometric features can induce aliasing in the cutaway shape. Such high-frequency geometric

features likely should not contribute to the cutaway shape, as these small variations in shape are

amplified by the cutaway function. As such, processing of the region of interest may be possible

to find a shape with a lower level of detail to use in the actual cutaway surface computation.

Finally, when very low resolutions are used for the cutaway shape, computation can be very

fast but single-pixel differences in the footprint of the region of interest can cause noticeable

changes in the cutaway shape as the camera changes. This issue can be overcome by using a

higher resolution cutaway buffer, which requires significantly more computation, at the cost of

performance. Because the basic cutaway shape is fairly simple and free of high-frequency changes

in surface shape, representing it with a high resolution image seems intrinsically inefficient. It

may be possible to use a hybrid sampling or computation approach to achieve higher performance

while avoiding the aliasing brought about by using a low resolution for computation.
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Varying cutaway shape The shape of the cutaway surface is derived from the shape of the

region of interest and a user-given angle parameter. Greater user-control of the cutaway surface

may be had by further modifying the cutaway surface function. For example, the shape of the cone

used as a basis for the surface may be altered to effect the “eccentricity” of the cutout, perhaps

cutting out more information in a horizontal direction than in a vertical direction. One might also

wish to bias the cutout direction so that it is not heading directly towards the camera, providing

greater view of the cut surface in one direction. Investigation into automatic setting of these and

other cutaway surface parameters could further lessen the burden on the user and improve the

visualization experience.

Entity-based occlusion reduction In the cutaway results shown in this thesis, occlusion reduc-

tion is applied per rendered fragment according to the occlusion function and fragment impor-

tance. As a result, objects near the cutaway surface are partially suppressed without regard for

their object geometry. The work of Li et al. [2007] shows that consideration of object geometry

can result in more naturally shaped cuts. Unfortunately their approach is too computationally

expensive for real-time rendering of dynamic scenes. However, there may be a way to use the fast

occlusion function definition presented in this thesis to drive specialized cuts on specific entities.

Such an approach might process points along the surface of an entity’s geometry to determine

what amount or portion of an entity is causing occlusion, and trim the geometry based on the

entity’s denoted cut type.

Jump flooding The Jump Flooding algorithm is used to calculate the cutaway surface by mini-

mizing a function that is significantly more complicated than the 2-D Euclidian distance function

for which the algorithm was originally designed [Rong and Tan, 2006]. The effectiveness of Jump

Flooding in this application is surprising, including to at least one author of the original published

paper. It would be interesting to explore the limits of the Jump Flooding algorithm and see if there

are other image-based function minimization problems to which it could be applied.
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Emphasis in complex scenes While the techniques described here can reveal and emphasize

objects of interest, the resulting imagery remains as visually cluttered as the model from which it

is rendered. The rendering method of Cole et al. [2006] draws the attention of the viewer based

on a desired emphasis target for lines and surfaces in the scene, typically by evaluating distance to

the single point of emphasis. Such an emphasis system may be expanded to include information

arising from the cutaway structure and the position of the objects of interest. Another option

would be to use level-of-detail rendering techniques to render entities of low importance with low

surface detail, with or without incorporating information from the cutaway structure. The intent

of either approach would be to guide the user’s gaze toward the deliberately exposed focus of the

visualization.

User study of effectiveness The techniques presented in this thesis create images that expose

regions and objects of interest, showing structural information otherwise hidden by conventional

rendering techniques. However it is unknown how effective these techniques are in improving per-

ception of structural relationships over hand-drawn illustrations and renderings of other automated

techniques. It would be valuable to conduct one or more user studies of the presented techniques,

comparing them to other methods of visualization over a variety of model types (e.g. organic

vs. mechanical, large vs. small, complex vs. simple, etc.). Because the presented techniques

were designed with a focus on interactivity, they may hold an edge over other techniques in

interactive settings. Informal experimentation shows that when combined with interactivity, fixing

the direction of the cutaway to the model and allowing small camera movements creates a parallax

effect that helps better convey the shape of the cutaway. Additionally, the cut surfaces and the

cutting action seem to stand out more with camera motion in an animation compared to a static

image. A user study may be able to confirm the impact of interactivity on structural perception

and the overall effectiveness of the presented exposure techniques.
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