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3D virtual scenes

Morning Tea Bedroom Collection

Image courtesy: Winter Thorn, IKEA, Studio Bottini, Surya M.



Manually scene modeling is tedious

* Traversing large 3D databases
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Image courtesy: Trimble 3D Warehouse



Manually scene modeling is tedious

* Choosing materials for each object

Image courtesy: Jain et al.



Manually scene modeling is tedious

e Positioning objects in the scene

Image courtesy: Yu et al.



Introduction

3D Scene Modeling



Introduction

3D Scene Analysis

Data-driven
methods
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Related work: Data-driven scene modeling

Database Output scene

Previous work requires

* Perfect segmentation

e Perfect annotation

[Fisher et al. 2012]

Database Output scene

[Xu et al. 2013]



Key idea

3D Scene Analysis

Reasoning about
relationships
between objects

3D Scene Modeling



Outline

* Analyzing 3D scenes by modeling hierarchical structure
 Composition-aware scene optimization for product images
e Style compatibility for 3D furniture models
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Outline

e Style compatibility for 3D furniture models

Reasoning about
relationships
between objects

3D Scene Modeling



Outline

* Analyzing 3D scenes by modeling hierarchical structure



Goal

Input: A scene from Trimble 3D Warehouse




Goal

Output 1: Semantic segmentations
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Goal

Output 2: Category labels.
Nightstand

Mattress
Mirror/ —

Window Door

Heater

Dresser



Goal

Output 2: Category labels at different levels.

Bed & supported

/i

Dresser & supported



Goal

Output 2: Category labels at different levels.

Sleeping area

Vanity area



Challenges

Shape is not distinctive.

Night table

u

Console table

=




Challenges

Contextual information

Study desk

Study chair

Meeting table

Meeting chair



Challenges

All-pair contextual information is not distinctive.
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Challenges

All-pair contextual information is not distinctive.

#pairs Meeting chair vs Meeting chair
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Key Idea

Semantic groups Semantic hierarchy
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Key idea

#pairs Meeting chair vs Meeting chair
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Pipeline

Cabinet
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Probabilistic
grammar

Bed frame

Bed frame

Sleep area/ Bedroom
Bed and Window

supported group/
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Related work

4dd 42

Van Kaick et al. 2013



Related work

Boulch et al. 2013

Van Kaick et al. 2013



Overview

-> Grammar Structure

Learning a Probabilistic Grammar

Scene Parsing

Results



Probabilistic grammar

Labels

Rules

Probabilities



Labels

Examples:

bed, night table, sleeping area




Rules

Example:

sleeping area — bed, night table
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Probabilities

Derivation probabilities

Cardinality probabilities

Geometry probabilities

Spatial probabilities



Derivation probability P,
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Cardinality probability P

card

sleeping area -» bed, night table

1
0.5 ' ‘

0
0 1 2 3 4+

P ..(bed|sleepingarea) P (nighttablelsleepingarea)



Geometry probability P

P (x|bedframe)> P (y|bedframe)



Spatial probability £,

P (x,yldesk,chair,studyarea) > P.(z,y | desk,chair,studyarea)



Overview

Grammar Structure

- Learning a Probabilistic Grammar

Scene Parsing

Results



Pipeline

4 Cabinet

Bedroom
Storage Sleep area
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Bed and
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Cabinet Cabinet Nightstand
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Learning a probabilistic grammar

|dentify objects

Speed X 5



Learning a probabilistic grammar

Label objects

Speed X 5



Learning a probabilistic grammar

Group objects

Speed X 5



Learning a probabilistic grammar

Grammar generation

-> Labels all unique labels
Rules
Probabilities



Learning a probabilistic grammar

Grammar generation

Labels
-> Rules concatenating all children for each label
Probabilities
Training example 1: Training example 2:

Nightstand &
supported

Nightstand

Nightstand

Table lamp

¢ Nightstand & NightstaD Table lamp
supported




Learning a probabilistic grammar

Grammar generation
Labels
Rules

-> Probabilities

P_,P._ . :learning from occurrence statistics

nt®” card

P, :estimating Gaussian kernels

P . kernel density estimation

\)



Overview

Grammar Structure

Learning a Probabilistic Grammar

—> Scene Parsing

Results



Pipeline




Pipeline

Probabilistic
grammar
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Scene parsing

Objective function

H = argmax, P(H 1S,G)

e H isthe unknown hierarchy
* § istheinputscene

* G isthe probabilistic grammar



Scene parsing

After applying Bayes’ rule

H = argmax , P(H|1G)P(S | H,G)



Scene parsing

After applying Bayes’ rule

P(H|G)

Prior of hierarchy P(HIG)= pr

x€EH
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Scene parsing

After applying Bayes’ rule

P(H|G)

Prior of hierarchy P .(x)

P ..(x) :probability of a single derivation

formulated using P _,P

nt® " card



Scene parsing

After applying Bayes’ rule
P(HI1G)

Prior of hierarchy I'(x)

T (x) compensates for decreasing probability as H has
more internal nodes.



Scene parsing

After applying Bayes’ rule
P(S1H,G)

Likelihood of scene

P(SIH.G)=] | P,(x)" P (x)™

x&eH



Scene parsing

After applying Bayes’ rule
P(S1H,G)

Likelihood of scene

P, (x)

P (x) : geometry probability



Scene parsing

After applying Bayes’ rule

P(SIH,G)

Likelihood of scene

P, (x)

P:(x) : sum of all pairwise spatial probabilities P (x)



Scene parsing

We work in the negative logarithm space

E(H)=1logP(HIG)P(SIH,G)

== T()10g (P, ()P, ()P, (1))

xeH



Scene parsing

Rewrite the objective function recursively
E(H)=E(R)
E(x)=Ex)+ Y E)

yEX.children

where R isthe root of H, E isthe energy of a sub-tree.

E(x) l_f(x)




Scene parsing

The search space is prohibitively large ...

Problem 1: #possible groups is exponential.

Problem 2: #label assignments is exponential.



Scene parsing

Problem 1: #possible groups is exponential.
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Scene parsing

Problem 1: #possible groups is exponential.
Solution: proposing candidate groups.




Scene parsing

Problem 2: #label assignments is exponential.
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Scene parsing

Problem 2: #label assignments is exponential.
Solution: bounding #RHS by grammar binarization

FoolR D&

where x'is partial label of x, k € {a,,a,,...,a }




Scene parsing

Problem 2: #label assignments is exponential.
Solution: bounding #RHS by grammar binarization

FoolR D&

where x'is partial label of x, k € {a,,a,,...,a }

Now #rules and #assignments are both polynomial.

The problem can be solved by dynamic programming.



Scene parsing

Problem 2: #label assignments is exponential.
Solution: bounding #RHS by grammar binarization

Convert the result to a parse tree of the original grammar




Overview

Grammar Structure

Learning a Probabilistic Grammar

Scene Parsing

—> Results



Benefit of hierarchy

Meeting table

Shape only



Benefit of hierarchy

Meeting table Meeting table

3
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Shape only Flat grammar



Benefit of hierarchy

Meeting table Meeting table Study desk

Shape only Flat grammar Ours



Benefit of hierarchy

Meeting table Meeting table Study area

3
¢ @

Meeting area
Shape only Flat grammar Ours



Datasets

8 libraries

17 small bedrooms 8 small libraries



Benefit of hierarchy

M Shape-only " Flatgrammar ™ Ours

Small-library Small-bedroom Library Bedroom Classroom

Object classification



Summary

 Modeling hierarchy improves scene understanding.



Limitations and future work

* Modeling correlation in probabilistic grammar




Limitations and future work

* Grammar learning from noisy data

Input scene graphs Grammar




Limitations and future work

* Applications in other fields

Modeling from RGB-D data [Chen et al. 2014]



Outline

 Composition-aware scene optimization for product images
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Motivation

35% of scenes in IKEA catalogue are CGI.



Advantages

* Much less expensive
e Much easier for customization



Advantages

Much less expensive
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Advantages

* Much less expensive

200 x 600 (130 KB) 200 x 600 (150 KB) 200 x 600 (143 KB)
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Advantages

e Much easier for customization




Artist’s goal




Artist’s goal

Input: a rough scene, objects to highlight, and an
initial camera view

Rough layout




Artist’s goal

Input: a rough scene, objects to highlight, and an
initial camera view

Highlight
this chair
and this table




Artist’s goal

Input: a rough scene, objects to highlight, and an
initial camera view

Camera view




Artist goal

Output: a scene with optimized object placement,

materials and camera view that produce an
appealing 2D composition.

. An b



Challenges

 Huge search space to explore
* Many principles/constraints to balance
* Requiring repeating work for customization




Challenges

 Huge search space to explore

4*N + 6 parameters
3 DOF per object
1 material per object
* 6 DOF for camera




Challenges

* Many principles/constraints to balance
* Requiring repeating work for customization

v




Challenges

 Requiring repeating work for customization
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Related work

Image optimization =~ Camera optimization Scene optimization
[Liu et al. 2010] [Gooch et al. 2001] [Yu et al. 2011]



Key idea

E{x,.y}03.{m},C)=E, +E, +E +E, +E, +E,

X;,y; :position of object i on its supporting surface



Key idea

E({xi,yi,{mi},C) -E, +E, +E +E_ +E,, +E.

X;,y; :position of object i on its supporting surface

6. :orientation of object i



Key idea

E({x,.y,03 {mNC)=E, +E, +E +E, +E, +E,

X;,y; :position of object i on its supporting surface
6. :orientation of object i

m. : material of object |

l



Key idea

E({xi,yl.,Hi},{mi} -E, +E, +E +E, +E, +E,

X;,y; :position of object i on its supporting surface
6. :orientation of object i

m. : material of object |

l

C :camera parameters



Key idea

E({x;,y,0,1,im},C)fE +E, +E +E +E,+E

X;,y; :position of object i on its supporting surface
6. :orientation of object |

m. : material of object |

C :camera parameters

E E E E

op? —os? "1c?

Cp,E3d,Er : terms for composition rules



Key idea

E({x;,y,0,3,im},C)=E _+E, +E +E +E,,+E

Never been considered before

. position of object i on its supporting surface

: orientation of object i

: material of object i

C :camera parameters

E E E E E. . E :termsfor composition rules

op?® —os? ic? ~cp?—3d> r



Overview

- Composition rules and constraints

Optimization

Applications



Composition rules

Object placement within 2D frame E,,
Object saliency within 2D frame E
Image composition £,

Camera placement E_

Object constraints within 3D scene E,,

A o e

Regularization £,



Term 1: Object placement within 2D frame

e Rule of thirds




Term 1: Object placement within 2D frame

e Rule of thirds
e Centeredness

e (Clearance




Term 1: Object placement within 2D frame

e Rule of thirds
e Centeredness

e (Clearance




Term 2: Object saliency within 2D frame

e Visibility
 Objectsize




Term 2: Object saliency within 2D frame

 Objectssize




Term 3: Image composition

e Visual balance




Term 3: Image composition

e Color contrast




Term 4: Camera placement

e (Canonical views

 Typical views




Term 4: Camera placement

* Typical views




Term 5: Object constraints within 3D scene

e Collision relationships

 Support relationships

e Semantic constraints




Term 5: Object constraints within 3D scene

 Support relationships




Term 5: Object constraints within 3D scene

e Semantic constraints




Term 6: Regularization




Overview

Composition rules and constraints

-> Optimization

Applications



Energy function

E({x;,y,0,3,im},C)=E _+E, +E +E +E,,+E

Continuous variables Discrete variables



Optimization

* Continuous optimization — camera view and
object placement

Discrete optimization — materials



Example

' Focus objects:
Dining table, chair




Overview

Composition rules and constraints

Optimization

-> Applications



Applications

1. Refining rough compositions

2. Retargeting for different aspect ratios

3. Retargeting for different cultural preferences
4

5

. Text-incorporated composition
. Generating detail images from an overview



Application 1: Refining rough compositions

Rough composition Optimized composition



Application 1: Refining rough compositions

User study




Application 1: Refining rough compositions

User study Reference




Application 1: Refining rough compositions




Application 1: Refining rough compositions
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Application 1: Refining rough compositions
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Application 1: Refining rough compositions

A47 AS56 A69 A81 A92
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lication 1: Refining rough compositions
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App 2: Retargeting for different aspect ratios
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App 2: Retargeting for different aspect ratios

Input (4:3) Camera-only



App 2: Retargeting for different aspect ratios

Input (4:3) Camera-only Ours (1:2)



App 3: Retargeting for different cultural preferences




App 3: Retargeting for different cultural preferences

(a) Original (b) Objects replaced



App 3: Retargeting for different cultural preferences

(b) Objects replaced (¢) Optimized



App 4: Text-incorporated composition




App 4: Text-incorporated composition




App 4: Text-incorporated composition

Extra terms for overlaid text
e (Contrastterm




App 4: Text-incorporated composition

Extra terms for overlaid text
e (Contrastterm
e Variance term




App 4: Text-incorporated composition

Retargeting for different
text layouts. The artist
provides a rough pos-
ition for the text box
and specifies the cham-
pagne bottle and the
goblet as focus objects.
Then our optimization
adjusts object positions,
view-point and text
positions to increase
contrast, reduce clutter
and remove occlusion of
the focus objects.




App 4: Text-incorporated composition

Retargeting for different
text layouts. The artist
provides a rough pos-
ition for the text box
and specifies the cham-
pagne bottle and the
goblet as focus objects.
Then our optimization
adjusts object positions,
view-point and text
positions to increase
contrast, reduce clutter
and remove occlusion of
the focus objects.

Camera only

Retargeting for different
text layouts. The artist
provides a rough pos-
ition for the text box
and specifies the cham-
pagne bottle and the
goblet as focus objects.
Then our optimization
adjusts object positions,
view-point and text
positions to increase
contrast, reduce clutter
and remove occlusion of
the focus objects.

Our result



App 5: Generating detail images from an overview




App 5: Generating detail images from an overview




App 5: Generating detail images from an overview




App 5: Generating detail images from an overview

(a) Overview



App 5: Generating detail images from an overview

(a) Overview (b) Speaker



App 5: Generating detail images from an overview

(a) Overview (b) Speaker (¢) Shelf



A perceptual study

Comparing the results of our method and
optimizing camera only.

Kitchen Livig room



Expert study results

ID Ours Camera Only No preference
Expertl 22 12 2
Expert2 17 14 3
Expert3 22 11 3
Expert4 21 12 3




Amazon Mechanical Turk study
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Amazon Mechanical Turk study

If null hypothesis is there is no preference,

 QOur method is preferred in 26/36 cases.



Amazon Mechanical Turk study

If null hypothesis is there is no preference,

* QOur method is preferred in 26/36 cases.
* No statistical significance in 8 cases.



Amazon Mechanical Turk study

If null hypothesis is there is no preference,
 QOur method is preferred in 26/36 cases.
* No statistical significance in 8 cases.

e Cameraonly is preferred in 2 cases.



Summary

 Reasoning about relationships between objects in the
image space and the scene space helps create good

compositions.

 Moving objects and changing materials significantly
improves the quality of compositions.

 Our optimization framework benefits a variety of
applications.



Limitations and future work

* [nteractive scene optimization
* Global illumination
 Additional composition rules



Limitations and future work

* [nteractive scene optimization



Limitations and future work

e Globalillumination
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Limitations and future work

 Additional composition rules

FAKTUM/RUBRIK kitchen Jiov|

'
What's i dtchen price? See page 309. | 1 5 -
Kitchen assembly and installation service | ¥ B *
| g~
Basic instatation® s1ap0 | i A
= Price for this kitchen / | — |
incl. basic nstalotion” | 5350 i
10m? g L
“To find out more visit IKEA com.au/aalkitchedservices. L e l ’
{ 4 iy L)
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Outline

e Style compatibility for 3D furniture models



Motivation

Image courtesy: smartnick100, Designer_Tina, Xu et al.



Motivation

e N

Style compatibility G

e




Goal

Modeling pairwise style compatibility

O —
ur

How likely would a person put the two furniture
pieces together in the same room if he was furnishing

an apartment?



Goal

Modeling pairwise style compatibility

o
ﬂ ﬂ Extract feature vectors
F(X., xj) = Scalar



Previous work — shape style
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[Xu et al. 2010] [Li et al. 2013]




Previous work — virtual world synthesis

[Merrell et al. 2011] [Fisher et al. 2012] [Xu et al. 2013]



Challenges

 Hard to design a hand-tuned function
* Coupled with functionality
* Requiring comparisons across object classes
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Challenges

 Coupled with functionality




Challenges

* Requiring comparisons across object classes
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Key ldeas

 Crowdsourcing compatibility preferences
 Part-aware geometric features
 Learning object-class specific mappings



Key ldeas

 Crowdsourcing compatibility preferences
 Part-based geometric features

 Learning object-class specific mappings




Crowdsourcing compatibility preferences

Living room

Table lamp (28) Couch (39) Vi

End table
(42)

/

/ Floor lamp (23)

_—

) & “‘- | /
————— C
Chair (37) Coffee table (49) Armchair (36)

.
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Crowdsourcing compatibility preferences

Design of user study [Wilber et al. 2014]

Please select the two most compatible pairs.



Crowdsourcing compatibility preferences

Rater’s selection




Crowdsourcing compatibility preferences

Converted into 8 triplets

| )




Crowdsourcing compatibility preferences

[ —

j

Mx <
wé =

Collected 63,800 triplets for living room
and 20,200 for dining room

Living room Dining room




Key ldeas

* Part-aware geometric features



Part-aware geometric features

Contemporary

Antique




Part-aware geometric features

* Consistent segmentation
« Computing geometry features for each part
 Concatenating features of all parts



ic features

Part-aware geometr

Consistent segmentation [Kim et al. 2013]

Step 1

Seat
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Part-aware geometric features

Step 2: Computing geometric features for each part

- Curvature histogram

Shape diameter histogram

Bounding box dimensions

Back

Normalized surface area

- N




Part-aware geometric features

Step 3: Concatenating features of all parts

Back < L Legs

Entire model



Key Ideas

* Learning object-class specific mappings



Learning object-class specific mappings

Previous approach [Kulis 2012]:
oy (%) = W (= ;)]
dsymm is the compatibility distance

X;»X; are feature vectors of two shapes



Learning object-class specific mappings

Previous approach [Kulis 2012]:

The quick brown
fox jumps over
the lazy dog.

The quick brown
fox jumps over
the lazy dog.

Fonts Illustration styles
[O’Donovan et al. 2014] [Garces et al. 2014]



Learning object-class specific mappings

Assumptions of the previous approach
* Feature vectors have the same dimensionality
* Corresponding dimensions are comparable

The quick brown The quick brown

fox jumps over fox jumps over
the lazy dog. the lazy dog.




Learning object-class specific mappings

Our approach:

asymm(xl’x )_H c(7) l_ C(]) ]H

c(?) is the object class of X,

c(J) is the object class of X;



Learning object-class specific mappings

. Wtable Wchair =
\
/_\ \\R
X1 L] e 2 4
Y1 Xy
A 7 |
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Style Feature Space X6




Learning object-class specific mappings

Learning procedure [O’'Donovan et al. 2014]
* Using a logistic function to model rater’s preferences

* Learning by maximizing the likelihood of the training
triplets with regularization



Results of triplet prediction

Test set: triplets that human agree upon
e 264 triplets from dining room
e 229 triplets from living room

Method Dining room Living room
Chance 50% 50%
No part-aware, Symmetric 63% 55%
Part-aware, Symmetric 63% 65%
No part-aware, Asymmetric 68% 65%
Part-aware, Asymmetric (Ours) 73% 72%
People 93% 99%




Applications

e Style-aware shape retrieval
* Style-aware furniture suggestion
* Style-aware scene building




Applications

e Style-aware shape retrieval

* Style-aware scene building



Style-aware shape retrieval

Query model Dining chair

—

» ] ?




Style-aware shape retrieval

Query model Dining chair

T brEeR

1.336 1.480 1.560 1.566 1.662



Style-aware shape retrieval

Query model Dining chair

T L

1.336 1.480 1.560 1.566 1.662

(Most mcompatlble chairs)

hE

2.790 2.847 3.149 3.246 3.525




Style-aware scene building




Style-aware scene building

User study

* 12 participants, each works on 14 tasks.

e Half of the tasks are assisted by our metric,
and the other half are not.

e Results from the two settings are compared
on Amazon Mechanical Turk.



Style-aware scene building

B Random " No preference ™ Ours
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Summary

 |tis possible to learn a compatibility metric for
furniture of different classes.

* The learned compatibility metric is effective in style-
aware scene modeling.



Limitations and future work

* Modeling fine-grained style variations
* Investigating style compatibility in other domains



Limitations and future work

* Modeling fine-grained style variations

Duncan Phyfe style with eagle motif = Sheraton style with lyre motif
(Courtesy: Carswell Rush Berlin)



Limitations and future work

* Investigating style compatibility in other domains




Outline

* Analyzing 3D scenes by modeling hierarchical structure
 Composition-aware scene optimization for product images
e Style compatibility for 3D furniture models



Summary of my thesis

Relationships between objects are
e astrong cue for scene understanding

3D Scene Analysis

Reasoning about
relationships
between objects



Summary of my thesis

Relationships between objects are

e astrong factor for scene plausibility and aesthetics

Reasoning about
relationships
between objects

3D Scene Modeling



Future work

* Other sources for data-driven scene modeling
* Other factors related to scene plausibility



Future work

* Other sources for data-driven scene modeling

Image courtesy: IKEA



Future work

Other sources for data-driven scene modeling

apartment conference room conference hall restroom classroom

-, p '

Image courtesy: Xiao et al.



Future work

Other factors related to scene plausibility

Materials are strongly related to style compatibility
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Thank you!
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